
 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
1

Android Mobile Automation Framework

Pallavi Raut* & Satyaveer Tomar**

*Department of Computer Science & Engineering, RGPV, Bhopal,M.P

** Department of Computer Science & Engineering, SBITM, Betul, M.P

 ABSTRACT:

Earlier, mobile applications were offered for basic tasks such as email, contacts, calendar,

music, weather, or stock information. Due to public demand and availability of advanced

developer tools, mobile apps rapidly expanded into various categories such as games, factory

automation, location-based services, banking, etc. Increasingly prevalent usage of mobile

devices has raised the popularity of mobile apps; soon enough, functional testing of those

apps has become an extremely important task.

Quality testing of mobile apps across various operating systems and devices is necessary for

their long-term success in this highly competitive app market. There is a constant need for

robust Android test automation tools to ensure software compatibility across various versions

of the operating system. In case of Android, you have to also take care of the hardware

diversity provided by many Android OEMs. Taking into account all of these issues and

constraints, Android Mobile Automation Framework is developed to overcome these

challenges. In this paper we present an approach for automating the testing process for

Android applications, with a focus on GUI and functional bugs.

Keywords:- Android SDK, ADB, Net beans, Eclipse-IDE, java/c++

I. INTRODUCTION

Android is open-source software architecture provided by the Open Handset Alliance, a

group of 71 technology and mobile companies whose objective is to provide mobile software

platform.

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
2

The Android platform includes an operating system, Middleware and applications. As for the

features, Android incorporates the common features found now a days in any mobile device

platform, such as: application framework reusing, integrated browser, optimized graphics,

media support, network technologies, etc.The Android architecture, depicted in Figure 1, is

composed by five layers: Applications, Application Framework, Libraries, Android Runtime

and finally the Linux kernel.

The uppermost layer, the Applications layer, provides the core set of applications that are

commonly offered out of the box with any mobile device. The Application Framework layer

provides the framework Application Programming Interfaces (APIs) used by the applications

running on the uppermost layer. Besides the APIs, there is a set of services that enable the

access to the Android’s core Features such as graphical components, information exchange

managers, event managers and activity managers, as examples. Below the Application

Framework layer, there is another layer containing two important parts: Libraries and the

Android Runtime. The libraries provide core features to the applications. Among all the

libraries provided, the most important are libc, the standard C system library tuned for

embedded Linux-based devices; the Media Libraries, which support playback and recording

of several audio and video formats; Graphics Engines, Fonts, a lightweight relational

database engine and 3D libraries based on OpenGL ES.

The important layer from test automation perspective is Application layer. Applications are

the top layer in the android architecture and this is where applications are goanna fit.

Figure 1: Architecture of Android platform.

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
3

Several standard applications comes pre-installed with every device, such as:

SMS client app

 Dialer

 Web browser

 Contact manager

Whereas third party developed application can be downloading either from google play or

install it using command prompt if application file available.

2. RELATED WORK

2.1 Monkey Talk

Monkey Talk is a well-developed system that supports record, replay, and test automation

across different technologies and frameworks including Android
[7].

 The system allows you to

record and replay user inputs create automated user tests or run interactive tests through their

IDE which is built on top of the popular eclipse IDE. Using Monkey Talk, one can connect to

a virtual or physical device running Android and run their tests on it. From there, most of the

user interactions can be recorded and are converted to their specific format including detailed

information about the events that occurred and the elements they affected. Monkey Talk also

provides a Java Script api which allows you to override event handlers to record custom

messages.

2.2 Robotium

Robotium is an Android UI automation framework designed to make programmatic

simulation of user actions on Android devices very simple. [8] It does not support any record

or replay functionality as is but provides several mechanisms to ensure sanity in actions

taken.

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
4

For example, when typing into a textbox or clicking one button it grants its user the ability to

check that the desired elements exist and that their data or attributes are correct.

2.3 Deterministic Replay

A lot of research is being carried out in the area of UI testing for mobile apps, many of which

involve record and replay. [1] Jason Flinn and Z. Morley Mao from the University of

Michigan published a paper [1] about the applicability of deterministic replay for UI testing

for mobile devices. Through their research they aimed at studying the challenges posed by

implementing replay on phones. They also explored the benefits of replay, especially when it

is performed remotely on cloud or cloudlet.

2.4 Guitar

GUITAR (Graphical User Interface Testing framework)is a test generation and automation

framework that can be applied to GUIs of many kinds. [9] It has been extended to android

applications as Android GUITAR. Android-Guitar is intended to simplify the testing process

of GUIs on the Android platform by invoking GUITAR. A plug in is being developed that

allows the GUITAR Ripper and Replayer to communicate with an Android application

running on an Android emulator. This plugin is expected to facilitate automated and

comprehensive testing of Android GUIs, as well as increase the breadth of GUITAR

functionality.

3. CHALLENGES IN MOBILE WORLD

Testing mobile applications is more complex and time consuming compared to traditional

desktop and web applications. The majority of desktop applications need to be tested on a

single dominant platform – Windows. The lack of a similar dominant platform for mobile

apps results in many apps being developed for and tested on Android, iOS and sometimes

even more platforms. Challenges are

1. The biggest challenge when it comes to mobile application testing is the plethora of

devices spread across different platforms. Obviously, it is not feasible to test application on

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
5

each and every available device which means you have to strategically choose a few physical

devices.

One need to remember that testing on one device never assures it would work on any other

device, irrespective of whether it is of same make, same OS Version or using the same

platform! Not testing on a physical device always runs a risk of potential failure on that

device, especially when the target audience for the application is widespread, like for a game.

Testing demands different physical devices to cover the following:

a) Varying screen sizes.

b) Different Form factors.

c) Different pixel density and resolution.

d) Different input methods like QWERTY, touch etc.

2. Different platform testing: In case of native app, it goes without saying that it will need

dedicated testing effort on all platforms for which it is developed. It gets a bit tricky in case

of HTML5 based hybrid applications. While the code remains same, lot of factors come into

play on different platforms.

 3. Testing on different OS versions of the same platform: Test your application on all major

platforms aka Android, iOS, Windows etc but each one of them have several OS versions

floating in market. An obvious choice is to test on the most recent versions of all the

platforms but this would not do justice for Android application. The latest version of Android

is Jellybean introduced quite a while ago, still there are lot of devices which have not yet

received OS updates (and possibly will never be updated). Its interesting to note a big

difference in Google’s and Apples’s approach in handling the OS updates. While the former

relies on device manufacturers to update the respective devices, Apple handles the updates

itself resulting into mass updating of all Apple devices as soon as a new OS version is

released. Whatever is the OS version on a device, user can still install your application and

use it, which calls for testing different OS versions.

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
6

4. Testing on various networks and network vendors: Most of the mobile applications require

network connectivity sometime or the other. If the app talks to a server for flow of

information to and fro, testing on various (at least all major ones) networks is important.

Mobile networks use different technologies like CDMA and GSM with their 2G, 3G and 4G

versions. The network infrastructure used by network operators may affect data

communication between app and the backend. Apart from the different operators, an

application needs to be tested on Wi-Fi network as well.

5. Mobile environment: It poses another unique challenge to the tester. Mobile environment

is very dynamic and has constraints like limited computing resources or available memory

and battery life

4. PROPOSED SCHEME

This Android Mobile Automation Framework is based on robotium. This is an open source

Android testing framework with robust functionalities to cover almost all possible scenarios

encountered in android applications. It has powerful features which make this framework for

android Black-box testing to develop test scripts for functional, system as well as acceptance

test scenarios.

When it comes to testing mobile devices, there are two fundamental ways to approach the

testing process. The first way is to use an emulator, which is a software application that

allows you to reasonably simulate the behaviour of a mobile application on a given mobile

device configured in a certain way. While emulators are quite useful, they are not to be relied

upon solely due to limitations in the emulation software. The second way is to use the actual

devices you are targeting in the mobile marketplace. The test cases written using this

framework can either be executed on the Android Emulator Android Virtual Device (AVD))

or on a real Android device.

Below architecture depicts the Android mobile automation framework.

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
7

Fig2: Architecture of AMAF

Xml file is one of the input files of the Android Mobile Automation framework (AMAF). It

contains the steps required to navigate through the various screens in an application. A

typical xml file contains the name of the application as the entry point (parent tag) and the

derived commands as the child tags. When test script is developed, it will be compiled using

Eclipse and then will upload the app to device with help of framework which then invoke the

test script on device and start execution

Fig: 3 AMAF Home screen

5. IMPLEMENTATION AND RESULTS

5.1 Test Case Generation

Eclipse is a development environment that has been extended by AMAF with the necessary

functionality to create test scripts against mobile applications. The benefit of using Eclipse

for creating automated test cases is that you have now one platform for development and

debugging, scripts can run in parallel on different mobile devices and compiled test scripts.

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
8

AMAF test can access the attributes of the user interface elements as they are defined in the

mobile operating system. This is an essential technique that has been used by test automation

tools on the PC for many years.

 AMAF is a testing framework for java applications, integrated in the Android development

environment. JUnit can generate several classes of test cases based on the application source

code. Since activities are the main entry points and control drivers in Android applications,

test case generation is based on activities. We first identify all activities in an application and

then use the Activity Testing class in Junit to generate test cases for each activity. Test script

will be generated and placed at appropriate folder in AMAF framework.

Fig: 4 Test case generation

5.2 Test Execution Environment

Once the test cases developed, In first panel, select the test scripts that needs to be execute

and then create the test suite.

In order to display device in device list, adb path needs to be set up in environment variable

and then only in device details panel, select the device details and test suite that created in

first panel. Device connected to AMAF should display like below in fire of adb command

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
9

 After that select the device and test suite in execution panel and start execution. Script will

run on device.

5.3 Test Case Results Analysis

After execution of all test script, test result summary will be generated. Test results can be

exported in HTML or CSV format. This test result summary contents result of test script

Passed or Failed. Option to view either passed or failed test cases is available.

 6. CONCLUSION

In this paper, a technique for automatic testing of Android mobile applications has been

proposed. The technique is based on robotium and is used to develop test cases that reveal

application faults like run-time crashes, or that can be used in regression testing. Test cases

consist of event sequences that can be fired on the application user interface. At the moment,

we have not considered other types of events that may solicit a mobile application (such as

external events produced by hardware sensors, chips, network, or other applications running

on the same mobile device) and just focused on user events produced through the GUI.

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
1

0

The proposed testing technique aims at finding GUI, functional and user-visible faults on

modified Versions of the application. This framework will be worked on both Emulator and

physical android device.

Benefits of this automation framework are

• Framework has capacity to handle multiple activity

• One script will run on all android platform versions

• 43% of efforts save per cycle compared to manual testing as shown in table 1

• Based on Junit, opening the door for Unit Testing with Android

• Maintenance of the script is very easy

• Support Native as well as Hybrid application

Table 1 Automation Results

REFERENCES:

i. DomenicoAmalfitano, Anna Rita Fasolino, Porfirio Tramontana "A GUI Crawling-

based technique for Android Mobile Application Testing"DOI:

10.1109/ICSTW.2011.77 Conference: Software Testing, Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth International Conference

Testing Cycle Test cases
Total Efforts

(PD)

Person

Weeks(PW)
Automation Efforts(PD)

First Cycle 1000 10 2 5

Second Cycle 1000 10 2.0 5

Regression Release 1200 8 1.6 5.625

Total Effort 28 6 16

Total Effort (PM) 0.76

% Efforts Saved 43%

Total Effort Estimation

1.33

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
1

1

ii. Cuixiong Hu&IulianNeamtiu “Automating GUI Testing for Android Applications”

Department of Computer Science and Engineering, University of California,

Riverside, CA, USA http://www.cs.ucr.edu/~neamtiu/pubs/ast11hu.pdf

iii. Gerrard Paul, "Testing GUI Applications", EuroSTAR Conference, Edinburgh,

November 1997, http://www.gerrardconsulting.com/GUI/TestGui.html, 18.07.2010

iv. Garima Pandey, DikshaDani“ Android Mobile Application Build on Eclipse”

International Journal of Scientific and Research Publications, Volume 4, Issue 2,

February 2014, ISSN 2250-3153

v. Testing for poor responsiveness in android applications ShengqianYang ;Dacong Yan

; Rountev, A. Engineering of Mobile-Enabled Systems (MOBS), 2013 1st

International Workshop on the DOI: 10.1109/MOBS.2013.6614215 Publication Year:

2013

vi. Using GUI ripping for automated testing of Android applications Amalfitano, D.

;Fasolino, A.R. ; Tramontana, P. ; De Carmine, S. ; Memon, A.M.Automated

Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM International

Conference on DOI: 10.1145/2351676.2351717 Publication Year: 2012

vii. Gorilla Logic, MonkeyTalk. https://www.gorillalogic.com/monkeytalk

viii. Renas Reda, Robotium - The World’s Leading Android Test Automation Framework,

User scenario Testing for Android. https://code.google.com/p/robotium/.

ix. Nguyen, Bao, Bryan Robbins, and Ishan Banerjee, GUITAR - A GUI Testing

Framework Event Driven Software Lab - University of Maryland.

http://sourceforge.net/projects/guitar/

x. Shyam Bhati, Sandeep Sharma, Karan Singh "Review On Google Android a Mobile

Platform" IOSR Journal of Computer Engineering(IOSR-JCE) e-ISSN: 2278-0661, p-

ISSN: 2278-8727Volume 10, Issue 5 (Mar. - Apr. 2013), PP 21-25

xi. Khawlah A. AI-Rayes, AiseZulalSevkli, Hebah F. AI-Moaiqel, Haifa M. AI-Ajlan,

Khawlah M. AI-Salem, Norah I. AI-Fantoukh "A Mobile Tourist Guide for Trip

Planning" IEEE MULTIDISCIPLINARY ENGINEERING EDUCATION

MAGAZINE, VOL. 6, NO. 4, DECEMBER 2011

xii. R. Gove and J. Faytong. Identifying infeasible GUI test cases using support vector

machines and induced grammars. In TESTBED, pages 202–211, 2011.

 International Journal of Multidisciplinary Approach

 and Studies ISSN NO:: 2348 – 537X

Volume 01, No.6, Nov - Dec 2014

P
ag

e
 :
1

2

xiii. F. Gross, G. Fraser and A. Zeller. Search-based system testing: High coverage, no

false alarms. In ISSTA, pages 67–77, 2012.

xiv. S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile application

energy consumption using program analysis. In ICSE, 2013.

xv. C. Hu and I. Neamtiu.Automating GUI testing for Android applications. In AST,

pages 77–83, 2011.

xvi. J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and T.

Millstein. Dr. Android and Mr. Hide: Fine-grained permissions in Android

applications. In SPSM, 2012.

xvii. M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if you can: Performance bug

detection in the wild. In OOPSLA, pages 155–170,2011.

xviii. M. Jovic and M. Hauswirth. Listener latency profiling: Measuring the perceptible

performance of interactive Java applications. Science of Computer Programming,

76(11):1054–1072, 2011

