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ABSTRACT: 

In this paper we used η-µ fading channel as a fading model and maximal ratio combiner 

(MRC) which is one of the diversity combining technique considered at the receiver. Closed-

form expressions for the capacity of maximal-ratio combining (MRC) diversity systems over 

η-µ fading channel are obtained and analyzed for an arbitrary number of input branches. 

Channel capacity for adaptive transmission techniques: Constant power with optimum rate 

adaptation (ORA), Channel inversion with fixed rate (CIFR) and Truncated channel 

inversion with fixed rate (TIFR) are derived. The effect of diversity order and fading 

parameters on the channel capacity with different adaptive transmission schemes has been 

studied. 

 

Keywords:ƞ -µ distribution, MRC receiver, Optimum rate adaptation (ORA), Truncated 

channel inversion with fixed rate (TIFR), Channel inversion with fixed rate (CIFR) 

INTRODUCTION 

Capacity analysis of fading channels makes important role in designing and 

implementation of wireless communication systems and to improve spectrum efficiency and 

service quality thereby providing useful information [1]. For small scale fading phenomena 

where there is no line of sight component, ƞ -μ channel model is used. Besides others 

commonly used fading models such as Rayleigh, Nakagami-m, Nakagami-q etc., can be 

realized as the special case of ƞ -μ channel model [2].Mohamed-Slim Alouini el. at [3] 

studied the Shannon capacity of adaptive transmission techniques in conjunction with 

diversity combining. This capacity provides an upper bound on spectral efficiency using 

these techniques. Closed-form solutions for the Rayleigh fading channel capacity under three 
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adaptive policies: optimal power and rate adaptation, constant power with optimal rate 

adaptation, and channel inversion with fixed rate are obtained. Performance of an L branch 

maximal ratio combining (MRC) receiver are analyzed in equally correlated η-μ fading 

channels. Mathematical expressions for the PDF, moments, outage probability and ABER for 

binary, coherent and non-coherent modulations are presented in [4]. In paper [5], a number of 

new closed-formexpressions for the η-μ fading channels involving the joint statistics of the 

envelope, phase, and their time derivatives are obtained. A number of new exact second order 

statistics for the η-μ fading channels are derived. The rest of this paper is organized as 

follows. In Section II, the introduction of η-μ distribution is given and in Section III the 

capacity of MRC combiner system is discussed. In Section IV, numerical analysis and result 

have been given. Finally, the paper is concluded in Section V 

THEȠ-µ DISTRIBUTION 

2.The ƞ-µ distribution  is  a  general  fading  distribution  that  can be  used  to  better  

represent  the  small-scale  variation  of  the  fading signal  in  a  non-line-of-sight condition 

which may  appear  in  two different  formats. However, in  mathematical  terms,  one  format  

can  be obtained  from  another  by  the  relation: 

 

Where 0 << ∞ is  the parameter  ƞ   in  Format  1, and  -1 << 1  is the parameter 

ƞ  in Format  2.  

 

2.1 ƞ -µ Distribution: Format 1 

In  Format  1,  0 < ƞ  < ∞  is  the  scattered-wave  power  ratio between  the  in-phase  and 

quadrature components.  

In such case,   and 1

4
H
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 . It is noted that within 0 <ƞ  ≤1, we have H ≥ 0.  

On the other hand, within 0 <ƞ -1
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v vI z I z   ,the distribution yields  identical  values within  these  two  intervals,  i.e.,  

it  is  symmetrical  around  ƞ  =1. Therefore,  as  far  as  the  envelope  (or  power)  

distribution  is  concerned,  it  suffices  to  consider  ƞ   only within  one of  the  ranges.  We 
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2.1 ƞ -µ Distribution: Format 2 

In  Format  2,  -1 <ƞ<1  is  the  correlation  coefficient  between the  scattered-wave  in-

phase  and  quadrature  components  of  each cluster  of multipath.  

 In such a case, 
2

1

1
h





  and   

21
H







 .  

We note that within 0 ≤ ƞ  < 1, we have H ≥ 0.  On the other hand, within -1 <ƞ  ≤ 0, we have 

H ≤ 0.  Because       1
v

v vI z I z   , the distribution yields identical  values within  these  two  

intervals,  i.e. it  is  symmetrical  around ƞ  = 0. Therefore,  as  far  as  the  envelope  (or  

power)  distribution  is  concerned,  it  suffices  to  consider  ƞ  only within  one of  the  

ranges. We note that in Format 2, H/h = ƞ . 

3. CAPACITY OF MRC COMBINER SYSTEM 

Initially, consider the physical model for the η-µ distribution Format 1. The  envelope  R,  can  

be written  in  terms  of the  in-phase and  quadrature  components  of  the  fading  signal as 

2 2 2

1

( )
l

i i

i

R X Y


    

where  Xi  and  Yi  are  mutually  independent  Gaussian  processes with,     0i iE X E Y  ,  

 2 2

i XE X  , and  2 2

i YE Y  ,and  n is the number of clusters  of  multipath. Now                              

so that                    . 

 

Using this channel model the PDF of output SNR for L-MRC receiver is obtained which is 

given by 
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   Where
1 2t t @ and Γ(⋅) is the gamma function,   1 1 .;.;.F  is the confluent hypergeometric 

function [6] and  
 
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x a
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
 is the Pochhammer’s symbol [8,(6.1.22)].Writing the 

hypergeometric function in terms of infinite series, we have 
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3.1 Constant  Power with optimum rate adaptation 

The formula for ORA is given by [7] 
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Rearranging the equation we can write it as
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  Where                                    and its evaluation given in the Appendix A.  

The value is given by                                    . 

 

Putting the above value of in (7) and rearranging   the equation, we have 
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3.2 Truncated channel inversion with fixed rate 

The capacity for this scheme is given by 
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The final expression after simplification for 
tifrR can be given as 
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The final expression for capacity for TIFR scheme can be obtained by putting the values of 

tifrR and  0outP  . 

3.3 Channel inversion with fixed rate 

 The capacity for this scheme is given by                                         

 

 

 

For this scheme requirement to find a solution to the integral
cifrR . It can be solved by putting 

(3) and then solving the resulting integral using [8, (7.621.4)]. The procedure is shown below. 
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Using the formula [8, (7.621.4)] 
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The given integral can be solved as 

    Where  2 1 , ; ;F a b c z  is the hypergeometric function.  The expression after algebraic 

manipulation  
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Thus the final expression for the capacity of this scheme can be obtained by putting (18) into 

(15). 

 

 

 

 

 

 

NUMER

ICAL RESULT AND DISCUSSION 

4.The expressions for capacity with different power and rate adaptation techniques are 

obtained. These expressions are numerically evaluated for different values of fading 

parameter and diversity order and plotted for illustration. Capacity (per unit bandwidth) of 

ORA scheme has been plotted in Fig. 1. It can be observed from the figure that for a given 

fading parameter the capacity increases with increase in L. As the parameters η and µ 

increase the capacity increases in a linear fashion for low correlation co-efficient i.e. ρ=.1. 

For higher value of ρ the case for increase in capacity with the increase in the number of 

branch is not satisfied which in turn is not satisfied which is shown in fig. 2. The capacity vs 

average SNR for TIFR and CIFR schemes has been plotted in Figs. 2 and 3, respectively. In 

both schemes it can be observed that capacity increases with the increase in L. The same case 

that capacity increases with the increase in parameters η and µ can be observed again for 

certain interested value of ρ. A good channel capacity in obtained when the parameter ρ=.1 in 
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both the cases. In the plot of TIFR scheme 0  is assumed to be 2dB. Therefore, plots are 

given for 2 dB onwards. Capacity plots for OPRA scheme have not been included here, but it 

is possible to plot the capacity from the given analytical expression. The numerical results 

obtained are verified against the special case published result and found to be matching. The 

convergence of the infinite series involved in the 

obtained expressions has been verified. 

 

 

 

 

 

 

 

 

 

 

Fig.1   Capacity for ORA scheme with ρ=.1Fig.2 

Capacity for TIFR scheme with ρ=.1 

 

 

 

 

 

 

 

 

 

Fig.3 Capacity for CIFR scheme with ρ=.1Fig.4 Capacity comparisons for ORA, CIFR and 

TIFR 

CONCLUSION 

5. In this paper, the capacity of L-MRC diversity system over η-µ Fading Channel is 

analyzed, for different known power and rate adaptation transmission techniques. The various 
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expressions for respective adaptive transmission techniques are obtained. Numerical 

evaluations are carried out for respective schemes for the different parameters L, η, µ and ρ. 

The results are plotted for different parameter of interest and compared with the available 

special case results. It is observed that Diversity technique increases the channel capacity for 

all transmission schemes. Out of the adaptive transmission schemes, the maximum diversity 

gain is observed in Optimum Rate Adaptation method. 

APPENDIX A   EVALUATION OF  INTEGRAL  nI   

6.We evaluate the integral  nI  defined using partial integration, namely 

     
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
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 Performing n-1 successive integration by parts yields [31.eq. (2.321.2), p. 112] 
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Substituting (A.2) and (A.4) in (A.1), we see that the first two terms go to zero. Hence 
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The integral in (A.5) can be written in a closed form giving 
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Where  .,. is the complementary incomplete gamma function. 
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