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 A B S T R A C T 

This paper involves the optimization of input process parameters in Electric 
Discharge Machining of Aluminium hybrid Metal Matrix Composite. 
Aluminium AlSi10Mg alloy reinforced with 9 %wt. alumina and 3 %wt. 
graphite particles fabricated through liquid metallurgy route was used for 
machining. Experiments were conducted in an Electric Discharge Machine 
and the influence of input process parameters such as Peak current, Pulse-on 
time and Flushing pressure during machining of aluminium composite was 
studied. The objective was to obtain a minimum surface roughness with 
minimum tool wear rate and maximum material removal rate. Multi-objective 
optimization of the input process parameters was performed by employing 
Artificial Neural Network and Genetic Algorithm hybrid optimization 
technique. The results obtained provide a pareto-optimal solution set that 
offers a set of non-dominated solutions that can be used in a practical 
situation by a decision maker. 
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1. INTRODUCTION  
 
Metal matrix composites (MMC) have shown 
promise in meeting the growing demands for 
varying engineering applications. Metal matrix 
composites take advantage of particular 
properties of the constituent materials to meet 
specific demands [1]. Aluminium metal matrix 
composites in particular have grown popular 
due to the unique and advantageous blend of 
properties they offer. In general aluminium has a 
good thermal conductivity, less density and a 
good strength. It thus can be reinforced by using 
alloying materials to make it suitable for specific 
applications [2,3]. Also, AMMCs are preferred for 
manufacturing many components since they 

have a good strength to weight ratio. Aluminium 
can be alloyed with a large number of materials.  
 
The reinforcements in the AMMCs make the 
material difficult to machine and in most cases the 
components are complex shaped. There hence 
arises a need for a non-conventional type of 
machining that produces a good surface finish with 
the required dimensional accuracy [4]. Electric 
Discharge machining being a non-contact type 
process, it can produce products with good 
dimensional accuracy, complexity, and a good 
surface finish. It can also be effectively used in the 
machining of hard materials. Spark machining 
(EDM) uses fast and repetitive electric discharges 
for material removal [5]. The electric sparks pass 
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between two electrodes, a cathode and an anode, 
and the material is removed due to erosion caused 
by these sparks. The shape of the material removed 
depends solely on the shape of the electrode used 
and thus there is a flexibility to produce any desired 
shape in the work piece. A dielectric fluid is 
introduced between the tool and the job in order to 
facilitate sparking. Kerosene oil is used as the 
dielectric fluid when aluminium is machined [6]. 
Machining in EDM depends on several input 
parameters, among them Peak Current (I), Pulse-on 
time (Ton) and Flushing Pressure (P) have the 
major influence [7]. The Pulse-off time (Toff), 
though being a less prominent input parameter, 
determines the stability of the process since it 
controls the duration for which the plasma channel 
is paused to allow for flushing of the residue 
material. Aluminium, being a good conductor of 
electricity, can be used with EDM since it involves 
passage of current.  
 
Material Removal Rate (MRR), Tool Wear Rate 
(TWR) and Surface Roughness (SR) are the critical 
output parameters of EDM. MRR dictates the time 
required to machine the component. The tool’s 
shape determines the dimensional accuracy of the 
machined work piece. Thus it is necessary to 
ensure that the wear rate of the tool is less. Surface 
Roughness is also a critical parameter since it 
determines the friction produced during 
application. In dry sliding applications, a minimum 
SR will help to reduce the wear rate of the 
component. Since EDM is quite expensive, the time 
taken to machine the product should be 
minimised. The minimum value for SR with 
minimum TWR and maximum MRR should be 
obtained for effective machining [8, 9]. This causes 
the need for optimizing the input parameters.  
 
For the present work, AlSi10Mg alloy was 
selected as matrix and 9 %wt. alumina and 3 
%wt. graphite particles were selected as the 
reinforcements. Alumina being a hard and brittle 
material is accommodated in the softer 
aluminium matrix. The graphite in the matrix 
has self-lubricating properties. The machining 
responses are affected considerably with the 
addition of reinforcements. 
 
 

2. OPTIMIZATION TECHNIQUES  
 
Various techniques such as the Fuzzy logic, the 
Taguchi optimization, Ant-colony optimization, 
Hill climbing algorithm, etc. offer solutions to 

optimization problems. Relatively, genetic 
algorithm optimization is a new technique and it 
also found to be better in arriving at optimized 
solutions for complex real world problems [10]. 
To obtain a function representing the empirical 
data, a regression model has to be chosen, for 
which there exist a number of linear and non-
linear regression models. Out of these models, 
Artificial Neural Networks tend to produces 
objective functions with good regressions. Hence 
a combination of the ANN and GA techniques is 
employed in this work, to obtain the optimal 
solutions effectively. 
 
2.1 ANN-GA Optimization  
 
Artificial neural networks (ANN) are 
mathematical models that are inspired by the 
complex neurological connections within the 
human brain [11]. The neural network is built in 
three layers namely the input, hidden and 
output layers. The number of input and output 
layers depend on the type of problem at hand 
but the number of hidden layers may vary 
anytime [12]. The data for training, validating 
and testing the network is also given 
proportionally by trails and errors. The objective 
is to produce a network with a good regression 
with respect to the input data. 
 
Genetic Algorithm (GA) is based on the                                            
natural selection theory [13]. This principle is 
applied in the computer based model to arrive at 
a global minimum value that satisfies the 
supplied condition. Literatures report GA to be a 
better optimization technique over other 
conventional ones due to its advantages such as 
robustness, independency of gradient 
information and use of inherent parallelism in 
searching the design space [14]. The multi-
objective optimization results in a set of 
solutions that are called Pareto-optimal 
solutions. These solutions are non-dominant and 
each one produces an optimized output [15]. 
 
 

3. EXPERIMENTAL SETUP AND 
MEASUREMENT  

 
The workpieces were made by machining the 
cast specimens to a length of 22 mm and 
diameter of 12 mm. Electric Discharge 
Machining of the composite specimens was 
carried out in an Electronica ZNC small die 
sinker machine (500 x 300 mm) to make 
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through holes of 10 mm diameter (Fig. 1). The 
EDM machine was supplied with 415V AC power 
and kerosene oil was used as the dielectric fluid. 
The copper electrode (cathode) and composite 
specimen (anode) were submerged in the 
dielectric fluid. The pulse-off duration was 
maintained at a constant value of 30 µs for all 
experiments since a value lower than this would 
lead to instability of the process and the less 
flushing time causes particulates to settle down 
in the spark gap, thereby increasing the SR of the 
machined surface.  
 

 
Fig. 1. Electric Discharge Machine. 

 
The Material Removal rate and Tool Wear Rate 
were calculated as follows: 

 
On completion of the experiment, surface 
roughness of the machined workpieces was 
measured using TESA RUGOSURF 10G (stylus 
type) surface roughness tester. 
 
 
4. DETERMINATION OF OPERATING LEVELS 

 
In this work Artificial Neural Network was used 
for obtaining the fitness function of the 
machining inputs to the responses. This network 
demanded a unique set of machining conditions 
for better training of the network. The 

experiment was conducted by varying the input 
parameters such as Peak Current, Pulse-on time 
and Flushing Pressure for five levels (Table 1), 
which contribute to 125 unique experimental 
conditions.  
 
Table 1. Parameters and their levels 

Level Peak Current, I 
(A) 

Flushing 
Pressure, P (kPa) 

Pulse-on time, 
Ton (µs) 

1 10 100 120 
2 15 125 190 
3 20 150 260 
4 25 175 330 
5 30 200 420 

 
Analysis of the experimental results uses the 
function obtained by training the ANN, in the 
determination of the best process design using 
the Genetic Algorithm. This method has been 
successfully used by researchers in the study of 
MRR dependence on peak current (I), flushing 
pressure (P) and pulse-on time (Ton) [16]. 
These methods focus on improving the design 
of manufacturing processes by using optimum 
input conditions. So, a plan order for 
performing the experiments was taken by 
covering a large interval of machining 
conditions, so that there is a large range over 
which the data can evolve in a GA. 
 
 
5. OPTIMIZATION 

 
The ANN-GA hybrid optimization was 
performed using MATLAB. Initially, a network 
was created using ANN to represent the 
empirical data. The experimental inputs along 
with SR, MRR and TWR, (Table 2), as the 
respective interested outputs, were 
considered for training the neural network in 
order to obtain the fitness function. Since 
there was a data set of 125 samples with 3 
inputs and 1 output for the network, 
Levenberg-Marquardt algorithm was 
considered in order to train the data set, as it 
is best suitable for a small data set with a less 
complex network [11]. In this algorithm, the 
training is performed by back-propagation 
method, where the weights and bias of the 
layers are set to the input data based on 
output through a feed forward network. This 
back-propagation occurs in 3 phases: feed 
forward of the input training pattern, 
calculation & back feeding of the associated 
error and adjustment of weights [17]. 
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Table 2. Input Parameters and Experimental results. 

 

Before optimizing, the experimental data was 
normalized using the relation (1), so that all the 
inputs lie in the same range. This was done to 
avoid skewing of the network by a particular 
process parameter [18].  

 

where, R is the value to be normalized, between 
the values of Nmin and Nmax, and Rmin and 
Rmax are the minimum and maximum values of 
the corresponding parameter. For training, the 
tansig and purelin functions were used as the 
transfer functions for the hidden neuron layers 
and output layers respectively. Data for training, 
validation and testing was taken randomly from 
the set of empirical data, in order to maintain a 
good fit. The split up for training, testing and 
validation was given as 65 %, 20 % and 15 % 
respectively for all the three output parameters. 
Training, testing and validation were carried out 
by changing the network size till the network 
approximated to a function that closely follows 
the output pattern, so that a good regression 
was obtained. 

Output of neural network =  

purelin ((L.W*tansig ((I.W*I) +b1)) +b2)           (2) 

where, I.W, b1 and L.W, b2 are the transfer 
weights and bias of input and output layers 
respectively.  
 
The regression equations obtained from the 
ANN (Equation 2) were integrated into a single 
fitness function so that multi-objective 
optimization can be performed using GA. This 
fitness function from ANN was then used in GA 
and optimization was performed by providing 
constraints to the inputs so that extrapolation of 
the data by GA is prevented. The initial 
population size was given as 250 and a 
Tournament function of size 2 was used as the 
selection function for the parent chromosomes. 
 
Further, the intermediate Cross Over function 
ratio and the Pareto Front population fraction 
were set as 1 and 0.35 respectively. The 
terminating conditions for the iterations were 
specified as 600 generations and a tolerance 
limit of 1e-4. Optimization was then initiated 

S. No. 
Peak Current  

(I) (A) 
Flushing Pressure 

(P) (kPa) 
Pulse-on time  

(Ton) (µs) 
SR (µm) MRR (g/hr) TWR (mg/hr) 

1 10 100 120 3.085 19.0884 229.9816 
2 10 100 190 3.385 17.0196 106.4078 
3 10 100 260 2.955 20.5730 120.6200 
4 10 100 330 2.933 20.6115 81.56000 
5 10 100 420 3.214 21.4042 40.33460 
6 10 125 120 2.715 18.7814 190.7350 
7 10 125 190 2.755 18.8624 164.6950 
8 10 125 260 2.793 18.9434 138.6550 
9 10 125 330 2.835 19.0244 112.6150 

10 10 125 420 2.886 19.1286 79.13500 
… … … … … … … 
50 15 200 420 3.930 16.2848 204.4400 
51 20 100 120 3.014 27.1801 426.8234 
52 20 100 190 3.639 23.3743 299.7620 
53 20 100 260 3.940 23.0622 211.6400 
54 20 100 330 4.034 23.4451 150.3200 
55 20 100 420 3.376 25.2340 97.66070 
56 20 125 120 3.709 20.6393 307.2000 
57 20 125 190 3.864 21.0647 258.9000 
58 20 125 260 4.019 21.4901 210.6000 
59 20 125 330 4.174 21.9155 162.3000 
60 20 125 420 4.374 22.4625 100.2000 
… … … … … … … 

120 30 175 420 6.780 22.9617 140.5550 
121 30 200 120 4.680 19.8409 355.4169 
122 30 200 190 6.570 18.2621 225.1732 
123 30 200 260 6.199 19.4932 222.2000 
124 30 200 330 6.654 20.3906 190.7000 
125 30 200 420 6.801 21.5376 150.8883 
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and the resulting input values of the Pareto-
optimal solutions were converted back to their 
real values using relation (1). 
 
 
6. RESULTS AND DISCUSSIONS 
 
The objective of the experimental plan was to 
find the optimum input parameters influencing 
the SR, MRR and TWR in the EDM of Aluminium 
hybrid MMC. In ANN, an optimum network with 
the best regression was obtained by using a 
neural structure containing one hidden layer 
with 10 neurons. On creation of the neural 
network, it was necessary to ensure that the 
network contains a good regression. The 
regression plot (R-plot) is a relation between the 
network response and the target outputs. The 
correlation coefficient or the R-value measures 
how well the variation in the output is 
represented by the target. The R-value ranges 
between 0 and 1, with 1 being a perfect network 
response for the target outputs. In this 
experiment, the regression plot obtained for SR, 
MRR and TWR were as follows. 
 
For SR, the network produced a fitness function 
with regressions of 0.98932, 0.93289 and 
0.95637 in training, validation and testing states 
respectively and the overall regression was 
found to be 0.97381 (Fig. 2). 

 

 
Fig. 2. Regression plot SR. 

 
For the MRR the regression values are as 
follows. Training: 0.97093, Testing: 0.96154, 
Validation:  0.97933, Overall: 0.97107 (Fig. 3).  
 
For the TWR, the ANN model was generated 
with regressions of 0.96735, 0.93753, 0.94964, 

and 0.95804 in training, testing, validation and 
overall states respectively (Fig. 4). 
 

 
Fig. 3. Regression plot for MRR. 
 

 
Fig. 4. Regression plot for TWR. 

 
Since the overall co-relation coefficients for all 
three output parameters were close to 1, it is 
evident that the neural network response closely 
matches the target output values. The slight 
drop in the R-values can be justified from the 
error histograms. An error histogram is a graph 
that represents the amount of deviation of the 
network response from the target output values 
to the number of instances for which the 
deviation occurred. Thus using the histogram it 
is possible to determine the maximum & 
minimum deviations of the network response 
and the number of times for which the deviation 
occurred. The histograms obtained after the 
creation of the neural network for SR, MRR and 
TWR are shown in Fig. 5. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Error Histogram for a) SR Network, b) MRR 
Network, c) TWR Network. 

 
 
 

From the error histograms, it is evident that for 
most of the instances, there is very minimal or 
no error. The error values rise to a maximum 
only for very few instances and this can be 
attributed to the randomness of the real life 
conditions. Thus, it is not practically possible to 
obtain a proportional variation with consecutive 
experimental outputs. Hence, choosing a wide 
set of experimental conditions ensures a good 
relation among the operating parameters and 
the outputs. 
 
The regression equations obtained from ANN 
were then used as a fitness function for 
optimization using genetic algorithm. The 
iterations were carried out for 105 generations 
and 88 non-dominated Pareto optimal solutions 
were obtained (Table 3). The GA used 
incorporates a variant of the NSGA II (Non-
dominated Sorting Genetic Algorithm) that can 
increase the diversity of the population even if 
the conditions used are not in the Pareto front. 
 
Each of these Pareto-optimal solutions is 
independent and no single absolute optimized 
solution exists. Thus considering a real life 
scenario, a decision maker would have to choose 
one condition among 88 choices. To reduce the 
complexity of the situation, it is important to 
reduce the number of Pareto-optimal solutions 
available by grouping together similar solutions. 
Thus clustering of the solutions can be done to 
reduce the large set into a small set of clusters, 
so that the final decision has to be made only 
with a few choices. “K-means” clustering was 
employed for this purpose and 4 clusters were 
obtained after reduction. The clustered solutions 
are as shown in Table 4. 
 
The choice thus has to be among four unique 
optimal solutions. The decision maker can 
perform the trade-off among the output 
parameters and select the required conditions 
for machining. Since this aluminium hybrid 
composite contains graphite, it is deemed to be 
useful for dry-sliding applications [18]. The SR 
should thus be a minimum to ensure that the 
friction produced during sliding is minimal. 
From the optimization results, it is clear that 
using the optimal conditions, a Surface 
Roughness as low as 2.3932 µm can be achieved. 
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Table 3. GA Pareto-front solution set. 

 

S. No. I (A) P (kPa) Ton (µs) MRR (g/hr) SR (µm) TWR (mg/hr) 
1 19.7886 1.0029 121.6644 24.5155 3.1958 377.9196 
2 22.3094 1.0055 419.7002 25.1724 4.1691 82.59560 
3 17.8527 1.0046 188.9792 24.0099 3.3371 274.5002 
4 11.9618 1.0096 267.5123 21.2762 2.8090 123.5721 
5 16.9704 1.0118 184.3960 23.7738 3.2902 262.6723 
6 10.1856 1.0023 419.3746 22.5123 3.0329 41.18698 
7 29.9911 1.0010 362.7694 26.5716 5.2006 239.5607 
8 10.0048 1.9995 125.5488 14.7622 2.2324 160.6478 
9 17.1976 1.0028 418.8862 23.4738 3.2107 96.89871 

10 19.2111 1.0017 418.8224 24.2406 3.4794 85.91744 
11 10.0021 1.9957 187.7296 13.6825 2.3433 136.3445 
12 10.0289 1.8188 155.2152 15.8047 2.3967 145.5150 
13 29.9575 1.0085 409.4325 26.3752 5.4905 160.3375 
14 17.4375 1.0050 174.3953 23.9971 3.2227 281.9264 
15 25.3515 1.0108 339.3184 25.4075 4.5062 170.6802 
16 27.3115 1.0110 327.8949 25.9968 4.6912 232.9485 
17 10.2724 1.7122 227.3621 15.9192 2.4671 148.4683 
18 28.4418 1.0059 355.4017 26.3836 4.8968 213.8007 
19 10.2184 1.2748 396.4843 18.9113 3.0027 69.94407 
20 29.9170 1.0069 404.9735 26.4035 5.4480 166.0635 
21 10.2040 1.2303 387.1907 19.4063 3.0068 76.47009 
22 23.2084 1.0043 419.4314 25.4045 4.3971 85.10286 
23 10.2248 1.6540 270.0935 16.1941 2.5163 131.9189 
24 10.1918 1.6979 150.6199 17.1811 2.5630 157.3175 
25 18.4470 1.0003 147.7629 24.3389 3.1580 324.0818 
26 29.4499 1.0126 345.3691 26.4708 5.0504 254.5024 
27 10.0980 1.0022 419.5980 22.5035 3.0278 39.63810 
28 10.1187 1.3490 387.8623 18.0644 2.8140 75.31637 
29 20.5011 1.0040 419.1410 24.6353 3.7242 81.66492 
30 10.1202 1.8467 151.0190 15.5456 2.3763 146.9035 
31 17.7294 1.0042 166.5758 24.0941 3.1954 293.9374 
32 28.7181 1.0057 342.3854 26.4056 4.9071 242.9778 
33 10.2483 1.3937 368.0210 17.6340 2.6106 90.87433 
34 10.0502 1.7127 192.2784 16.4350 2.4783 149.2540 
35 10.0236 1.9581 188.8458 13.9208 2.3526 134.8303 
36 18.9542 1.0005 149.2563 24.3863 3.1588 331.3044 
37 25.3596 1.0109 339.3419 25.4106 4.5068 170.8026 
38 10.6384 1.0016 419.4801 22.5621 3.0482 47.95840 
39 18.3916 1.0065 183.2425 24.0623 3.3394 288.7793 
40 10.9686 1.0000 419.6475 22.5936 3.0522 52.61268 
41 19.7086 1.0002 139.2477 24.4665 3.1826 355.9101 
42 16.5345 1.0010 419.7337 22.7877 3.1405 97.86442 
43 10.3093 1.2863 326.7110 18.6061 2.6245 118.2115 
44 11.4001 1.0145 299.0422 21.4351 2.9402 112.9735 
45 10.2240 1.3298 400.8223 18.3157 2.9779 67.30002 
46 27.5353 1.0112 336.1555 26.1084 4.7255 224.3805 
47 27.6189 1.0025 353.7881 26.2366 4.7661 197.4988 
48 10.1543 1.8819 192.2320 14.5325 2.3879 136.9628 
49 28.9272 1.0177 353.4855 26.3964 4.9850 227.3405 
50 29.9042 1.0087 391.2000 26.4567 5.3473 187.1466 
51 17.3191 1.0065 185.2408 23.9218 3.2759 268.8587 
52 29.6596 1.0067 378.6726 26.4935 5.2220 202.7282 
53 19.0074 1.0044 182.7059 24.1046 3.4287 299.6280 
54 17.9104 1.0120 414.1491 23.7318 3.3117 96.32805 
55 10.1495 1.1907 319.5055 19.4393 2.6470 115.0204 
56 29.9902 1.0083 377.8053 26.5075 5.2820 211.9949 
57 26.0382 1.0040 343.7381 25.7289 4.5665 178.5453 
58 22.6389 1.0063 419.0785 25.2504 4.2568 83.59467 
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Table 4. Clustered Optimal Solution. 

 

Thus Electric Discharge Machining can be used 
for manufacturing components that require a 
low SR from this composite. From the results, it 
can be seen that the SR varies directly with Peak 
Current. The minimum and maximum SR are 
obtained for the smallest Peak Current of 
10.1079 A and the largest value of 26.4186 A 
respectively. Also, the process parameters follow 
the general rule that a decrease in SR will result 
in a decrease in MRR and an increase in TWR.  
 
But, this relation is not strictly followed in the 
Electric Discharge Machining of this particular 
AMMC. This can be attributed to the presence of 
reinforcements in the composite. 
 

7. CONCLUSIONS 
 
In this work, an effective machining of the 
Aluminium Hybrid Composite has been 
discussed extensively. The need for a high 
dimensional accuracy, better surface finish and 
cost of machining resulted in the choice of 
Electric Discharge Machining. A set of 125 
experiments with unique machining conditions 
were conducted with composite specimens and 
the corresponding responses were calculated 
and measured. ANN was used to relate the input 
and output parameters and optimization was 
then performed using GA. The GA produced an 
extensive set of optimal solutions that were non-
dominant and independent. The solutions were 

59 21.3024 1.0014 419.3536 24.8958 3.9063 81.01824 

60 28.9844 1.0126 342.7362 26.4113 4.9609 247.7344 

61 28.8875 1.0020 394.0713 26.3966 5.1828 161.6922 

62 10.5711 1.4009 350.4027 17.5632 2.6041 107.1465 

63 29.3173 1.0055 411.2540 26.3411 5.3953 146.3682 

64 10.0144 1.9269 163.0348 14.5617 2.3198 139.4018 

65 18.5050 1.0034 160.4221 24.2508 3.1772 312.1351 

66 26.0032 1.0046 340.9956 25.6948 4.5590 182.0538 

67 10.1909 1.1671 349.1511 19.9257 2.8541 99.75976 

68 10.1221 1.2835 380.5432 18.7339 2.8500 80.81165 

69 27.6442 1.0067 329.7701 26.1222 4.7316 238.3286 

70 10.2153 1.6725 184.5210 16.9352 2.5543 152.5361 

71 13.9259 1.0004 419.6159 22.3297 3.0120 87.13943 

72 25.3114 1.0037 376.6257 25.6816 4.6155 124.1921 

73 25.1465 1.0084 377.0563 25.6144 4.6017 121.6575 

74 29.6541 1.0064 360.3946 26.5258 5.1311 234.6082 

75 11.0226 1.0237 276.1729 20.7769 2.7003 117.2402 

76 20.0535 1.0063 419.1941 24.4856 3.6339 82.80017 

77 18.3965 1.0055 169.8565 24.1600 3.2206 301.3316 

78 18.4316 1.0030 155.3878 24.2714 3.1659 315.6835 

79 25.5043 1.0082 412.9591 25.8376 4.8331 99.70850 

80 10.1828 1.8290 169.1886 15.4060 2.4003 142.3714 

81 10.0243 1.9494 134.0152 14.9345 2.2751 154.2058 

82 19.7099 1.0001 132.7446 24.5037 3.1747 363.6758 

83 19.8315 1.0010 121.3473 24.5427 3.1906 379.6019 

84 19.4410 1.0016 147.5477 24.3993 3.1875 341.3395 

85 18.4228 1.0051 188.8995 24.0426 3.4090 284.0912 

86 21.9650 1.0041 418.5978 25.0688 4.0804 82.10665 

87 10.4271 1.0509 271.5999 20.1325 2.7162 117.2127 

88 16.9786 1.0119 184.3960 23.7759 3.2900 262.8097 

S. No. I (A) P (kPa) Ton (µs) MRR (g/hr) SR (µm) TWR (mg/hr) 

1 10.1079 1.0053 121.6184 15.2499 2.3932 140.0138 

2 11.5739 1.0787 143.6099 20.6570 3.3014 101.7071 

3 18.4907 1.4245 247.3613 24.2298 3.1852 309.7060 

4 26.4186 1.8209 366.2799 25.9770 4.7280 138.9831 
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then clustered based on similarity in data to 
reduce the data set from 88 to 4. Thus the multi-
objective optimization yields a set of four 
distinct optimal solutions that can be used by 
the decision maker. 
 
 
REFERENCES  
 
[1] Y.H. Sheng, H.M. Dai, L. Zhang: Study on the CNTs 

Strengthening Metal Matrix Composite and its 
Properties, Applied Mechanics and Materials, 
Vol. 80-81, pp. 436-439, 2011. 

[2] D.J. Lloyd: Particle Reinforced Aluminium and 
Magnesium Matrix Composites, International 
Materials Reviews, Vol. 39, No. 1, pp. 1-23, 1994. 

[3] M. Babic, B. Stojanovic, S. Mitrovic, I. Bobic, N. 
Miloradovic, M. Pantic, D. Dzunic: Wear 
Properties of A356/10SiC/1Gr Hybrid Composites 
in Lubricated Sliding Conditions, Tribology in 
Industry, Vol. 35, No. 2, pp. 148 – 154, 2013. 

[4] M. Stoudt, J. Hubbard, S. Mates, D. Green: 
Evaluating the Relationships Between Surface 
Roughness and Friction Behavior During Metal 
Forming, SAE Technical Paper, Vol. 114-15, pp. 
183-90, 2005.  

[5] R. Mohanty: Principle of EDM for Project Report 
on WIRE EDM, 
http://www.scribd.com/doc/35728926/2/Prin
ciple-of-edm. 

[6] P. Bari, S. Rode, A. Duduke, P. Shinde, V. 
Srivastav: Dielectric Fluid in Electro Discharge 
Machining, in: Proceedings of the NCNTE, Third 
Biennial National Conference on Nascent 
Technologies, Navi Mumbai, June, 2012. 

[7] M.R. Shabgard, M. Seyedzavvar, S. Nadimi Bavil 
Oliaei: Influence of Input Parameters on the 
Characteristics of the EDM Process, Journal of 
Mechanical Engineering, Vol. 57, No. 9, pp. 689-
696, 2011. 

[8] A.A. Khan: Electrode Wear and Material Removal 
Rate during EDM of Aluminum and Mild Steel 
Using Copper and Brass Electrodes, The 
International Journal of Advanced 
Manufacturing Technology, Vol. 39, No. 5-6, pp. 
482-487, 2008. 

[9] S. Palani, U. Natarajan, M. Chellamalai: Multiple-
Response Modelling and Optimisation of Micro-
Turning Machining Parameters using Response 
Surface Method, International Journal of 

Materials Engineering Innovation, Vol. 2, No. 3-4, 
pp. 288 – 309, 2011. 

[10] Angus R. Simpson, Graeme C. Dandy, Laurence J. 
Murphy: Genetic Algorithms Compared to other 
Techniques for Pipe Optimization, Journal of 
Water Resources Planning and Management, 
Vol. 120, No. 4, pp. 4480, 1994.  

[11] J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. 
Ladanyi, F. Westermann, F. Berthold, M. Schwab, 
C.R. Antonescu, C. Peterson, P.S. Meltzer: 
Classification and Diagnostic Prediction of 
Cancers using Gene Expression Profiling and 
Artificial Neural Networks, Nature Medicine, Vol. 
7, pp. 673 – 679, 2001. 

[12] J. Kamruzzaman, R. Begg, R. Sarker: Artificial 
Neural Networks in Finance and Manufacturing, 
pp. 210-215, 2006, 

[13] M. Melanie: An Introduction to Genetic 
Algorithms, The MIT Press, ISBN 0-262-13316-4, 
1998. 

[14] N.K. Jain, V.K. Jain, K. Deb: Optimization of 
Process Parameters of Mechanical Type Advanced 
Machining Processes using Genetic Algorithms, 
International Journal of Machine Tools and 
Manufacture, Vol. 47, No. 6, pp. 900–919, 2007. 

[15] G. Narzisi: Courant Institute of Mathematical 
Sciences, New York University, Multi-Objective 
Optimization - A quick introduction, 
http://cims.nyu.edu/~gn387/glp/lec1.pdf, 2008. 

[16] Qing Gao, Qin-he Zhang, Shu-peng Su, Jian-hua 
ZHANG: Parameter Optimization Model in 
Electrical Discharge Machining Process, Journal 
of Zhejiang University science a, Vol. 9, No. 1, pp. 
104-108, 2008.  

[17] L. Fausett: Neural Networks Architecture, 
Algorithms, and Applications, Prentice-Hall, pp. 
289-299, 1994. 

[18] G.K. Mohana Rao, G.R. Janardhana, D.H. Rao, M.S. 
Rao: Development of Hybrid Model and 
Optimization of Metal Removal Rate in Electric 
Discharge Machining using Artificial Neural 
Networks and Genetic Algorithm, ARPN Journal 
of Engineering and Applied Sciences, Vol. 3, No. 
1, pp. 19-30, 2008. 

[19] N. Radhika, R. Subramanian, S. Venkat Prasat: 
Tribological Behaviour of Aluminium/Alumina-
Graphite Hybrid Metal Matrix Composite Using 
Taguchi’s Techniques, Journal of Minerals & 
Materials Characterization & Engineering, Vol. 
10, No. 5, pp. 427-443, 2011. 

 
 

 

http://cims.nyu.edu/~gn387/glp/lec1.pdf

