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 A B S T R A C T 

Hydrodynamically heavily loaded rigid cylindrical rollers, lubricated 

by a thin compressible fluid film, are investigated for normal 

squeezing motion and cavitations. The lubricant is assumed to follow 

the non-Newtonian power-law fluid model where consistency and 

density of the lubricant vary with one dimensional pressure and 

temperature. The modified Reynolds pressure equation and thermal 

energy equation are derived and solved simultaneously by R-K 

Fehlberg method. Secant method is also applied in order to enforce 

the boundary condition at the outlet. It is observed that temperature 

has significant effects on consistency and density both. It is also to be 

noted that compressibility effect is even more significant when 

squeezing is taken into account.  
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1. INTRODUCTION  

 

A contact between two surfaces is of great 

importance in technology.  At the interface of 

two materials, when they brought together, 

separated or moved with respect to one another, 

contact information, friction, wear and 

lubrication are the processes that occur [1]. 

 

Further, the Squeeze films play an important 

role in the analysis of the dynamic behavior of 

bearings and, in general, many practical 

engineering systems.  In order to model such 

system proper knowledge of the forces 

generated by the squeeze film in between solid 

boundaries is necessary [2]. This situation 

occurs frequently in many machine components 

such as gear teeth, cams, automotive engines, 

aircraft engines, rolling elements, machine tools, 

skeletal joints, the bearings in reciprocating 

engines and many more [3]. In this regard, 

Dowson et al. [4] initiated the comprehensive 

study of squeezing motion of Newtonian 

lubrication of cylindrical rollers and obtained 

the solution for a wide range of parameters. 

Sinha et al. [5] examined this problem with 

squeezing motion for non-Newtonian power law 

lubricant. Prasad et al [6] extended the same 

result with cavitation while adding thermal 

effect where the consistency of the lubricant was 
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assumed to vary with pressure and the mean 

temperature. Later, Rong-Tsonn and Hamrock [7] 

made a comprehensive study of isothermal 

Newtonian lubrication of both rigid and EHD line 

contacts with compressibility and squeezing. 

Usha and Rukmani Sridharan [2] investigated the 

laminar squeeze flow of an incompressible 

Newtonian fluid between non-rotating annular 

surfaces including all inertial terms in the 

governing equations of motion and a solution has 

been obtained in terms of a single non-

dimensional squeeze Reynolds number S, for 

small values of S. J-R Lin et al. [8] derived a 

general dynamic Reynolds equation of sliding 

squeezing surfaces with non-Newtonian fluids for 

the assessment of dynamic characteristics of a 

lubricating system and the transient squeezing 

action effect is taken into account while 

considering the effect of couple stresses resulting  

from the lubricant blended with various 

additives. Jaffar [3] studied a line contact problem 

with squeezing effect, and various results were 

reported for a wide range of layer thickness, the 

layer compressibility and the central squeeze film 

velocity. Bujurke et al. [9] observed the effects of 

surface roughness on the characteristics of 

squeeze film lubrication between curved annular 

plates, and it was found that the effect of radial 

(circumferential) roughness pattern is to shift the 

point of maximum pressure towards the inlet 

(outlet) edge. Further, it was observed that the 

mean load carrying capacity was found to 

increase (decrease) for the circumferential 

(radial) roughness pattern compared with the 

corresponding smooth case for both concave and 

convex pad geometries. Naduvinamani et al [10] 

made some investigations to study the combined 

effects of unidirectional surface roughness and 

magnetic effect on the performance 

characteristics of porous squeeze film lubrication 

between two rectangular plates and it was 

observed that a roughness effect enhances 

pressure, load carrying capacity and squeeze film 

time. Recently, Li-Ming Chu et al [11] developed a 

numerical method for general applications with 

effects of surface force to investigate the pure 

squeezing action within an isothermal thin film 

EHL spherical conjunction under constant load 

condition. Later, Jaw-Ren Lin [12] presented a 

theoretical study of the non-Newtonian effects on 

the squeeze film characteristics between parallel 

annular disks on the basis of Rabinowitsch fluid 

model. A closed form solution was derived using 

a small perturbation method.  

One of the other realistic conditions, which play 

an important role in lubrication theory, is 

compressibility effect. In fact, the 

compressibility of liquid fluids under typical 

engineering conditions is not normally an issue, 

and most fluid mechanics analyses can be 

performed assuming liquid incompressibility. 

However, in concentrated lubricated contacts, 

such as those formed in rolling element 

bearings, gears, cams, and constant velocity 

joints, etc., it is not uncommon for the lubricants 

to be subjected to pressure variations within the 

contact regions of around 109 pa and higher.  

Under these conditions significant reductions in 

fluid volume can be experienced [13].   

 

Generally it may be difficult to consider liquids 

as compressible media, but in high loaded EHL 

contacts, the compressibility variation of the 

lubricant is certainly not negligible.  At high 

loads, the compression of the lubricant has a 

significant influence on the film thickness 

variation inside the contact. A number of 

different density models have been used in EHL 

calculations through the year [14].  Prasad et al 

[15] considered a problem of heavily loaded 

rigid cylindrical rollers, lubricated by a thin 

compressible power-law fluid assuming the 

consistency and density of the lubricant vary 

with temperature and pressure. As a result, it 

was observed that for low values of power-law 

index n there was no significant effect to 

pressure and temperature on the consistency.  

Even the compressibility effects are not very 

significant for those low values.  Hsiao-Ming Chu 

et al [16] derived a one dimensional modified 

Reynolds equation with power-law fluid from 

the viscous adsorption theory for thin film EHL 

including pressure- viscosity, pressure- density 

characteristics of the lubricant and the visco-

elastic deformation of the rollers.  Finally, the 

film shape and the pressure distribution under 

pure rolling conditions are numerically 

calculated and discussed for various operating 

conditions.   Moraru and Keith [17] presented a 

Lobatto point quadrature algorithm which is 

applicable for TEHL problem where both density 

and viscosity of the lubricant are taken to be 

temperature and pressure dependent, and the 

transverse velocity term in the energy equation 

is obtained from the continuity equation. Use of 

the Lobatto point calculation method has 

resulted in accuracy without the use of a larger 

number of grid points. Mircea D. Pascovici et al. 
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[18] proposed a model for the squeeze process 

under impact for highly compressible porous 

layers imbibed with fluids. It was assumed that 

the normal forces generated by the elastic 

compression of the fibers comprising the solid 

face are negligible compared to the pressure 

forces generated in the imbibed fluid, within the 

porous layer. It was demonstrated for the 

rectangular plates that the square plates could 

minimize the maximum squeeze induced load.  

Stolarski [19] verified the transient film 

pressure of a squeeze film gas bearing 

experimentally with comparison to numerical 

results obtained from the Reynolds equation. 

These two results were in good agreement with 

CFD result for small vibrating amplitudes. 

Bayada and Chupin [20] had shown how 

vaporous cavitation in lubricant films can be 

modeled in a physically justified manner 

through the constitutive (compressibility) 

relation of the fluid. It is found that how the 

widely used Jakobsson–Floberg–Olsson (JFO) / 

Elrod–Adams (EA) mass flow conservation 

model can be compared with this new model. 

Moreover, the new model can incorporate the 

variation of the viscosity in the cavitation region 

and allows the pressure to fall below a cavitation 

pressure and numerical computations show that 

discrepancy with JFO/EA is mostly associated 

with light loading condition, starved situation or 

viscosity effects. Habchi and Bair [21] 

investigated the effects of lubricant 

compressibility on the film-forming 

performance of thermal elastohydrodynamic 

lubricated (EHL) circular contacts. Numerical 

film thickness predictions using the classical 

Dowson and Higginson relationship are 

compared to those that would be obtained using 

a more realistic compressibility model.  As a 

result it is highlighted that highlights the 

importance of using realistic transport 

properties modeling based on thermodynamic 

scaling for an accurate numerical prediction of 

the performance of EHL contacts. Nadim A. Diab 

and Issam Lakkis [22] investigated the effect of 

various assumptions proposed by the classical 

Reynolds lubrication equation. In particular, a 

microplate oscillating at high frequencies 

(beyond cutoff) and high velocities leading to 

appreciable displacement within the film gap is 

studied. Andreas Almqvist et al. [23] proposed a 

theory based on clear physical arguments 

related to conservation of mass flow and 

considers both incompressible and compressible 

fluids. The result of the mathematical modeling is 

a system of equations with two unknowns, which 

are related to the hydrodynamic pressure and the 

degree of saturation of the fluid.  The model and 

the associated numerical solution method have 

significant advantages over today’s most 

frequently used cavitation algorithms, which are 

based on Elrod–Adams pioneering work. 

 

In addition, it is well known that the pressure, the 

temperature and the film shape definitely play an 

important role in the failure of heavily loaded non-

conformal contacts.  In fact, the effect of heat 

generated due to the shearing of the high pressure 

lubricant is no longer negligible under sliding 

conditions, as the heat changes the characteristics 

of the oil flow because of a decrease in viscosity. 

Therefore, thermal effect on the film thickness and 

traction is significant in EHL contacts [24]. Further, 

temperature rise in lubricant film occurs due to 

rapid shear of lubricant layers. The hydrodynamic 

action is affected due to the thermal effects [25]. 

 

Non-Newtonian behavior of the lubricants has 

also been addressed severely. Because the 

lubricants used in every day machines are seldom 

single component liquids. In fact some base oil is 

mixed with them. The base oils are often blends 

of different molecular weight “cuts” to arrive at a 

special ambient pressure viscosity. Also, viscosity 

modifying polymer additives are often blended 

with the base oil.  In particular, the lubricants 

used in automobiles are usually mixtures. The 

non-Newtonian behavior of solutions of high-

molecular-weight polymers in low-molecular-

weight solvents, in shear flow and in extensional 

flow, has been subject of much attention in 

rheology [26,27]. The temperature rise for a non-

Newtonian lubricant can be better estimated 

using power law lubricant [25].   

 

The very purpose of lubrication is to separate 

surfaces to relative motion in order to reduce 

friction and wear.  The separation and load 

carrying capacity are achieved by generating a 

pressure in the fluid film between the surfaces.  

The most significant pressure build-up in 

hydrodynamic lubrication is achieved when a 

converging gap is allowed to form the surfaces.  In 

order to improve performance and efficiency, and 

to reduce wear and risk of failure in 

hydrodynamic lubrication, it is important to 

study various effects that can contribute to the 

pressure build-up [28]. 
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Hence, in order to incorporate those various 

effects of surface forces on squeeze thin film non-

Newtonian lubrication of rolling/sliding line 

contact problem including compressibility and 

cavitations, the modified Reynolds equation, the 

energy equation and the lubricant rheology 

equation are solved simultaneously. Also for semi 

analytical solution, the surfaces are assumed to 

be smooth and rigid. The consistency and the 

density of the lubricant are assumed to vary with 

pressure and temperature. An efficient method of 

numerical solution with good accuracy is 

employed to solve the above equations. 
 

 

2. THEORETICAL MODEL 
 

2.1 Momentum and Continuity Equations 
 

For, the parallel cylinders [29] the basic flow 

momentum and continuity equations for a 

compressible power law fluid under 

consideration may be written as follows [15]: 
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where the consistency ‘m’ and density ‘ρ’ of the 

lubricant are assumed to vary with pressure and 

temperature as per the following relationships 
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where 1c  and 2c  are density-pressure coefficients, 

TD  is density-temperature coefficient.  
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where U1 and U2 are velocities of the rolling 

cylinders as shown in Fig. (1). 
 

From the geometry, one may observe that for 

each x,  
y

u

∂
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  =  0 at    )( hhy ≤≤−= δδ  in both 

the regions:   I: 1xx −≤<∞−        and             

                          II:  21 xxx ≤≤− . 

Further, these two regions may be divided into 

four sub regions separated by  � profile having 

velocities 43,2,1 uanduuu . Assuming the 

velocity gradients for the geometry under 

consideration, those may be written as:  
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Now, solving the continuity equation (2) using 

(5), one may get: 
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so that the equations (14)  and (15) reduce to: 

V
dx

dr
1

1 ρ=                               (18) 

V
dx

dr
2

2 ρ=                               (19) 

 

2.3 Reynolds equation  

 

From equations (16) and (17), one may obtain: 
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Using the velocity matching conditions:  
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Eliminating    
dx

dp
and

dx

dp 21     from equation 

(22) and (23) and using Reynolds equation (20) 

and (21), one can obtain:   
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2.4 Energy Equation 
 

The governing equation for the temperature 

distribution of the lubricant for the power-law fluid 

including compressibility may be written as [32]: 
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where the  last term of  (26) is the heat of 

compression [30]. The heat of convection is 

dominant in the inlet region and when the bearing 

is running at high speed;   its dominance is extended 

towards its central zone as well. On the other hand, 

the heat of conduction is dominant in the central 

zone and if the boundaries are assumed to be 

adiabatic the heat does not go out of the boundaries 

through conduction. So, the heat lost by conduction 

is less and may be dropped [32-34].     Since the heat 

does not go out of the adiabatic boundaries (in Y-

direction), it is carried away by the lubricant itself, 

the temperature of the lubricant may be assumed to 

be one dimensional that is a function of  x only [15]. 

Hence equation (26) is reduced to: 
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where pc  is the specific heat of the lubricant at 

constant pressure. Using the following 

temperature boundary condition: 

∞−== xatTT 0                                                (28) 

the film temperature can be obtained by 

integrating equation (27) with respect to y over 

the film thickness and using conditions (5), one 

may obtain as follows: 
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Now, using the following dimensionless scheme:  
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The above equations (18), (19), (20), (21), (24), 

(28) and (29) can be written as  
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2.5 Load and Traction 

 

The load components W in the y-direction is 

calculated as: 

W=  ∫
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The surface traction force is obtained from the 

integration of shear stress  �  over the entire 

fluid flow regions; and one may get: 
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3. RESULTS AND DISCUSSION 

 

A typical semi analytical solution of the modified 

Reynolds equations (34), (35) and the energy 

equations (38), (39) have been obtained for 

symmetrical and asymmetrical, viscous 

compressible flow of power law fluids throughout 

the gap between two cylinders, Fig. 1.  The results 

of the investigation are assessed in terms of 

parameters n, U  (= 12 /UU , 12 UU > ) and V .   
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Fig. 1. Lubrication of Asymmetric rollers. 

 

The values of the flow index n is considered to 

be greater than unity for dilatants fluid, equal to 

unity  Newtonian  and less than unity  Pseudo 

plastic. The sliding parameter  U  is chosen to lie 

between 1.0 and 1.4.  The parameter  U  arises 

due to the consideration of anti-symmetric 

conditions and is important because the 

presence of sliding (U >1) is likely to produce 

greater pressure and temperature as compared 

to that of pure rolling (U =1).  The significance 

of  U  along with n has been demonstrated 

through table and graphs for 0≠β . For the 

numerical calculation, the following 

representative values have been used: 

scmU /4002 = , cmh 4
0 10−= , 

219106.1 cmdyne−−×=α , R=3cm,  γ  = 5,  
19

1 106.0 −−×= pac , 
19

2 107.1 −−×= pac , 
131065.0 −−×= KDT  . 

 

It may be noted that the flow configuration 

considered herein includes several known 

situations as limiting cases: for instance when

21 UU = , and m is constant, it reduces to the case 

examined by Sinha and Singh [35]; for the case 

β=0, this is the case considered by Sinha and Raj 

[36].  Further, when 21 UU = , and 0≠β , the 

present analysis is equivalent to that of Prasad 

et al. [15]. 

3.1 Numerical Solutions 

 

The Reynolds and the energy equations are coupled 

through m , and contain two unknowns δ  (the 

locus of point at which 0=
∂
∂

y

u
) and the initial value 

of r . These unknowns are also present in equation 

(36).  As there is no symmetry (U ≠1), it is 

necessary to solve (36) for δ . The actual process 

followed for numerical computation of ε -δ  is 

briefly described below in the flow chart. 

 

 
 
3.2 Pressure profile 

 

The qualitative behavior of the pressure profile 

p for different values of n, V , and U  has been 

numerically calculated by solving Reynolds 

equation (in conjunction with energy equation) 

and presented in Figs. 2-4. It can be observed 

from the Fig. 2 that the lubricant pressure 

increases with n. This is in conformity with the 

observations made by [15,37,38] for cylindrical 

roller bearings. Figure 3 indicates that the 

pressure profile drawn for different values of 

squeezing parameter V with fixed U =1.2 and 

n=1.15. is similar in nature but look different 

only up to the point of maximum pressure and 

then later almost identical/ overlapping because 
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there is sharp decrease in compressible pressure 

there near the outlet [39]. This shows that the 

squeezing and the compressible effects are not 

very significant near the outlet in case of rolling 

and sliding condition. Further, the pressure for 

V =0 is lower when compared to that of V =0.2, 

and higher than in comparison to V =-0.2.  

 

 

Fig. 2. Pressure profile p  versus x . 

 

 

Fig. 3. Pressure profile p  versus x . 
 

This result is almost similar to that of [3] for 

compressible – squeezing with line contact. 

However, the above trend does not match with 

symmetric and incompressible result [6]. 

Further, one can observe from Fig. 4 that the 

pressure curves drawn for  U =1,   U =1.2, and 

U =1.4 are  similar in nature. In fact, the 

pressure increases with U  only up to the point 

of maximum pressure; and there after they are 

identical. The increase of pressure here indicates 

increase in load [37]. Jang and Khonsari [40] 

established that hydrodynamic pressure 

increases with decrease in slide to roll ratio. 

Further, the maximum pressure increases with n 

is shown in Fig. 5. This trend seems to be 

reversed to that of [16,41]. 

 

 

Fig. 4. Pressure profile p  versus x . 

 

 

Fig. 5. maxp
 
profile with n. 
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3.3 Temperature profile 

 

The results of the fluid film temperature T  

obtained by solving the differential equations 

(38) and (39) can be analyzed through  Figs. 6-8, 

for various values of n, V , and U .  Qualitatively 

the temperature increases with x  up to the 

point of maximum pressure and then decreases 

throughout the outlet region which is quite 

similar to that of temperature profile shown by 

[24,42]. 

 

Further, Fig. 6 shows that T  increases with n.  

This shows that the temperature T  for dilatants 

fluid is higher than that of Newtonian and 

pseudo plastic fluids both. This kind of behavior 

was also observed by [15,37] for pure rolling 

and rolling/sliding.  It can be observed from Fig. 

7 that the temperature T  increases significantly 

as V  decreases for fixed U =1.2 and n=1.15. 

This T  trend for compressible fluids is just 

reversed to that of incompressible fluids [6,43].   

Further, the qualitative analysis of T  for pure 

rolling and rolling/ sliding conditions of the 

surfaces has been shown in Fig. 8. From the 

figure it can be noted that the temperature T  

increases with U . Also, it indicates that the 

sliding temperature is higher than that of pure 

rolling. The similar results were obtained by 

[37,44-46]. 

 

 

Fig. 6. Temperature profile mT  versus x . 

 

Fig. 7. Temperature profile mT  versus x . 
 

 

Fig. 8. Temperature profile mT  versus x . 

 

 

Fig. 9. maxT
 
profile with n. 
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The maximum lubricant temperature increases 

with n is shown in Fig. 9, and is in conformity 

with the previous findings of [37,39,41].  

 

3.4 ε -δ   profile 

 

The qualitative behaviors of δ  with actual 

numerical computations (roughly mentioned in 

Fig. 1 for various values of the parameters V and 

n are presented in Figs. 10 and 11 respectively.  

   

 

Fig. 10. δ - profile  versus x . 
 

 

Fig. 11. δ - profile  versus x  

 

The δ -profile, with and without squeezing, is 

shown in Fig. 10 and these two profiles are 

almost similar/ identical. The next Fig. 11 gives 

the analysis of δ -profile for dilatants and 

Newtonian fluids with fixed U =1.2 and V =0.2. 

Here δ profile indicates that the points of 

maximum pressure for Newtonian and dilatants 

fluids are respectively made nearer and farther 

from the centre point of contact. 

 

3.5 Consistency Profile 
 

The quality behavior of the consistency m  

which varies with pressure p  and the 

temperature T (see equation (41)) is presented 

in Fig. 12 for U =1.2, n=1.15 and V =-0.1.  

 

 

Fig. 12 . Consistency profile m  versus x  

 

It may be observe from this figure that  m  

decreases throughout the inlet region up to the 

pressure peak. Then it increases a little up to x
=0 and latter decreases again throughout outlet 

region. In fact,  m  profile seems to be just 

reverse to that of the temperature in the 

complete inlet region. In other words it can be 

said that the consistency decreases when 

temperature increases. Truly speaking, the 

decrease / increase in the consistency are the 

decrease / increase in the resultant of the 

pressure and the temperature. We may infer 

that the temperature has significant effect on 

consistency in comparison to the corresponding 

pressure. The similar kind of trend was obtained 

by [43]. 
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3.6 Density profile 

 

The lubricant density ρ  related with pressure 

p  and the temperature T  (see equation (40)) 

may be analyzed through the Fig. 13. It may be 

observed that the density profile follows the 

similar trend as that of consistency profile.  

 

Therefore, it may be concluded that the 

temperature has also more significant effect on 

density in comparison to that of pressure.  

 

 

Fig. 13. Density profile 
ρ

 versus x . 

 

3.7 Point of maximum Pressure and 

Cavitation points  

 

The Reynolds equation (34) in the region (

21 xxx ≤≤−  ) is solved for cavitation points 

2x  using the conditions 2p = 0 and 

02 =
xd

pd

 for 

different values of n, V , and are presented in 

Table 1 with and without squeezing. The 

cavitation points are shifted towards the center 

point of contact as V  increases for any fixed 

value of n. This trend does not match for 

symmetric with incompressibility result [6]. 

However, for fixed V , the cavitation points of 

non-Newtonian fluids are shifted towards the 

centre point of contact in comparison to that of 

Newtonian fluid. Categorically, for a fixed V , the 

cavitation point decreases with n for all n≤1 but 

not for n=1.15.  

 

The numerical values of 1x , the points of 

maximum pressure, for different values of n and 

V  are presented in Table 1 along with the 

cavitation points. It may be observed from this 

table that 1x  decreases with V ,  i.e. they are 

shifted towards the centre point of contact as V
decreases for each fixed value of n. A similar 

trend was observed by [6,43].  Further for a 

fixed value of V ,  1x  increases as n decreases 

for Newtonian and Pseudo plastic fluids [43]. 

But, the trend changes for dilatants fluid. 

 

3.8 Load and Traction 

 

The numerical values of the normal load 

carrying capacity W , the traction forces +FT  at 

hy =  (upper surface) and  −FT  at hy −=  

(lower surface) are computed and presented in 

the form of Table 2. It can be seen from the table 

that W  increases with n for each value of V  for 

fixed U =1.2 [37, 47]. Further the load decreases 

as  V  increases in case of Newtonian and 

pseudo plastic fluids [6,43]. However, the load 

increases with V   for dilatants fluids. 

 

The traction forces −FT  and +FT  has been 

evaluated for various values of n with and 

without squeezing, and follow the same trend as 

that of load. Further, it is to be noted that the 

traction forces at the lower surfaces are low as 

compared to that of the upper surface in case of 

Newtonian and pseudo plastic fluids for 

different values of V .  But, non-Newtonian 

dilatants fluid follows some mixed trend for 

different values of V . 
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Table 1. Points of maximum pressure and cavitations. 

n/m0 Squeeze )(V   → 0.2 0.1 0 -0.1 -0.2 

1.15/0.56 

r  -3.217899 -2.713841 -2.213761 -1.719251 -1.231699 

1x  0.664004 0.645405 0.627405 0.606005 0.583005 

2x  0.464288 0.488188 0.512863 0.537587 0.561862 

1.0/0.75 

r  -3.728461 -3.235166 -2.739885 -2.242121 -1.743979 

1x  0.470407 0.454807 0.440407 0.426407 0.413008 

2x  0.505988 0.536862 0.568187 0.599986 0.632186 

0.545/86.0 

r  -3.698291 -3.214899 -2.730269 -2.244369 -1.757370 

1x  0.503006 0.485807 0.469407 0.453007 0.437407 

2x  0.469588 0.498988 0.528862 0.559287 0.590187 

0.4/126.0 

r  -3.689511 -3.208103 -2.725302 -2.241417 -1.756477 

1x  0.516006 0.498706 0.481807 0.465007 0.448807 

2x  0.461863 0.490863 0.519588 0.549187 0.579587 

 
Table 2. Load, Traction Forces, Maximum Pressure and Temperature. 

n/m0 Squeeze )(V   → 0.2 0.1 0 -0.1 -0.2 

1.15/0.56 

W  1.067529 1.028345 0.980613 0.917716 0.836443 

+FT  3.658551 3.500792 3.307765 3.07431 2.784633 

−FT  3.670508 3.504292 3.30484 3.064961 2.770892 

maxp  0.654358 0.620095 0.581410 0.534853 0.479133 

maxT  3.204486 3.259898 3.320452 3.734473 3.428965 

1.0/0.75 

W  0.265008 0.274883 0.274883 0.291903 0.297764 

+FT  0.84411 0.866352 0.886035 0.902093 0.911975 

−FT  0.839128 0.86094 0.880494 0.896071 0.905897 

maxp  0.176292 0.183137 0.189353 0.194569 0.198188 

maxT  1.318532 1.346509 1.377697 1.413827 1.455596 

0.545/86.0 

W  0.049622 0.051109 0.052587 0.054041 0.055429 

+FT  0.166225 0.169777 0.172861 0.175865 0.178619 

−FT  0.158302 0.169421 0.172454 0.175318 0.178007 

maxp  0.03075 0.031717 0.032668 0.033594 0.034468 

maxT  1.057986 1.062688 1.068191 1.074813 1.08309 

0.4/126.0 

W  0.009421 0.009675 0.009934 0.010195 0.010456 

+FT  0.032163 0.0327 0.033233 0.03377 0.034296 

−FT  0.032235 0.032742 0.033252 0.033762 0.034272 

maxp  0.005705 0.005867 0.006029 0.006192 0.006354 

maxT  1.011027 1.011909 1.012952 1.014228 1.01585 
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4. CONCLUSION  

 

The non-Newtonian power lubrication of 

asymmetric rollers is studied. The effects of 

pressure and temperature on the lubricant 

consistency and density are taken into 

consideration along with squeezing motion and 

cavitations. Some important bearing 

characteristics of compressible fluid are analyzed. 

The results are compared with and without 

squeezing. The following conclusions are made: 

(1) The temperature variation within the 

contact is greatly influenced by the squeeze 

motion of the compressible lubricants. 

(2) The temperature has significant effect on 

consistency and density in comparison to 

the corresponding pressure. 

(3) The load increases with n significantly 

which justifies the consideration of non-

Newtonian lubricant. 

(4) The load decreases as squeezing        

parameter V increases for Newtonian and 

pseudo plastic fluids. But the trend is just 

reversed for dilatants fluid. The traction 

forces follow the same trends as the load.  

(5) The sliding parameter U  has more 

significance on temperature (see Fig. 8) and 

less on pressure (see Fig. 4) 

(6) Pressure p increases as V increases, 

however, it is not the same for 

incompressible with symmetry. 

(7) The cavitation points move towards the 

central line of contact as V increases.  But for 

symmetric with incompressible, it is not true. 
 

 

Nomenclature 
 

1c , 2c  :  Density-pressure coefficients   

nc         :

00

212

2

1

h

R

h

U

n

n
nn
















 +  

TD       :  Density-temperature coefficient 

h           :  Lubricant film thickness 

0h        :  Minimum film thickness 

h           :  h / 0h etc. 

m           :  Lubricant consistency etc. 

0m  :  Consistency at ambient pressure    

                   and temperature 

m  :  2 m nc 1c   etc. 

n :  Consistency index of the power     

                  law lubricant 

p :  Hydrodynamic pressure 

1p  :  Pressure in the region 1xx −≤<∞−  

2p  :  Pressure in the region 21 xxx ≤<−  

p  :  1c p etc. 

R :  Radius of the equivalent cylinder 

T :  Lubricant temperature  

1T  :  Film temperature for y ≥ δ in   

                  region-I etc. 

0T  :  Ambient temperature 

T  :  β T etc. 

FhT  :  Traction force at the upper surface   

FhT  :  Dimensionless traction force                

                 (= - (2 α FhT  / ho)) etc. 

21 , UU :  Velocities of the cylinders at y = -h   

                    and y =h respectively 

u   :  Velocity of the lubricant in                    

                     x-direction 

u     :  
1U

u
  

V    :  Squeezing velocity of the surface 

V     :  

01

2

h

R

U

V  

v    :  Velocity of the lubricant in y- 

                              direction 

W    :  Load in y-direction 

W     :  Dimensionless load (=α W /  

                     (Rho)½) 

x,y     :  Co-ordinate axes 

x      :  Dimensionless distance in x- 

                      direction  (= x/ (2Rho)½)  etc. 

1x      :  Point of maximum pressure 

2x      :  Cavitation point 

α      :  Pressure coefficient 

β      :  Temperature coefficient 

δ     :  Location of points where  

                       velocity gradient 0=
∂
∂

y

u
 

δ                : 
0h

δ
 

γ       : 














pcc10ρ
β
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