
Revista de Sistemas de Informação da FSMA
n. 15 (2015) pp. 23-29 http://www.fsma.edu.br/si/sistemas.html

Development of the Lock Protocol for DEPSKY
Storage System

Poliana S. Nascimento, Student in Technology for Systems Analysis and Development, IFBA,
Allan E. S. Freitas, Doctor in Computer Science, IFBA

Abstract—Data management in environments based
on several clouds (cloud-of-clouds) should be depen-
dable and secure. DEPSKY may assure that char-
acteristics through mechanisms as cryptography and
data replication, however DEPSKY does not support
concurrent writing, a desirable functionality for many
applications. This paper presents the development and
a performance analysis of a lock algorithm for DEPSKY
storage system. The paper also presents validation
and performance tests of the algorithm. Such protocol
allows concurrent writing, through a low contention
lock mechanism that uses lock files to define who is
allowed to write in a data unit.

Index Terms—Cloud Computing, Replication, Secu-
rity.

I. Introduction

THE growing use of computing environments on
the Internet and that need for sharing information

and resources makes very important the use of cloud
computing environments [1]. In those environments, given
the need for resource sharing, there is a growing concern
about the security and privacy of the stored data [2].

Several works in the literature studies the problem of
cloud storage. For instance, RACS (Redundant Array of
Cloud Storage) is a transparent proxy for cloud storage
that distributes the load for many service providers [3].
The proposed algorithm is fault tolerant and reduces the
vendor lock-in 1, making it easier to migrate between
platforms. Nevertheless, it does not deal with security
issues.

There is also HAIL (High-Availability and Integrity
Layer), which is a criptographic distributed system that
manages the integrity of the files and their availability
through a collection of servers or cloud storage services [4].
Nevertheless, it has some limitations such as the need for
servers to execute code, the lack of mechanisms to protect

Corresponding author: Allan E. S. Freitas, allan@ifba.edu.br. This
implementation work for the proposed code and its performance eval-
uation was developed by the student Poliana dos Santos Nascimento
in a research study during the interchange program at the LaSIGE
group at the Science College at the University of Lisbon, under the
guidance of professor Alysson Bessan and tutorship of PhD student
Tiago Oliveira.

1The vendor lock-in is related to the technological dependency on
the used platform, which makes it difficult to move clients from one
vendor to another, making some vendors dominants.

the confidentiality of the stored data and the fact that it
works only with static data [5].

DEPSKY is a reliable and safe storage system that
manages data stores in clouds based on different commer-
cial cloud services in a cloud-of-clouds environment [6].
This way, DEPSKY offers facilities to go around im-
portant limitations in cloud data storage, such as loss
of availability, data loss and alteration, privacy loss and
vendor lock-in. In opposition of the previously described
systems, DEPSKY deals with security issues, and it has
mechanisms to protect stored data confidentiality and does
not require that servers need execute additional code.

According to the CAP theorem (Consistency, Availabil-
ity, Partition tolerance) [7], a distributed database may
fulfill simultaneously only two of these three properties:
Consistency, the guarantee that all data is update in all
replicas; Availability, that is, in case a node fails, there is at
least one able to answer the requisitions; and Partitioning
tolerance, the ability to continue working even when all
copies cannot communicate among themselves.

This way, DEPSKY can provide a relaxed consistency,
given the possibility of network partitioning [8], that
may not be a problem in scenarios such as those where
applications do not require to handle sensible data and
that require low response time, such as, for instance,
social network applications. Using adequate commercial
cloud platforms, such as Amazon S3, may decrease the
possibility of this partitioning. This discussion is not the
focus of this paper.

Nevertheless, the DEPSKY implementation did not sup-
port multiple writers, which is a desirable feature for full
use of cloud-of-clouds environments. This way, this paper
presents the development of a lock algorithm, as proposed
by [6]. Since most fault tolerance systems that will use
DEPSKY will only have a node, there is no need for a
high level concurrency protocol. Hence, it is proposed a
low contention level lock mechanism using blocking files
to define who is the writer in the data unit, allowing for
concurrency.

The developed algorithm was evaluated measuring a
commercial cloud service, the Amazon S3 [9]. This way, it
was possible to test and evaluate the performance of the
system when multiple clients are writing simultaneously.

This paper is organized as follows. Section 2 will make
a brief introduction on DEPSKY, and these protocols:

23



NASCIMENTO, P. S., FREITAS, A. E. S. / Revista de Sistemas de Informação da FSMA n. 15 (2015) pp. 23-29

reading, writing, lock and unlock; and some aspects of
the development of lock and unlock algorithms. Section 3
shows an analysis of the performance and finally, Section
4 presents some final considerations.

II. DEPSKY and the development of lock and
unlock algorithms

DEPSKY [6] is a virtual storage system that replicates
the data in several clouds, improving availability,

integrity and confidentiality of the stored information. It
uses Byzantine quorums, secret sharing and erasure codes
in order to ensure fault tolerance2 and confidentiality. This
way, users can manage the data by invoking operations
in the different individual clouds. Figure 1 presents an
example of DEPSKY architecture configuration, where
two clients are in communication with four servers, each
one situated in a distinct cloud.

Fig. 1. DEPSKY architecture, with fours clouds and two clients [6].

This systems protects most sensitive information using
a secret sharing mechanism. For that, it used two protocols
that differ in the way the information is sent to the clouds.
In the ADS protocol (Available DEPSKY) a copy of the
information is sent to all clouds. In the CADS protocol
(Confidential and Available DEPSKY) the information is
broken into parts according to the number of clouds and
each part is sent to a cloud. The information is codified
such that only a certain number of parts is need to rebuild
the original information, instead of all parts [6][5].

A. Reading and writing protocols

The writing protocol present in DEPSKY is based on
the fundamental idea of keeping he value in a quorum
of clouds (data storage units), and then recording the
corresponding meta-data assuring that only one writer
(also known as client, the process that wants to block
the cloud in order to trigger the writing mechanism) is
able to read the meta-data for the stored value. When
a client writes the first data unit (basic storage unit for
the algorithm, which contains a unique name, a version

2DEPSKY tolerates Byzantine faults, and hence it can tolerate the
failure of up to f of the n clouds, where n > 3f .

number and a verification date and the data stored in
the object), the client gets in touch with all the clouds in
order to get the meta-data with the higher version number,
updating the variable that stores the version number [6].

The DEPSKY reading protocol gets the meta-data files
in a cloud quorum and chooses the one with the higher
version number. Afterwards, it searches the version of the
data unit that corresponds to this version number and the
criptographic hash found in the metadata. Afterwards, the
protocol gets the file that contains the correspondig value
to the matedata synthesis in the cloud quorum. If those
conditions are satisfied, the process leaves the loop and
returns the value [6].

B. Lock and unlock protocols

The developed lock protocol is a blocking mechanism
for low contention, based in a file that specifies who is the
writer and how long it is allowed writing in the data unit.
This is illustrated in Figure 2, which presents the lock and
unlock algorithms. The algorithms work as follows: when
a process wants to become a writer, it lists the file in the
cloud and looks for a file named lock-c’-T’, in which c’
is the identifier of the associated process and T’ is the
duration of time for which this process received permission
for writing (lines 5-10). If this file is found in the data unit,
it means that some process is blocking it, hence the process
c hibernates for a random time (line 21). If it is not found,
c may write the blocking file, including a cryptographic
signature of the file name in all clouds (lines 11 and 12).
The withdrawal strategy is necessary to ensure that two
or more processes do not receive authorization to write at
the same time [6].

Finally, the process c lists again all the files in the cloud,
searching for blocking files (lines 13-17). If he finds a file
that is not his with a expired writing time, c removes its
lock file and hibernates for a given period of time 3. If
he does not find any lock file, c becomes the only writer
for the data unit. The unlock is performed through the
removal of the lock file through the unlock protocol(lines
24-27) [6].

It is important to observe that the unlock procedure
is not completely fault tolerant. In order to liberate the
writing of a lock file, it must be deleted from all the clouds,
but a single cloud may fail, keeping the file that should
have been removed, if the unlock function fails during the
exclusion. This will deny the block by other writers, but
since every blocking file has an expiration, this problem
will only affect the system for a specific period of time,
because the file will expire [6].

C. Aspects of the algorithm development

Lock and unlock algorithms were implemented in its
corresponding functions in the JAVA programming lan-
guage, as well as all DEPSKY, because JAVA provides

3This period of time is defined randomly at run-time according to
a time limit predefined in the application.

24



NASCIMENTO, P. S., FREITAS, A. E. S. / Revista de Sistemas de Informação da FSMA n. 15 (2015) pp. 23-29

Fig. 2. Lock and unlock algorithms [6].

many libraries and services that make it easier to read and
write at the used clouds [5] [10]. As auxiliary functions for
this algorithm, we developped the functions listQuorum,
writeQuorum and deleteData4.

The function listQuorum lists all the lock files in the
clouds. It is used by the lock function to bring up the list
of block files. The writeQuorum functions writes in the
clouds the lock file, using a SHA-1 cryptographic signature
of the name of the file that contains the time-stamp from
the moment the process was able to perform the block.
The deleteData function is used by the unlock function
and removes the lock file from the clouds. All messages
are transmitted using symmetric cryptography using the
AES algorithm.

The unlock functions removes the blocking file, releasing
the clouds for other processes to acquire the writing access.
For the unlock function, it was necessary to perform

4The code for the functions listQuorum, writeQuorum
and deleteData are available at the Internet address
https://code.google.com/p/depsky/source/browse/trunk/DepSky/
src/depskys/core/LocalDepSkySClient.java

some changes in the original algorithm from the Figure 2.
Instead of passing only the lock id, it was necessary to
also pass the (DataUnit), because the function deleteData
demands this parameter to be passed to perform the
exclusion.

In the function lock 5 the DataUnit is passed as a
parameter, as well as the number of times the process
wants to try to block the clouds. This function verifies
if a process is blocking the data unit. First, it calls the
function listQuorum to verify if there is a lock file in
the cloud. If it returns null, the function writeQuorum is
called. Afterward, the function listQuorum is called again
to verify if there is a lock file besides the one written by
the client. If another process wrote in the cloud, the client
removes its lock file and hibernates for a random time. If
there is no other file, it becomes the single writer for this
data unit.

5The codes for the functions lock and un-
lock are available at the Internet address
https://code.google.com/p/depsky/source/browse/trunk/DepSky/
src/depskys/core/LocalDepSkySClient.java

25



NASCIMENTO, P. S., FREITAS, A. E. S. / Revista de Sistemas de Informação da FSMA n. 15 (2015) pp. 23-29

If the list is not empty, it is verified if the file kept in
the cloud is for the selected data unit, if it belongs to the
process that is trying to write and if the cryptographic
signature is valid. If all conditions are satisfied, the data
unit is selected and the process becomes the single writer.
If not, it verifies if the blocking time for the file in the
cloud expired and if so, the process removes the lock file
from the cloud and writes its own. Otherwise, the process
hibernates for a random time.

Some observations must be made on the protocol and
its implementation. Block should be renewed periodically
to guarantee the existence of a single writer during the
execution. If several process try to become writers at the
same time, it is possible that none of them became the
writer. Given the fallback strategy used, we assume as
premise that this condition may not be so frequent [6] –
and even in this case, the clients may resubmit afterward
their writing requests.

The protocol does not guarantee termination. When a
client requests the lock, a variable is passed as parameter
to inform the number of times the process will try to
get the lock and this guarantee that it does no try end-
lessly and fruitlessly, avoiding starvation. Nevertheless, the
property of progress is not guaranteed, because there is a
limited amount of locking attempts and so the writing may
be unsuccessful. The lock protocol assumes as a premise
that the clocks are periodically synchronized.

Figure 3 illustrates the working of the lock protocol for
the case a client succeed into become the writer for the
data unit at the first attempt. First, the client requests the
clouds to return a list of lock files. Afterward, it writes the
lock file and requests again the list of lock files to verify
it another client tried to write at the cloud. After this
procedure, it uses the write protocol and finalizes, calling
the deletedata function to unlock the cloud.

III. Performance analysis

THIS section deals with aspects of the performance
analysis.

A. Experimentation environment

The client was executed in a desktop computer with the
GNU/Linux Ubuntu 12.0 operating system, Intel Core i5
processor and 4 GB RAM memory. For data storage, we
created 4 buckets at Amazon S3 6 [9]. Each of these buckets
were created in different locations: São Paulo, Ireland,
Stansted and USA West.

The different locations of the buckets assured failure
independence. The amount of at least 4 buckets is nec-
essary to provide a quorum that is tolerant to at most one
Byzantine failed bucket (i.e. N > 3F ).

In order to perform, the tests we collected data referring
to the time for lock, write, unlock operations and the total

6Amazon S3 – Simple Storage Service – is a PaaS cloud that
provides data storage services in the form of units called Buckets
through a simple web interface that can be used to store and recover
any amount of data at any moment and any given web location [9]

time. For these measurements, we considered the time each
client invokes the write operation followed by the unlock
operation, after it succeed in writing the lock file in the
cloud.

B. Analyzed criteria

• Writing time at the clouds: We analyzed the time a
process takes to perform the lock, write and unlock
operations. We observed the time spent confronting
the increase of the number of process that tries to
perform the writing operations simultaneously at the
clouds. First the client starts the lock protocol and in
case the cloud is blocked it hibernates and if not, it
requests the cloud to be blocked and afterward writes
and unlock the cloud, liberating it for other clients to
access it.

• Process failures: In this analysis, a process fails to
block the cloud and does not trigger the unblocking
mechanism, stopping other processes that try to exe-
cute the lock protocol. We also conducted experiments
to verify whether the process can identify if a lock file
actually belongs to it.

• Cloud failure for invasion or corruption of the data:
In this analysis, the cryptographic signature of more
than f clouds were modified in an incorrect way,
where f is the maximum amount of clouds in error
according to the used quorum. If the process identifies
the problem, it should delete the lock file to release
the cloud.

C. Results and discussion

1) Time to write in the cloud: In this analysis, we used
as factor the number of processes (1, 2, 3 and 4). We
defined as parameters the number of attempt the client
tried to execute the locking mechanism (20 attempts),
a number defined ad-hoc to minimize the possibility the
clients will finish their execution with no success; and the
hibernation time a process takes when waiting its turn,
which is determined as a fixed value (1000ms) added to a
random value.

The cumulative distribution graphics for the lock and
unlock operations and for the total time are presented in
Figures 4, 5 and 6, respectively, exposing the accumulated
frequency (vertical axis) for a certain operation with the
observed latency in seconds (horizontal axis). The graphs
allow for a comparison of the latency according to the
increase of the number of clients. The value of the fre-
quency equals to 1 indicates that all operations happen in
a time up to the indicated latency. Each line represents
the variation of the latency according to the number of
clients.

It was possible to observe that when the number of
clients increase, the total time required to finish the
operation also increases, which implicates in a loss of
performance, given that the more clients that try to access
the cloud, higher the time each process takes to finalize
writing.

26



NASCIMENTO, P. S., FREITAS, A. E. S. / Revista de Sistemas de Informação da FSMA n. 15 (2015) pp. 23-29

Fig. 3. Writing process using the lock protocol.

Fig. 4. Cumulative distribution graphic with one, two, three and
four clients – lock operation.

Figure 4 indicates the performance loss at the lock
operation as a consequence of the increase of the number of
clients that tried to block the cloud. We observed that the
latency increased with the number of processes that were
competing to write at the data unit. We analyzed that as
the number of clients increased, even then operations that
were not competing to write at the cloud, such as write
and unlock, became more idle, since more than one process
was trying to access the cloud, causing lack of efficiency,
as can be seen in Figure 5 at the cumulative distribution
graphics for the unlock operation.

When analyzing the cumulative distribution graphic
for the unlock poeration presented in Figure 5, it was
possible to realize that the time for the unlock operation
varied within a long tolerable margin, growing gradatively
with the number of clients. The performance of the lock
operation fell more rapidly that the unlock one, because of
the concurrency to perform the block of the clouds by the
clients, which did not occurr inthe unlock protocol, given
that the client ha alrady become the writer.

Figure 6 presetns the current frequency graphic for the
total time for the three operations (lock, write e unlock).
As previously discussed, it is easy to realize that the
latency increases with the number of clients. But it is
important to report that using the lock protocol, the time
to perform the writing at the data unit increases, because

Fig. 5. Cumulative distribution graphic with one, two, three and
four clients – unlock operation.

we used three operations to perform the process in which
the writers enter in a race condition. This caused an
increase in functionality for the system, but on the other
hand, there was a loss in efficiency.

Fig. 6. Cumulative distribution graphic with one, two, three and
four clients – total time for the operations lock, write and unlock.

Figure 6, presents the current frequency of the total
time taken for all operation and as suc, allow for a better
comparison of the results found at the experiment with
one, two, three and four clients.

27



REFERENCES

Fig. 7. Graphics comparing one, two, three and four clients - lock and unlock operations and total time.

The loss of performance caused by the number of pro-
cess that are competing to write may be simplified by
Figure 7, which presents a comparision of the latency as a
consequence of the increase of the number of writer for the
operations lock and unlock and for the total process time.
The graphics also show the standard deviation. Finally,
it was observed that the total time increased was caused
primarily by the competition for the processes to write the
lock file at the data unit.

2) Failure of the process: In this analysis, we studied
how the lock protocol behaved when failures to write
occurred, making it impossible to trigger the unlock mech-
anism. We tested two executing process. One of them failed
when writing at the cloud while the other tried to block
the cloud but was unsuccessful because there was a lock
file at the cloud. In this situation, it was possible tho verify
that given the lock protocol principle that a process can
only block the cloud for a given period of time7, even when
the client does not unlock, when its time expires, the other
process can remove the lock file, unlocking the cloud.

3) Failure in the cloud because of invasion and corrup-
tion of data: In this analysis, we simulated an arbitrary
behavior in which two of the four clouds executed ma-
liciously, what was verified by the process through the
criptographic signature informed by the clouds. It must
be noticed that in this execution the Byzantine quorum
was not respected, since only one of the clouds may fail
so that the requisites are fulfilled. Given that only two
clouds answered with the correct file, we did not satisfy
the quorum of at least 2f + 1 clouds and as expected, the
client excluded the lock file stored in the clouds.

IV. Conclusion

THIS paper present the development and the anal-
ysis of the performance of a lock algorith for the

DEPSKY storage system. The lock protocol allows for
more than one client to write at the data unit through
a lock mechanism of low contention using a file that stores
the information of who is the current writer at the data
unit.

7This period of time was defined in a random way during runtime,
according to a time limit predefined in the application.

Analyzing the results found, it was possible to observe
that the developed algorithm satisfies the contions to
perform the lock of the clouds, stopping more than one
client to write at the same time at the data unit. Besides,
it was possible to verify that the performance degrades
given the simultaneous write: the higher the number of
clients that try to get writing access to the clouds, the
higher the service overload and the latency observed.

References

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud com-
puting: state-of-the-art and research challenges”,
Journal of internet services and applications, vol. 1,
no. 1, pp. 7–18, 2010.

[2] E. Hanna, N. Mohamed, and J. Al-Jaroodi, “The
cloud: requirements for a better service”, 12th
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pp. 787–792, 2012.

[3] H. Abu-Libdeh, L. Princehouse, and H. Weather-
spoon, “Racs: a case for cloud storage diversity”, in
Proceedings of the 1st ACM symposium on Cloud
computing, ACM, 2010, pp. 229–240.

[4] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a
high-availability and integrity layer for cloud stor-
age”, in Proceedings of the 16th ACM conference on
Computer and communications security, ACM, 2009,
pp. 187–198.

[5] B. M. M. R. Quaresma, “Depsky: sistema de ar-
mazenamento em clouds tolerante a intrusões”, Mas-
ter’s thesis, UNIVERSIDADE DE LISBOA. Fac-
uldade de Ciências. Departamento de Informática,
2010.

[6] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa, “Depsky: dependable and secure storage
in a cloud-of-clouds”, ACM Transactions on Storage
(TOS), vol. 9, no. 4, p. 12, 2013.

[7] L. Frank, R. U. Pedersen, C. H. Frank, and N. J.
Larsson, “The cap theorem versus databases with
relaxed acid properties”, in Proceedings of the 8th
International Conference on Ubiquitous Informa-
tion Management and Communication, ACM, 2014,
p. 78.

28



NASCIMENTO, P. S., FREITAS, A. E. S. / Revista de Sistemas de Informação da FSMA n. 15 (2015) pp. 23-29

[8] M. Correia, “Clouds-of-clouds for dependability and
security: geo-replication meets the cloud”, in Euro-
Par 2013: Parallel Processing Workshops, Springer,
2014, pp. 95–104.

[9] Amazon web services. available at
https://console.aws.amazon.com/console/home.

[10] Depsky: a cloud-of-clouds storage middleware. avail-
able at https://code.google.com/p/depsky/.

29


