
Revista de Sistemas de Informação da FSMA
n. 13 (2014) pp. 57-67 http://www.fsma.edu.br/si/sistemas.html

Performance analysis of parallel modular
multiplication algorithms for ECC in mobile devices

Tiago Vanderlei de Arruda, Mestrando em Ciência da Computação, UFSCar Sorocaba,
Yeda Regina Venturini, Doutor em Engenharia, UFSCar Sorocaba,

Tiemi Christine Sakata, Doutor em Ciência da Computação, UFSCar Sorocaba

Abstract—Modular multiplication is the main oper-
ation in Elliptic Curve Cryptography (ECC) on prime
finite fields. It is executed most of the time and is
costly because it requires a modular reduction and a
multi-precision method. Therefore, its cost increases in
proportion to the ECC’s key size. It could be considered
as a problem for mobile devices because, despite they
have more resources nowadays, their performance is
still limited. Moreover, processor devices’ trends are
multi-core, even in the case of mobile devices. All of
these facts motivated us to investigate the performance
of the parallel modular multiplication on a software
level on a current mobile platform. Recent studies have
shown that parallel modular multiplication is effective
only with big key size, like ones required for RSA, but
none of them have focused on mobile devices platform.
In this article, we show that, even for a smaller key size,
as required for ECC, the use of parallel modular mul-
tiplication guarantees a better performance on mobile
devices.

Index Terms—cryptography, ECC, mobile devices,
parallel modular multiplication.

I. Introduction

USABILITY and connectivity are among the words
most valued for mobile device users. Some studies

find that teen users are connected nearly all waking hours
of the day and this is also true for other workers. The
portability of mobile devices associated with growing per-
formance and high connectivity through wireless networks
have made many applications available anytime and any-
where. Nowadays, on-line services such as e-mail, social
networks, e-commerce or on-line banking are accessible
using smart phones, tablets or even embedded devices, not
to mention applications for sharing personal or sensors
networks. All these services must provide some level of
security.

Any service that needs a user (or device) identifica-
tion should provide secure authentication and sometimes
be followed by key exchange used for confidentiality of
communication. Usually, secure authentication and key ex-
change are based on asymmetric cryptography algorithms,
also called public key algorithms. These algorithms are
based on a key pair, consisting of one secret/private and
another public. The most common algorithm is the RSA
[1], whose security is based on the difficulty of solving

the big integer factorization problem. The security of a
cryptography algorithm also depends on the private key
security, which can be as great as the key size. The problem
is that as the computational capacity grows, there is a need
to increase the key size to ensure the same security level
which, in its turn, also requires greater computational cost.

In 1985, Koblitz [2] and Miller [3] independently pro-
posed the Elliptic Curve Cryptography algorithm (ECC).
ECC is a public key algorithm whose security is based
on the difficulty to compute the inverse of a big integer
(scalar) multiplication of points on an elliptic curve [4].

ECC spends less computational resources than RSA,
requiring a smaller key size to reach the same security
level [5]. ECC is newer and more complex to understand
than RSA.

The key size needed to an effective use of RSA has
increased over the past years, leading secure applications
to achieve higher processing loads, especially on mobile
devices. Due to the strength of RSA be low for small
key sizes, ECC is more suitable for devices with low
computational resources or high processing loads, when
performance and security are critical.

A version of ElGamal cryptography system was pro-
posed for Elliptic Curves [6]. This system maps a confiden-
tial message on an elliptic curve (EC) as a point, and ap-
plies encryption operations on the mapped message, which
results in another point corresponding to an encrypted
message. The encryption operation is performed with the
scalar multiplication (kP), which is defined as successive
point addition operations (P +P + ...). The point addition
operation is computed by arithmetic expressions on the
point coordinates, resulting in another point on the same
curve (E).

The variables and coefficients of a cryptographic elliptic
curve are bounded to a finite field (GF), which results
in the definition of a finite abelian group [6]. Therefore,
all the arithmetic operations performed must be over the
chosen finite field.

When computing point addition, the field operations
performed depend of the chosen coordinate system. There
are several coordinate systems, which can be used to speed
up the computation. These coordinate systems change the
point representation and the arithmetic operations needed
to compute the point addition.

57

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

The group operations used by ECC (scalar multipli-
cation, point addition) perform a lot of operations on
GF . Usually, the prime GF (p) or binary GF (2m) field is
applied.

This paper aims to analyze the performance of ECC
defined on prime GF (p) field. GF (p) is defined as a set
of integers less than a prime p and modular arithmetic
operations on p, where the most costly required operation
is the modular multiplication.

The new generations of processors are multi-core which
means that an efficient implementation of ECC could
be achieved through parallel computing. Some recent
works [7]–[10] signal that the speeding up of parallel algo-
rithms for the main ECC operation (modular multiplica-
tion) could only be achieved for very large operands (large
p), such as used by RSA. However, it is also known that
the performance of parallel algorithms is highly dependent
on the processor architecture.

This work analyzes the performance of recently pro-
posed parallel modular multiplication algorithms [8]–[10]
and a parallel version of the traditional reduction algo-
rithm proposed by Montgomery [7].

To the best of our knowledge, it is the first study
on software focusing on parallel multiplication algorithms
in ECC (ECC’s standard key size) for a current mobile
platform.

This paper is organized as follows. Section II describes
the background required to understand the elliptic curve
cryptography system. Section III describes the importance
of modular multiplication and related works. Section IV
describes the analysis of our results. Finally, Section V
concludes the document describing the expected benefits
of this study.

II. Elliptic curve cryptography

ELLIPTIC curves are defined by cubic equations,
similarly to the curves used for computing the cir-

cumference of an ellipse. Elliptic Curve Cryptography
(ECC) is a public key encryption technique, which can
be used for digital signature, encryption/decryption, and
key exchange purposes.

Cryptographic applications based on ECC use an el-
liptic curve E defined on prime E(GF (p)) field or bi-
nary E(GF (2m)) field (both finite field). In this text,
we explore elliptic curves on GF (p) since the arithmetic
operations on GF (p) (p prime) are more suitable for
software applications [11]. The elliptic curves E(GF (p))
have their variables and coefficients between [0, p−1], and
the operation is modulo p.

A. Elliptic Curve Cryptography System

The ElGamal cryptography system [12] is based on
the Diffie-Hellman key exchange algorithm [13] and can
be defined on any cyclic abelian group. In elliptic curve
cryptography the algebraic objects defined by (E; +) form
a finite abelian group.

An ElGamal based version for Elliptic Curves was de-
scribed by Hankerson et al. [6]. In their system (Figure 1),
two entities, Alice and Bob, want to communicate in a
secure manner over an insecure channel. First of all, Alice
randomly chooses her private key pr ∈ [1, p − 1] and
generates a public key pu as the scalar multiplication
between pr and the base point G ∈ E(GF (p)). Alice sends
pu through an insecure channel. Bob, who wants to send
a message m (an ordinary text or a symmetric key) to
Alice, randomly chooses a private key r ∈ [1, p− 1], maps
the message in points of the chosen elliptic curve E as
M , encrypt the message and send his public key (C1) and
the encrypted message (C2) through the channel. Only the
entity who owns the private key of Alice (pr) is able to
decrypt the content. The base point (or generator) G can
be randomly chosen and must (as the prime p and the
curve E) be known in advance by both entities.

The security of ECC algorithm is based on the difficulty
to get pr knowing pu = prG and G.

Private key r

Private key p
r

Public key

Message M

Alice Bob

p
u

C
1
, C

2

Message M = C
2
 – p

r
C

1

Public key

Encrypted
message

C
1
= r G

C
2
= M + r p

u

p
u
= p

r
G

(E, +) is a finite abelian group.

r x G = (G + G + … + G)
r times

Fig. 1. ECC based upon the ElGamal cryptosystem

It’s important to note that, this system performs the
point operations P + Q, P −Q and kP , where k is a big
integer and P,Q are points on an elliptic curve E. For
computing P − Q, it’s necessary to add the point P to
the inverse of the point Q (P + (−Q)). For P + Q, it’s
necessary to add the points P and Q (Section II-B2). The
scalar multiplication is represented by the product of the
scalar k and the point P (kP). This operation is defined
as successive point additions and doubling (Section II-B).

Figure 2 shows the hierarchy of operations performed
in ECC cryptosystems. The main operation (or at least
the most expensive) is the scalar multiplication, which
computes several point additions/doubling according to
the scalar k size (see Section II-B1). The point addition
and doubling are computed according to the coordinate
system on which the point is represented (details in Sec-
tion II-B2). The operation on a coordinate system requires
a set of arithmetic operations (e.g. addition, subtraction,
multiplication, division), which are defined according to a
finite field on an elliptic curve (Section II-B3). The mod-
ular arithmetic operations are applied when the chosen
elliptic curve is defined on GF (p).

58

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

Point addition/doubling

Arithmetic operation (add, sub, mult, div)

Coordinate system

GF(p) modular arithmetic

Scalar multiplication
Scalar representation (hamming weight)

Elliptic curve cryptosystem

Fig. 2. Hierarchy of operations in ECC: ECC performs the scalar
multiplication with sucessive point additions/doublings, which are
performed by many modular arithmetic operations

B. Scalar multiplication

Gura et.al showed that scalar multiplication accounts
for about 80% of the key calculation time in ECC [14].
The scalar multiplication is the operation of multiplying a
positive integer k (usually the ECC private key) with an
elliptic curve point P ∈ E(GF (p)). However, there is no
way to compute this multiplication directly. So, it is made
up of successive point additions 1 :

k × P = (P + P + ... + P)︸ ︷︷ ︸
k times

There are several proposals to compute scalar multipli-
cation efficiently [15]. A classical and didactic method is
Double-and-Add (a.k.a. Binary) [16]. This method com-
putes scalar multiplication by point addition and doubling,
which reduces the number of operations and the total cost.
It scans each bit (from the least or most significant) of the
scalar k. The Algorithm 1 shows the left-to-right Double-
and-Add point operations. Note that the point at infinity
(O) is the identity element of an elliptic curve, so that
P + O = O + P = P and 2O = O.

For example, let kP be a scalar multiplication, where
k = 27 (binary 11011) and P is a point on the elliptic
curve E. The steps performed by the left-to-right Double-
and-Add method for computing 27P are:

2× (2× (2× (2× ((2×O) + P) + P)) + P) + P

Note that the first doubling in the Algorithm 1 (line
4) is Q ← 2O = O. In practice, if the attribution in line
2 were changed to: Q ← P when ki = 1, or Q ← O
otherwise, the loop for() could start with i = n − 2. In
this case, this method performs (n− 1) doubling and the
number of additions depends on the number of non-zero
bits of the scalar k, which is known as Hamming weight.

1this operations is equivalent to the exponentiation for the RSA
cryptography algorithm.

Algorithm 1 Double-and-Add left-to-right scalar multi-
plication

1: procedure Binary(k, P) . binary representation of
k and point P

2: Q← O . O is the point at infinity
3: for i = n− 1 to 0 do . n is the bit-length of k
4: Q← 2Q . 2Q : point doubling
5: if ki = 1 then
6: Q← Q + P . Q + P : point addition
7: end if
8: end for
9: return Q

10: end procedure

The Hamming weight of the scalar k in the binary form is
approximately (n− 1)/2.

Many algorithms were proposed in the literature to im-
prove the efficiency of scalar multiplication [15]. To achieve
this, it is necessary to operate on algorithms in different
levels of the ECC’s operation hierarchy (Figure 2):

• scalar multiplication level – identify new scalar repre-
sentation or reduce hamming weigh (Section II-B1)

• point addition and point doubling operations – find
out efficient coordinate system (Section II-B2)

• arithmetic operations level – speed up the perfor-
mance of elliptic curve arithmetic operations (Sec-
tion II-B3)

1) Scalar Representation and Hamming Weigh: The
reduction of Hamming weight consequently reduces the
number of point additions performed in the scalar mul-
tiplication, and thus, a performance improvement can
be achieved. Some available algorithms for reducing the
Hamming weight of the scalar k are [15]: NAF, w-NAF,
MOF, w-MOF, DBNS, MBNS, JSF. The window-based
variants: w-NAF and w-MOF use a pre-computed table of
points during the recoding. Table I presents the approx-
imated number of point additions and doubling of scalar
multiplication for some of the cited above representations.

TABELA I
Approximated number of point additions and doubling of

scalar multiplication, for different scalar representations

Representation Doubling Additions
Binary n− 1 (n− 1)/2
NAF n n/3
w -NAF n+ 1 n/(w + 1)
MOF n n/3
w -MOF n+ 1 n/(w + 1)

2) Coordinate System: The number of arithmetic oper-
ations (addition, subtraction, multiplication, square, di-
vision, inversion) performed to compute each point ad-
dition/doubling operation varies according to the chosen
coordinate system.

Figure 3 shows the geometric representation of addition
and doubling point operations on an elliptic curve on the
real numbers system (R). So, let P and Q be two points on
the curve E and let −RA be the point where a line through

59

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

P and Q intersects the curve. The addition RA = P + Q
is the inverse of −RA over x-axis, that is, the negative of
the intersection point. When P = Q, the doubling RD =
P + Q = 2P = 2Q takes the tangent of P and finds the
intersection on the elliptic curve E at a point (−RD) with
the tangent line. The doubling (RD) is the inverse of −RD

about x-axis.

y

x

R
A
=P+Q

R
D
=2Q

P

Q

-R
D

-R
A

General form of Weierstrass' curves on GF(p):

y2mod p=(x3+ax+b)mod p

Fig. 3. Geometric representation of point addition and doubling
operations on an elliptic curve

The point addition and doubling operations using affine
coordinate system are calculated according to Equation 1
and Equation 2, respectively. The variables (x, y) and
coefficients a, b of the elliptic curve are defined on a finite
field. Then all arithmetic operation to compute the point
addition/doubling are under GF operation. For GF (p)
the resulting point (x3, y3) are computed using modular
arithmetic.

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2 e y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

(1)

x3 =

(
3x2

1 + a

2y1

)2

− 2x1 e y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1

(2)

Note that the affine coordinate system requires an in-
version either in addition or in doubling operation. The
inversion operation is one to two orders of magnitude
slower than multiplication. However, points on a curve can
be represented in different coordinate systems which do
not require an inversion operation to add two points. For
example, the projective coordinate systems doesn’t require
any inversion. However, it takes extra memory for storing

temporary values and extra modular multiplications must
be performed when computing the point addition and
doubling operations.

Several coordinate systems have been proposed to speed
up the performance of point operations. Some examples
of coordinate systems defined on GF (p), p > 3 prime
proposed in the literature are: Affine coordinate (A),
projective coordinates: Standard (P), Jacobian (J), Chud-
novsky (J c), modified Jacobian (Jm) and Mixed [6],[17].

The number of multiplications (M), squares (S) and
inversions (I) required to compute point addition and
doubling operations on the cited above coordinate systems
under E(GF (p)) curves is described by Cohen et al. [17],
as shown in Table II.

TABELA II
Operations required for point addition and doubling on
GF (p). M = Multiplication, S = Square and I = Inversion.

Adapted from [17].

Doubling Addition
Operation Cost Operation Cost

2P 7M + 5S P + P 12M + 2S
2J c 5M + 6S J c + J c 11M + 3S
2J 4M + 6S J + J 12M + 4S

2Jm 4M + 4S Jm + Jm 13M + 6S
2A I + 2M + 2S A+A I + 2M + S

It is possible to estimate the total number of multiplica-
tion, square, and inversion operations executed by Double-
and-Add scalar multiplication (Algorithm 1) for a given
size of the scalar k. Let DM , DS, DI be the number of
multiplications, squares and inversions to calculate point
doubling and AM , AS, AI be the number of multiplica-
tions, squares and inversions to calculate point addition in
a coordinate system. Once the number of point doubling
and addition operations of Algorithm 1 is approximately
(n− 1) and (n− 1)/2, where n is the size of the scalar k,
the cost estimation may be computed as:

• Multiply: (n− 1)DM + d[(n− 1)/2]AMe
• Square: (n− 1)DS + d[(n− 1)/2]ASe
• Inversion: (n− 1)DI + d[(n− 1)/2]AIe
Since n is the bit-length of the scalar k, the approxi-

mated total cost of the coordinate systems can be calcu-
lated as: Projective P: (n − 1)(13M + 6S), Chudnovsky
Jacobian J c: (n − 1)(10.5M + 7.5S), Jacobian J : (n −
1)(10M+8S), Modified Jacobian Jm: (n−1)(10.5M+7S)
and Affine A: (n− 1)(1.5I + 3M + 2.5S).

Table III shows the approximated total cost for each
operation of the coordinate systems shown in the Table II
(multiplications and squares) of Double-and-Add scalar
multiplication with the scalar k in its binary form. Usually,
the scalar considered in ECC’s multiplication is the private
key (e.g. [pr, r in Figure 1]). Then, the key size defines
the number (n) of operation. It is also considered ECC
standards to define key size (192, 224, 256, 384, 521
bits) [18].

Hankerson et al. [19] adopted projective coordinate
system, because the cost for modular inversion in their
underlying system was 10 times greater than the cost

60

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

TABELA III
Approximated number of multiplications and squares, for

different coordinate systems.

System Ope. 192 224 256 384 521

P Multiply 2483 2899 3315 4979 6760
Square 1146 1338 1530 2298 3120

J c Multiply 2006 2342 2678 4022 5460
Square 1433 1673 1913 2873 3900

J Multiply 1910 2230 2550 3830 5200
Square 1528 1784 2040 3064 4160

Jm Multiply 2006 2342 2678 4022 5460
Square 1337 1561 1785 2681 3640

A
Inversion 287 335 383 575 780
Multiply 573 669 765 1149 1560
Square 478 558 638 957.5 1300

of the modular multiplication. Furthermore, it’s possible
to note that for all the coordinate systems, the most
predominant operation is the modular multiplication, so
that its optimization can significantly improve the time
spent on the overall cryptosystem.

3) Arithmetic Operations: An Elliptic Curve (EC) for
cryptography is defined on a finite field, a Galois Field
(GF). The selected GF defines a set of operations to
compute the point addition/doubling. In the case of a
finite prime field, GF (p), these operations are modular
arithmetic operations. The performance of the modular
arithmetic is essential to the efficiency of the ECC algo-
rithm on GF (p).

A finite field of order p, GF (p), with p prime, is defined
as the set Zp of integers {0, 1, ..., p − 1} and the modulo
p arithmetic operations. Modular operations are always
reduced to modulo p, where p is large.

The obvious way to obtain C mod M consists in di-
viding C by M and computing the remainder. That is,
let C,M ∈ Z such that M < C, a modular reduction
algorithm computes R = C mod M , i.e. the remainder R
of the division of C by M [8], such that:

R = C −
⌊
C

M

⌋
M (3)

The division operation needed to compute the remain-
der R is a costly operation, and should be avoided when-
ever it is possible. As an example, Table III shows that
Jacobian coordinate system performs approximately 9360
operations of multiplication and square for operands with
512 bits (multi-precision integer), which would represent
at least 9360 divisions for reduction, one for each modular
operation.

As shown above, it is necessary to compute many
modulo p arithmetic multiplication/square operations (Ta-
ble II), over multi-precision integer (i < p, p large), to com-
pute each point addition/doubling operation (Equation 1
and 2). The number of multiplication/square operations
over big integer is defined by coordinate system, while the
number of point addition/doubling operations is defined
by the key size (k < p) and its representation (Hamming
weight) (Algorithm 1), resulting into the total modular
operations in the Table III. Therefore, an efficient imple-
mentation of modular multiplication is very relevant for

increasing the ECC performance.
Several algorithms were proposed to compute the mod-

ular arithmetic under GF (p). The next section presents
some of them.

III. Modular Multiplication

WHEN it is necessary to multiply two numbers,
e.g. 128 bits each, as usual, the multiplication is

done first (there are many techniques for this) to obtain a
256-bit (”double precision”) number. Then, as we consider
GF (p), it is necessary to apply the modular reduction for a
given prime p. In many situations, the ”schoolbook” tech-
nique everyone learns in school is suitable, but sometimes
what is required is a more efficient execution, such as the
one where many reductions are done by the same modulo.

The most well known techniques are the Montgomery
and Barret reduction algorithms. The Montgomery re-
duction algorithm [20], [21] is extensively used in public
key cryptography to compute modular operation. The
algorithm modifies the integer representation to Mont-
gomery’s residue form with radix r. The chosen radix is
usually a power of 2, such that the reduction modulo r is
performed more efficiently using native shift instructions
of the underlying hardware [8], [22]. This algorithm is more
suitable when several modular operations with the same
modulo are performed, because of the cost of preprocessing
operations [22].

The Barret reduction algorithm [23], [24] also performs
the division modulo a number power of 2, instead of
modulo p. This algorithm pre-computes an approximation
of the inverse of M to approximate the quotient Q, as
shown in the Equation 4.

Q =

⌊⌊
C

rn

⌋
v/rn

⌋
(4)

The pre-computed approximation is: v = br2n/Mc
which makes possible the efficient computation of the
approximation Q of bC/Mc. The fully reduced remainder
can be achieved by computing C−QM , followed by some
simple operations [8].

As it can be seen in Table II, the projective coordinate
systems avoid the inversion, on the other hand, they per-
form more modular multiplications and squares than the
Affine coordinate system. Nevertheless, Table III shows
the theoretical approximated number of operations in
some available coordinate systems, demonstrating how the
optimization of modular multiplication on these systems
is essential. Montgomery and Barret proposed an efficient
algorithm to compute the reduction modulo p for big
integer (result of multiplication). Therefore, the optimiza-
tion of such an operation is viable. Other operations are
faster than the multiplication, thus their parallelism isn’t
a priority [25].

Most proposals in the literature have explored the paral-
lelism inherent to the integer multiplication (in its binary
form) on modular multiplication, because it enables inde-
pendent partial computations to be performed in parallel,

61

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

TABELA IV
Brief description of some parallel modular multiplication algorithms evaluated on MIMD architectures

Algorithm Description
Parallel Montgomery Parallelizes the sub-operations of sequential Montgomery.
Bipartite Partitions one operand. Run in parallel on two cores.
Tripartite Partitions two operands. Increases the overhead when more parallel processes are launched.
k-ary Multipartite v1 Partitions two operands. Without increase in the synchronization costs. Constant overhead.
k-ary Multipartite v2 Partitions two operands. Variation of k-ary Multipartite v1.

which at the end are added together. The Montgomery
reduction algorithm is commonly adopted in these imple-
mentations because it enables the modular reduction to be
efficiently performed on modular arithmetic.

Chen et al. [26] proposed a parallel extension of a variant
(SOS) of Montgomery modular multiplication algorithm
in software, for a prototype of processor architecture with
distributed local memory and message-passing communi-
cation. They proposed a task balancing model in which the
multiplication is performed by parallel processes and the
operations are computed in task blocks, each associated
to a processor in a circular manner. Experiments were
performed with 2, 4 and 8 processing cores.

The parallelism inherent to the integer multiplication
was explored by Baktir et al. [7]. In their work, it was
created a parallel function to perform the multiplication,
which was used to compute the product operations in-
side the Montgomery modular multiplication. The par-
tial product accumulation was achieved in a binary tree
fashion. Experiments were performed in general purpose
processors with 1, 2, 4, 6 cores, for 1024, 2048, 4096,
8192, 16384, 32768 bit operands and compared with the
single-core implementation of the proposed algorithm and
a variant of (CIOS) Montgomery multiplication. In their
work, the authors obtained speedups of up to 81% for
bit-lengths of 4096 in two cores. There were performance
improvements for the implementations on 4 and 6 cores
architectures.

The Bipartite modular multiplication algorithm was
proposed by Kaihara et al. [9] for computing the modular
multiplication from left-to-right and right-to-left, using
Montgomery and Barret modular multiplications. The
modular multiplication R = AB mod M is computed
using a new modulo M residue class representation. The
Bipartite algorithm divides the multiplier B in two blocks,
which are processed separated in parallel. The Mont-
gomery modular multiplication algorithm scans the multi-
plier from the least significant bits while the Barret scans
from the most significant [9].

The Tripartite modular multiplication algorithm [10]
maximizes the parallelism level achieved relatively to Bi-
partite. This algorithm uses the Karatsuba’s method for
integer multiplication, and enables the parallel computa-
tion of three terms. This algorithm has a high synchronism
overhead and a sub-quadratic complexity.

Recently, Giorgi et al. [8] proposed two versions of a
k-ary Multipartite modular multiplication as a generaliza-
tion of Bipartite and Tripartite methods, where k is the
number of partitions in which the operands are divided.

In their work, two versions were proposed. The k-ary Mul-
tipartite algorithms doesn’t have additional synchronism
overhead as the Tripartite modular multiplication, and
another optimizations were applied. In k-ary Multipartite
v1, the authors optimized the computation of the Q-value
(see [8] for more information), so that all the partial
products with same weight were added before a single call
to PMR (Partial Montgomery Reduction) or PBR (Partial
Barret Reduction) to compute the remainder. When no re-
duction is needed, the algorithm includes the product into
the remainder list. And finally, after sum all the partial
remainders, some final subtractions are performed to fully
reduce the result. The k-ary Multipartite v2 algorithm
doesn’t call PMR and PBR for each weight, instead, it
computes only the Q-value and includes in a Q-value list.
These Q-values are added and finally, the remainder is
achieved by subtracting the product of the final Q-value
by P from the sum of the partial products. The algorithm
was compared with Montgomery, Barret, Bipartite and
Tripartite multiplication, running on 1, 3, 4, 6, 8 parallel
threads and operands with sizes between 1024 and 16384
bits. The test was carried out on two 64 bits processors
with four cores each. The experiments showed the bipartite
algorithm as the fastest algorithm for greater keys, because
of its low parallel complexity. Bipartite can be suitable for
more than 2 cores, since the key size is increased. Their
k-ary multipartite algorithms seemed a good alternative
for implementations with operands smaller than 213 bits.

Table IV shows a brief description of the above men-
tioned algorithms, which were evaluated on MIMD multi-
core architectures. Giorgi et al. [8] implemented a library
accomplishing all these algorithms, and gently provided it.
Benchmarks were run on theese two architectures, and the
results are evaluated in this paper.

The related parallel modular multiplication algorithms
weren’t proposed for a specific coordinate system because
they optimize the modular multiplication which is one
of the underlying operations to the coordinate system
doubling/addition point operations.

As the library used by Giorgi is built over GMP (GNU
Multi-precision library), which makes use of optimized
instructions for several architectures, this work evaluates
if it is viable to parallelize the algorithm for keys actually
used (or will be used in a near future) for elliptic curve
cryptography purposes when executed by a mobile device
in a 32 bits quad-core processor.

62

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

TABELA V
Timings in µs for some parallel modular algorithms on 1, 2, 3, 4 threads, and operands ranging from 128 to 4096 bits on an
Intel Core I7 architecture. The best timings per key are bolded, and the best timings per Thread are in gray background.

Algorithm 128 256 384 512 768 1024 1536 2048 3072 4096
1 Thread Best seq. 0.86 0.47 0.61 0.83 1.54 2.19 4.52 6.56 13.01 22.67

2 Threads
Montgomery 5.73 2.52 2.73 2.86 3.12 3.67 5.65 7.02 11.60 15.95
Bipartite 2.21 0.85 0.97 1.08 1.36 1.83 3.48 4.63 8.44 11.83

3 Threads
Montgomery 2.53 2.61 2.74 2.65 2.86 3.10 4.13 5.24 8.18 10.50
2-ary Multi. v1 1.78 1.93 1.88 2.01 2.04 2.51 3.44 4.27 6.88 9.02
2-ary Multi. v2 1.01 1.17 1.10 1.13 1.39 1.69 2.99 4.03 7.38 10.16

4 Threads

Montgomery 2.74 2.81 2.61 2.72 3.02 3.73 4.29 5.37 7.54 9.85
Bipartite 2.88 2.88 2.99 3.05 3.21 3.57 4.01 4.64 7.40 9.21
4-ary Multi. v1 4.26 1.95 1.98 2.11 2.39 2.56 3.38 4.16 6.89 9.13
4-ary Multi. v2 1.16 1.23 1.32 1.38 1.63 1.94 2.95 3.78 7.76 10.93

TABELA VI
Timings in µs for some parallel modular algorithms on 1, 2, 3, 4 threads, and operands ranging from 128 to 4096 bits, on a

Freescale IMX6Quad architecture. The best timings per key are bolded, and the best timings per Thread are in gray
background.

Algorithm 128 256 384 512 768 1024 1536 2048 3072 4096
1 Thread Best seq. 1.22 1.84 2.78 4.02 5.06 6.01 11.52 19.42 39.18 64.93

2 Threads
Montgomery 6.28 6.81 7.60 4.30 5.62 7.33 12.15 19.87 34.24 52.99
Bipartite 2.95 3.52 3.86 2.54 3.51 4.90 8.89 14.86 26.72 42.71

3 Threads
Montgomery 5.89 3.13 3.19 3.44 4.78 5.98 8.62 12.71 20.18 31.45
2-ary Multi. v1 4.74 5.09 2.69 3.02 3.69 5.24 7.42 11.15 18.47 29.10
2-ary Multi. v2 3.10 3.62 2.08 2.48 3.31 4.80 7.75 12.55 22.04 35.45

4 Threads

Montgomery 6.09 3.22 3.39 3.77 4.16 5.84 8.28 11.93 19.13 29.62
Bipartite 6.87 3.55 3.87 4.22 4.80 5.96 7.68 10.37 16.81 26.18
4-ary Multi. v1 4.62 2.81 2.86 3.01 4.07 4.98 7.33 10.74 17.72 27.90
4-ary Multi. v2 3.52 2.01 2.22 2.55 3.39 4.37 7.24 12.21 20.95 34.52

IV. Results

ALL of the parallel modular multiplication algorithms
evaluated in this paper are part of the C++ library

developed and provided by the authors of [8]. This library
accomplishes the Parallel Montgomery, Bipartite, Tripar-
tite, Multipartite v1 and v2 algorithms for shared memory
MIMD architectures. The basic multi-precision arithmetic
(e.g. addition, multiplication, subtraction, division) is per-
formed using GMP (GNU Multi-precision Library), which
is very suitable for cryptographic applications. It owns
hardware optimizations for some architectures and chooses
the best algorithm among Basecase, Tom-Cook and FFT,
according to the operands’ size. Giorgi et al. [8] used the
OpenMP API to launch parallel tasks, and evaluated the
algorithms of 1024 to 16384 bit-length operands on an
architecture embedding two Intel Xeon X5650 Westmere
processors, with six cores each, running at 2.66 GHz. The
timings were collected for 1, 3, 4, 6 and 8 threads.

In this paper, experiments were performed on a Sabre
Lite development board, which has a Freescale IMX6Quad
processor, with 4 cores, running at 1.00 GHz. Further,
experiments were also performed on PC accomplishing an
Intel Core I7 processor, with 4 physical and 4 virtual cores,
running at 3.40 GHz. Some parallel modular multiplication
algorithms were evaluated for operands from 128 to 4096
bit-length on 1, 2, 3 and 4 threads. The creation of n
threads in OpenMP doesn’t imply the use of n distinct
cores by the runtime system, which manages the parallel
scheduling.

According to Pacheco [27], the minimum elapsed time
is usually reported when timing a parallel program, once

it is unlikely that some outside the event could make it
run faster than its best possible runtime. In this work, the
minimum time taken to run each algorithm for operands
ranging from 128 to 4096 bits for over 1000 runs were
reported, and will be analysed later.

Tables V and VI show the benchmark results for Intel
Core I7 and Freescale IMX6Quad architectures, respec-
tively. It can be seen the substantial difference between the
parallel and sequential timings, when the size of operands
increases. The best timings achieved for a certain number
of threads and with different operands’ size are in gray
background, and the best timings achieved for a specific
operand bit-length are bolded. The “Best seq.” line is
the best time between the serial Montgomery and GMP
default modular multiplication.

On Intel Core I7 architecture, the “Best seq.” algorithm
achieved the best timings for operands ranging from 128 to
512 bit-length. Parallel algorithms were faster for operands
larger than 512 bit-length. As the bit-length increases the
best timing is achieved with more threads. However, for
3072 and 4096 bit-length the benchmark with 3 threads
performed faster than with 4 threads.

It is shown that for the Freescale IMX6Quad architec-
ture, the “Best seq.” algorithm achieved the best timings
for small operands with 128 and 256 bit-length. Parallel
algorithms achieved the best timings for operands larger
than or equal to 384 bit-length.

On 32-bit Freescale, parallel algorithms achieved better
timings than the sequential with operands greater than
384 bit-length, while on 64-bit Intel Core I7, this thresh-
old was 768-bits. In both architectures, some algorithms

63

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

achieved a very poor timing for 128-bit operands.
The 2-ary Multi. v2 algorithm on the Freescale architec-

ture achieved the best timings for 384 to 768-bit operands
running with 3 threads. This range of operands’ size is
suitable for ECC nowadays. When larger operands is used,
as required by RSA, 4 threads performed better.

Bipartite modular multiplication has a high synchro-
nization overhead but at the same time its parallel com-
plexity is the cheapest on 4 threads [8]. Despite its high
overhead, the arithmetic complexity dominates the pro-
cessing time for very large operands (see Table VI). The
same behavior was reported in [8] when the number of
threads was equal to the number of physical cores in a
processor.

Evaluating operands with 512-bit length on 32-bit
Freescale architecture, we concluded that despite the fact
that the best timings were achieved on 3 threads, the
best timings for 2 or 4 threads were very close. The best
algorithm on 3 threads was the 2-ary Multi. v2, and on 4
threads, the best algorithms were the 4-ary Multi. v2 and
Bipartite.

Parallel Montgomery modular multiplication did not
achieve the best timing for any operand’s size and number
of threads. This algorithm has higher complexity associ-
ated to many synchronizations (parallel overhead) [8].

The parallel program can be at most p times faster than
the serial program, where p is the number of cores [27]. The
speedup (Equation 5) is used to measure the best it can
reach:

S = Tserial/Tparallel (5)

As explained by Pacheco [27], it’s unlikely to get linear
speedup because of the overhead related to the synchro-
nism costs. Thread launching and memory operations also
imply in additional overhead, which affect the speedup of
a parallel program [8].

Another important concept is the efficiency, which is de-
scribed by Pacheco [27]. This method allows us to identify
how efficiently the cores can be used. If the efficiency is
1, the parallel program has linear speedup. Efficiency is
given by E = S/p.

128 256 384 512 768 1024 1536 2048 3072 4096
0

0,5

1

1,5

2

2,5

3

IMX6Quad

Core I7

Operands' size

S
p

e
e

d
u

p

Fig. 4. Best speedups on IMX6Quad and Core I7

Figure 4 shows the best speedups achieved for operands
ranging from 128 to 4096 bit-length, on Freescale

IMX6Quad and Intel Core I7 architecture. The speedup
of IMX6Quad increased substantially from 128 to 512
bits, fell slightly until 1024 operand’s size, and increased
gradually for longer operand’s size. The speedup of Intel
Core I7 started with a sharp decrease for 256-bit operands,
increasing gradually until the 4096-bit operands. The
parallel algorithms have taken the most advantage on
IMX6Quad, once its speedup line exceeds 1 before the
Core I7 speedup line. The Core I7 architecture evaluated
works on higher frequency and has more RAM than the
IMX6Quad architecture. As in this paper the goal is
evaluate the improvement of parallel algorithms on mobile
devices, it shows a positive trend on constrained devices,
which besides having some bottlenecks, achieved in our
experiments better improvement than Core I7 for parallel
algorithms.

128 256 384 512 768 1024 1536 2048 3072 4096
0

0,5

1

1,5

2

2,5

3

2

3

4

Threads

Operands' size

Fig. 5. Speedups vs. operands’ size for 2, 3 and 4 threads on Core
I7

128 256 384 512 768 1024 1536 2048 3072 4096
0

0,5

1

1,5

2

2,5

3

2

3

4

Threads

Operands' size

Fig. 6. Speedups vs. operands’ size for 2, 3 and 4 threads on
IMX6Quad

.
Figures 5 and 6 show the speedups achieved by the par-

allel algorithms for some operand sizes. The best timings
by number of threads are considered to compute these
speedups (S = Tbest seq./Tbest parallel).

As shown in Figure 5 (Core I7), modular multiplica-

64

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

tion between 128 to 512-bit operands are faster when
performed by a serial algorithm, once the best speedups
are less than 1 for these sizes. For operands greater than
758, it’s possible to see that the best speedups achieved
on Core I7 architecture were reached by 3 and 4 threads
implementations. But the efficiency of 3 threads fastest
algorithm is better than the 4 threads.

Figure 6 (IMX6Quad) shows that 4 threads speedup was
slightly lower than the 3 threads speedup for 384, 512, 768-
bit operands. Nevertheless, the speedup for 4 threads was
growing for operands from 1024 to 4096 bits, remaining
higher than for 3 threads. As the speedup achieved on
IMX6Quad architecture for 128 and 256-bit operands were
less than 1, they are best computed by serial algorithms
on this architecture.

V. Conclusions

NOWADAYS, most people rely on their mobile de-
vices for their daily activities (calendar, e-mail,

news, documents, tasks, entertainment and so on). For
them, a high speed network connectivity together with a
high performance device and a certain level of security
is mandatory. In this context, ECC is a good choice for
providing security for mobile devices because it requires
less computation resources compared to RSA.

This paper emphasizes the importance of modular mul-
tiplication for an ECC algorithm. Therefore, a way to
improve the ECC’s performance is to implement some
parallel version of this relevant operation.

As the projective coordinate systems are faster than
the affine coordinate system, due to the replacement of
modular inversion by additional modular multiplication
and square, this work presented the estimated cost when
using these systems, as well, the theoretical cost according
to the size of the operands. It was shown that for all sizes,
the number of modular multiplications is almost 2 times
the number of squares.

Several algorithms for parallel modular multiplication
were proposed in software, and Giorgi et al. [8] has created
a C++ library including some of them. In this work, we
evaluate the same algorithms as [8], using smaller keys,
as used by ECC systems. Experiments were performed on
a Sabre Lite development board, with a 32-bit Freescale
IMX6Quad processor to evaluate the performance of these
algorithms in a current mobile platform. Also, the same
experiments were reproduced on a PC with a 64-bit Intel
Core I7 processor to compare the results.

We show that, on the 32-bit mobile development board,
operands with at least 384 bits achieve faster execution
when performed by parallel algorithms, while on Core I7
the parallel timing is advantageous only for operands with
at least 768 bits (twice the length in Freescale).

Analysing the speedups, it was possible to identify the
behavior of the algorithms, according to the platform and
the number of threads used.

On Core I7 architecture, the 3 threads best algorithms
achieved a high speedup and better efficiency than 4
threads algorithms. It is possible to conclude that on this

architecture, the best 3 threads algorithms are preferable
when high speed and efficient usage of cores are needed,
for the operands greater than 768 bits evaluated.

Parallel algorithms achieved speedups on IMX6Quad
higher than on Core I7 architecture. On this platform, if
time is critical, the 4 threads best algorithms should be
used. Otherwise, if the efficient core usage is critical, then
the 3 threads best algorithms are the best choice.

The experiments have shown the dependence of the par-
allel algorithm related to processor architecture, specially
when the problem size (bit-length) can change. The GMP
library used already includes a hardware optimization such
that the best algorithm is chosen for each processor in a
published list. Nevertheless, algorithms developed based
on this library request new performance evaluation. This
is because the parallel algorithms’ performance is impacted
by both algorithm complexity and parallelism’s overhead.

The results show that even using smaller key size,
the performance of parallel modular multiplication out-
performs the sequential implementation. As the modular
multiplication operation is executed a huge amount of
times and it is the most costly operation in ECC, our
results guarantee the improvement of the ECC system on
a mobile platform.

This result confirms that it is worth using parallel im-
plementation of modular multiplication for ECC in mobile
devices.

VI. Acknowledgments

THIS work was partially supported by the Brazilian
National Council for Scientific and Technological

Development (CNPq) Universal grant 482342/2011-0 and
the Coordination for the Qualification of Higher Education
Staff (CAPES). We would like to thank Pascal Giorgi,
Laurent Imbert and Thomas Izard for providing us their
library and for their relevant contribution on this area.
We thank Abedin R. Talouki for his contributions to this
work.

65

REFERÊNCIAS

Referências

[1] R. L. Rivest, A. Shamir, and L. Adleman,“A method
for obtaining digital signatures and public-key cryp-
tosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–
126, 1978, issn: 0001-0782. doi: 10 .1145/359340 .
359342. [Online]. Available: http://doi.acm.org/10.
1145/359340.359342.

[2] N. Koblitz, “Elliptic curve cryptosystems,” English,
Mathematics of Computation, vol. 48, no. 177, pages,
1987, issn: 00255718. [Online]. Available: http : / /
www.jstor.org/stable/2007884.

[3] V. Miller, “Use of elliptic curves in cryptography,”
English, in Advances in Cryptology - CRYPTO ’85
Proceedings, ser. Lecture Notes in Computer Science,
H. Williams, Ed., vol. 218, Springer Berlin Hei-
delberg, 1986, pp. 417–426, isbn: 978-3-540-16463-
0. doi: 10 . 1007 / 3 - 540 - 39799 - X \ 31. [Online].
Available: http://dx.doi.org/10.1007/3-540-39799-
X%5C 31.

[4] I. Kovalenko and A. Kochubinskii, “Asymmetric
cryptographic algorithms,” English, Cybernetics and
Systems Analysis, vol. 39, no. 4, pp. 549–554, 2003,
issn: 1060-0396. doi: 10.1023/B:CASA.0000003504.
91987.d9. [Online]. Available: http://dx.doi.org/10.
1023/B:CASA.0000003504.91987.d9.

[5] K. Gupta and S. Silakari, “Ecc over rsa for asymmet-
ric encryption: a review,” International Journal of
Computer Science Issues, vol. 8, no. 3, pp. 370–375,
2012.

[6] D. Hankerson, A. J. Menezes, and S. Vanstone,
Guide to Elliptic Curve Cryptography. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2003, isbn:
038795273X.

[7] S. Baktir and E. Savas,“Highly-parallel montgomery
multiplication for multi-core general-purpose micro-
processors,” in Computer and Information Sciences
III, E. Gelenbe and R. Lent, Eds., Springer London,
2013, pp. 467–476, isbn: 978-1-4471-4593-6. doi: 10.
1007/978-1- 4471-4594-3\ 48. [Online]. Available:
http : / / dx . doi . org / 10 . 1007 / 978 - 1 - 4471 - 4594 -
3%5C 48.

[8] P. Giorgi, L. Imbert, and T. Izard, “Parallel modular
multiplication on multi-core processors,” in IEEE
Symposium on Computer Arithmetic, A. Nannarelli,
P.-M. Seidel, and P. T. P. Tang, Eds., IEEE Com-
puter Society, 2013, pp. 135–142, isbn: 978-1-4673-
5644-2.

[9] M. Kaihara and N. Takagi, “Bipartite modular mul-
tiplication method,” IEEE Trans. Comput., vol. 57,
no. 2, pp. 157–164, Feb. 2008, issn: 0018-9340. doi:
10.1109/TC.2007.70793. [Online]. Available: http:
//dx.doi.org/10.1109/TC.2007.70793.

[10] K. Sakiyama, M. Knezevic, J. Fan, B. Preneel, and I.
Verbauwhede, “Tripartite modular multiplication.,”
Integration, vol. 44, no. 4, pp. 259–269, 2011. [On-
line]. Available: http : / / dblp . uni - trier . de / db /

journals / integration / integration44 . html % 5C #
SakiyamaKFPV11.

[11] J. Portilla, A. Otero, E. de la Torre, T. Riesgo, O.
Stecklina, S. Peter, and P. Langendörfer, “Adaptable
security in wireless sensor networks by using recon-
figurable ecc hardware coprocessors,” International
Journal of Distributed Sensor Networks, vol. 2010,
2010.

[12] T. El Gamal, “A public key cryptosystem and a
signature scheme based on discrete logarithms,” in
Proceedings of CRYPTO 84 on Advances in cryp-
tology, Santa Barbara, California, USA: Springer-
Verlag New York, Inc., 1985, pp. 10–18, isbn: 0-387-
15658-5. [Online]. Available: http : / / dl . acm . org /
citation.cfm?id=19478.19480.

[13] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Information
Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[14] N. Gura, A. Patel, A. Wander, H. Eberle, and S.
Shantz, “Comparing elliptic curve cryptography and
RSA on 8-bit CPU’s,” in Cryptographic Hardware
and Embedded Systems-CHES, 2004, pp. 925–943.

[15] E. Karthikeyan, “Survey of elliptic curve scalar mu-
tiplication algorithms,” Int. J. Advanced Networking
and Applications, vol. 04, no. 2, pp. 1581–1590, 2012,
issn: 0975-0290. [Online]. Available: http://www.
ijana.in/papers/V4I2-8.pdf.

[16] O. Ahmadi, D. son, and F. Rodŕıguez-Henŕıquez,
“Parallel formulations of scalar multiplication on
koblitz curves,” j-jucs, vol. 14, no. 3, pp. 481–504,
Feb. 1, 2007.

[17] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange,
K. Nguyen, and F. Vercauteren, Handbook of El-
liptic and Hyperelliptic Curve Cryptography, Sec-
ond Edition. Chapman & Hall/CRC, 2006, isbn:
1439840008, 9781439840009.

[18] S. for Efficient Cryptography. 2010, SEC 2: Rec-
ommended Elliptic Curve Domain Parameters.
(January 2010), Retrieved November 11, 2013
from http://www.secg.org/download/aid-784/sec2-
v2.pdf.

[19] D. Hankerson, J. Hernandez, and A. Menezes, “Soft-
ware implementation of elliptic curve cryptography
over binary fields,” English, in Cryptographic Hard-
ware and Embedded Systems – CHES 2000, ser.
Lecture Notes in Computer Science, Ç. Koç and
C. Paar, Eds., vol. 1965, Springer Berlin Heidelberg,
2000, pp. 1–24, isbn: 978-3-540-41455-1. doi: 10 .
1007/3-540-44499-8\ 1. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-44499-8%5C 1.

[20] P. L. Montgomery, “Modular multiplication without
trial division,” Mathematics of Computation, vol. 44,
no. 170, pp. 519–521, 1985.

[21] R. Afreen and S. C. Mehrotra, “A review on elliptic
curve cryptography for embedded systems,” CoRR,
vol. abs/1107.3631, 2011.

[22] Ç. K. Koç, “Montgomery reduction with even mod-
ulus,” English, IEE Proceedings - Computers and

66

ARRUDA, T.V, VENTURINI, Y.R., SAKATA, T.C. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 57-67

Digital Techniques, vol. 141, 314–316(2), 5 Sep. 1994,
issn: 1350-2387. [Online]. Available: http://digital-
library. theiet . org / content / journals / 10 . 1049 / ip -
cdt%5C 19941291.

[23] P. Barrett, “Implementing the rivest shamir and
adleman public key encryption algorithm on a stan-
dard digital signal processor,” in Advances in Cryp-
tology - CRYPTO’ 86, ser. Lecture Notes in Com-
puter Science, A. Odlyzko, Ed., vol. 263, Springer
Berlin Heidelberg, 1987, pp. 311–323, isbn: 978-3-
540-18047-0. doi: 10 . 1007 / 3 - 540 - 47721 - 7 \ 24.
[Online]. Available: http://dx.doi.org/10.1007/3-
540-47721-7%5C 24.

[24] M. Brown, D. Hankerson, J. Lopez, and A. Menezes,
“Software implementation of the nist elliptic curves
over prime fields,” in TOPICS IN CRYPTOLOGY
- CT-RSA 2001, volume 2020 of LNCS, Springer,
2001, pp. 250–265.

[25] R. Laue and S. Huss, “Parallel memory architecture
for elliptic curve cryptography over GF(p) aimed at
efficient fpga implementation,” English, Journal of
Signal Processing Systems, vol. 51, no. 1, pp. 39–55,
2008, issn: 1939-8018. doi: 10 . 1007 / s11265 - 007 -
0135-9. [Online]. Available: http://dx.doi.org/10.
1007/s11265-007-0135-9.

[26] Z. Chen and P. Schaumont, “A parallel implementa-
tion of montgomery multiplication on multicore sys-
tems: algorithm, analysis, and prototype,” Comput-
ers, IEEE Transactions on, vol. 60, no. 12, pp. 1692–
1703, 2011, issn: 0018-9340. doi: 10.1109/TC.2010.
256.

[27] P. Pacheco, An Introduction to Parallel Program-
ming, 1st. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2011, isbn: 9780123742605.

Tiago Vanderlei de Arruda possui graduação em Análise e Desen-
volvimento de Sistemas pela Faculdade de Tecnologia de Sorocaba
e cursa o Mestrado em Ciência da Computação da Universidade
Federal de São Carlos, campus de Sorocaba.

Yeda Regina Venturini possui Doutorado em Engenharia Elétrica
pela Escola Politécnica da Universidade de São Paulo e atualmente
é professora adjunto da Universidade Federal de São Carlos, campus
de Sorocaba.

Tiemi Christine Sakata possui Doutorado em Ciência da Com-
putação pela Universidade Estadual de Campinas e atualmente é
professora adjunto da Universidade Federal de São Carlos, campus
de Sorocaba.

67

