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Abstract — A Brain-Computer Interface (BCI), also known as 

Brain-Machine Interface, is a system that allows for the 
interaction between the user and its surroundings using control 
signals generated by his brain activity. The improvement of the 
research on BCI correlates mainly with the advances of 
Neurophisiology and Computer Science. Initial research was 
dedicated to the development of devices for the communication of 
individuals who lost voluntary muscle control but had no 
cognitive impairment. Nowadays, we find applications in the 
fields of mobility, communication and the treatment of diseases of 
user who may or may not have movement impairment. 
Considering the expansion scenario of the BCI applications, this 
paper presents a pedagogical description of the recent publication 
on this field of study. Hence, we descrive the basic concepts 
related to this research area, as well as some of its applications 
and limitations.  
 

Keywords— BCI, Neural Activity, Robotic Prosthetics, 
Robotics, Nanotechnology. 
 
 

I. INTRODUCTION 

He research are call Brain-Computer Interface (BCI) is 
multidisciplinary, integrating neuroscience, physiology, 
psychology, engineering, computer science and several 

other areas related to technical or health studies [29]. The main 
goal of a BCI is the development of a computer system able to 
interpret the information coded in the electrical activity of 
neuron groups associated with a motor process. These signals 
must be analyzed in real time and translated into commands to 
control an artificial device [6].  
 The concept of an interface applied in the detection of brain 
signals has evolved mainly in the last decade [27. Nowadays 
there are more than a hundred research groups active 
worldwide [40]. According to the definition created by Vidal 
in 1973, until the last decades [apud 40], the main applications 

of BCI has been related to the creation of new communication 
and control channels for severely impaired persons [48]. This 
way, a BCI has been shown as adequate in helping persons 
with motor limitations interact with the environment in 
activities such as light and television control, yes/no questions, 
text processing, wheelchair operation and robotic prosthetics 
[49]. Among the various applications, we can highlight 
autonomous vehicles [41], cell phones that perform calls using 
brain activity [43] and virtual reality games [46]. 
 Considering this expansion scenario, this paper intends to 
present a short and accurate pedagogic description about the 
working of BCIs, both to the scientific community and general 
population. In order to achieve this goal, we approach the 
basic concepts of this research area, as well as its applications, 
limitations and the research projects related to it. This text is 
organized into two main sections: section II present the basic 
neurological and computational concepts related to the 
working of a BCI, while section III describes the main 
applications, limitations and scientific projects related to this 
topic.  
 

II. BRAIN-COMPUTER INTERFACE: BASIC CONCEPTS  

A BCI promotes a new form of communication and new 
control channels between the user and his muscles without any 
interference of the peripheral nerves. In order for the 
interaction between user and BCI to succeed, he must develop 
a new ability: not his muscle control but the adequate control 
of the specific electrophysiological signal that corresponds to 
the user intent [48], [8], [18]. Using electrodes, it is possible to 
detect activations patterns in the brain that correspond to the 
user’s intention. These signals that indicate the user’s brain 
activity are translated into an output such as cursor or mouse 
movement or an interaction with any artificial external device 
[47]. 
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In the next sections we present some basic aspects of the 
working of a BCI.  
 

A. Neuroscience and the Brain-Computer Interface 

The progress in BCI research is related to the studies and 
discoveries on neurophysiology and motor systems made 
through the last 40 years [27], among other factors. 

Some researchers were able to train monkeys to operate and 
modulate individual neurons in the primary motor cortex [14]. 
These results inspired the first tests with humans using intra-
cranial BCI sensors [20]. Other researchers [16], on the other 
hand, developed the population vector method, which consists 
of representing the neurons individually as a vector, which 
performs a weighted contribution along the axis preferential 
direction. This method allowed researchers to forecast the 
direction of the arm movement in three dimensions based on a 
group of neurons from the motor cortex [16]. This 3D 
directional coding by the primary motor cortex was expanded 
by Schwartz and his team [28], in order to include speed, 
creating a precise forecast of the hand in 3D. 

Considering that the main purpose of a BCI is to detect and 
translate brain state into physical movement, it is essential to 
understand how the brain communicates with the other body 
parts before, during and after the movement. The neural code 
is often compared to a machine code that is the foundation of a 
computer operational system. Just like the transistors, the 
neurons work as circuit breakers or logic gates, absorbing and 
emitting electrochemical impulse called action potentials that 
remember the basic information units in digital computers 
[19]. Capturing the neuronal signal depends on the amount and 
the location of the electrodes. Besides, there are difficulties in 
understanding the electrical signals so that they can become 
movement commands [30]. 

BCI is a complex system due to the fact that the brain works 
in a complex way. Neurons form a network which must be 
understood as a whole and must, hence, be studied as a group, 
not individually. Making an analogy between the Internet and 
the neuronal information flow, we can see that no isolated 
computer controls the byte flow throughout the entire network 
and something similar occurs in the neuronal network, where 
we can pinpoint no neuron “in charge”.  Hence, the advances 
in scientific knowledge on the brain workings contribute to the 
advances of neuroscience, and consequently, to the advances 
of BCI and vice-versa [30]. 

 

B. The working of a Brain-Computer Interface 

A BCI detects activation patterns in the brain that 
correspond to the person’s desired action. Whenever the user 
induces a voluntary change in those patterns, a BCI is capable 
to detect the change and translate those new patterns into an 
action that corresponds to the user’s will.   Recognition of a 
specific set of patterns in a BCI involves the following steps: 
signal acquisition, pre-processing, data interpretation and 
classification [21], [30]. 

The signal acquisition phase is responsible for capturing the 
signals that derive from the brain electrical activity, either 
through invasive methods (intracranial insertion of electrodes 

into the brain cortex) or non-invasive (electrodes put outside 
the scalp). Besides acquisition, in this phase we also perform 
no related information reduction  (noise) and the processing of 
the acquitted signal [21], [30]. 

Electrocortiography is the invasive method more used in 
animal studies. It is based on the record of either small or big 
group of neurons for the acquisition of signals known as 
electrocortiograms (EcoGs) [25]. Recent studies with mokneys 
show that ECoG is a stable and robust recording method for 
BCI applications. Besides, this method has the ability to 
perform neurophysiologic studies in human beings, rendering 
it a neuroscience tool useful to study the brain population 
activity [27]. 

The acquisition of signals from electrical brain activity with 
non-invasive methods is normally performed through 
electrodes put on the person’s scalp. This method is known as 
Electroencephalography (EEG) and its analysis is complex, 
given that the amount of information captured by each 
electrode is quite high. The EEG method has played an 
important role in the study of brain processes due to the 
development of more accurate electronic devices and of more 
efficient signal processing techniques [5]; 

Non-invasive EEG signals are used in BCI applications 
because they offer a reasonable signal quality combined with 
low cost and ease of usage [29]. Besides, they show good time 
resolution in spite of having less precision when compared to 
invasive methods [29], [2].  

After the signal is obtained, the pre-processing phase 
prepares the data for its posterior processing [29]. For that, the 
discriminative characteristics of the recorded signal are 
identified. This step is called characteristics extraction and its 
goal is to reduce the dimension of the data vector without loss 
of the relevant information for a size that does not exceed the 
number of training samples [29], [45]. This is a crucial step in 
a BCI system, given that it has a direct influence in the 
performance of the classifier algorithm that will understand the 
user intent [1], [45]. Besides, the characteristic selection helps 
decrease the noise and the redundancy in the data, given that 
brain signals for a specific action are mixed with other signals 
that overlap both in time and space [29], [45]. 

The interpretation of the information resulting from the 
previous step intends to transform the digitalized signal into a 
code that represents the desired action. Hence, we use complex 
algorithms and recording systems [30]. Some examples of the 
algorithms used in this task are genetic algorithms [7], Kalman 
filters [23] and Bayesian methods [8], [21], [34], among 
others.  Besides, one of the trends is to use a multiple linear 
regression algorithm (Wiener filter) [23], which performs the 
translation of the pure brain activity into digital commands 
which can be understood by a robotic device. Using this 
algorithm it is possible to linearly add the electric activity 
generated by the cortical neurons recorded simultaneously and 
create precise forecasts of the future position of the person’s 
member [30]. 

Finally, the control interface of data output step translates 
the classified signals into meaningful commands to control a 
specific device which can be a virtual keyboard, a mouse click, 
an avatar movement in virtual reality environments or even the 
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control of robotic devices replacing a human member [25]. 
The schematic version of how a BCI works is presented in 
Figure 1.  

 
 

Figure 1: Schematic version of the general organization of a brain-computer 
interface. Adapted from [30].  

 
  

As described up to now in this paper, we can see that a BCI 
requires an underlying computer system to work properly. 
Hence, more accurate, faster and efficient BCIs are dependent 
on the increase of the processing capacity of computer and on 
the improvement of signal analysis techniques and also on the 
implementation of more robust computational algorithms [22], 
[34].  

In the next sections we describe some of the applications of 
a BCI.  

III.  BRAIN-COMPUTER INTERFACE:APPLICATIONS 
AND LIMITATIONS 

BCI was developed as a treatment for patients with different 
levels of body paralysis, such as paraplegia (loss of sensor and 
motor functions in the lower limbs) and tetraplegia (loss of 
those functions also in the arms and body center). Hence, 
research was focused on the development of communication 
devices for those who lost voluntary muscle control, but 
presented no cognitive damage [21], [26], [18]. The main BCI 
applications are related to mobility, communication and 
interaction of the users with the persons and objects that 
surround them. 

One of the applications related to mobility consists of using 
robotic prosthetics or an exoskeleton with brain control (also 
known as robotic cloth). This is under development in The 
Walk Again Project, which intends to develop and implement 
the first BCI able to restore full body mobility to patients with 
severe paralysis [30].  

The Walk Again project is a partnership between 
institutions from the USA, Switzerland, Germany and Brazil 
lead by the neuroscientist Miguel Nicolelis and his research 
team from IINN-ELS (Edmond and Lily Safra International 
Institute of Neurosciences at Natal) and from the 

Neuroengineering University Center at Duke (DUCN). At 
DUCN several pioneer systems were developed to perform 
different motor functions such as reaching for and grabbing 
objects, bipedal locomotion and others. Researchers at DUCN 
were also the first to incorporate artificial somatic sensibility 
in a BCI [21]. 

The exoskeleton under development in this Project uses 
commands extracted from the brain activity to control devices 
scattered through the joints of the robotic clothing. The neural 
signals interact with the robotic skeleton in imitation of the 
functions of the human spinal cord. The interaction between 
brain and robotic signals will allow for the patient to displace 
himself at will, adjusting the speed and the movement to the 
terrain on which he walks [30]. This tool can potentially allow 
those with muscle paralysis to perform most of their activities, 
improving their quality of life and giving them greater 
independence [13]. 

In spite of the success of those applications, some issues 
limit the development of neuroprosthetics such as: (i) 
compatibility with the user tissues [21]; (ii)  improvement of 
the algorithms used to decode the brain signal [8], [50], given 
that there is a lot of noise in the data, making it difficult for 
computational approach and requiring a combination of 
techniques to improve signal coding; (iii)  the ability of the 
prosthetics to control movement with multiple requirements, 
such as bipedal walking with erect posture and allowing for 
positional understanding, given that there are a lot of variables 
involved in those movements [21]. 

Until the present moment, a BCI for arm movement 
included a single actuator. This is due to the fact that the 
process for two actuators needs for different subsets than the 
single one. Besides, it is important that the positional sense is 
included, given that a neuroprosthetic must be seen as a natural 
extension of the used body. The complexity of the spatial 
position by the brain makes it difficult to create this positional 
sense. In spite of the theoretical knowledge about this issue be 
well known [21], its application is full with troubles. There are 
several uncertainties about the choice of mathematical 
transformation on the stimulation of angle patterns at the 
joints, given that the complexity of the cortical processing of 
the perceived information [21]. 

Besides movement, BCI also proposes a touch feeling 
experience. It was possible to establish a bidirectional 
communication between the brain of two monkeys and a 
computer in order to explore virtual objects at the computer 
screen. The animals commanded a digital hand in a screen 
with three images and when touched, two of those images sent 
back touch sensations back to the monkeys’ brains.  The 
results of this experience bring the possibility to add the ability 
to feel temperatures and sense the terrain on which we are 
stepping, making the interaction with the surrounding 
environment closer to the real one, even with the use of 
prosthetics [30]. 

In the field of accessibility, there is a BCI implementation to 
adapt wheelchairs to the command from signals extracted from 
the muscles, eye blinking and ocular globe movements or even 
from images extracted from a camera. This interface uses the 
record of electrical brain activity from the user, given that the 
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user has full cognitive capacity, even though he may not have 
the ability to translate these commands into movements [8], 
[18] e [37]. 

Besides all those applications on the mobility field, BCI has 
the potential to insert users into a virtual environment, 
fostering a direct communication with the monitor, mouse or 
keyboard without muscle activity. An example of the 
commercial use of BCI are the EPC – Emotiv® devices [12] 
anf Neurosky Mindwave [31]. These are tools that use non-
invasive EEG signals to capture brain waves and interact with 
hardware and software resources, computer or mobile devices 
(cell phones or tablets) [46]. 

Considering the perspectives of BCI in the area of personal 
communication, Guenther and Brumberg (2011) presented a 
device to create speech using a voice synthesizer. The authors 
used two approaches: an invasive one in a user with difficulties 
with oral communication and a non invasive one in users with 
no oral communication impairment. In the first approach, an 
intracranial electrode was implanted in the speech region with 
a user with locked in syndrome. In these conditions, the patient 
loses full body movement, with the exception of his eyes, but 
his mental faculties remain intact. The neural signals recorded 
by the implant in those users transmitted the signal to the 
synthesizer (without wires) allowing for the production of 
vowels. In the second approach, users with no oral impairment 
were also able to control the voice synthesizer using only 
imagined movements which were detected by 
electroencephalography [17]. 

Another communication application is the prototype of a 
BCI to compose written messages proposed by Arboleda et al 
(2009). This non invasive method allows for written messages 
to be composed using a matrix of visual stimulation with the 
letters of the alphabet and other associated symbols. Besides 
this application, it is also described a non invasive approach 
for binary communication (yes or no) using classic semantic 
conditioning [33]. The results presented in these papers are 
promising and their refinement can be achieved by a better 
understanding of the neural representation of speech [17]. 

Other projects under development intend to apply BCIs to 
cell phone devices, allowing the users to find a number in their 
contact list and make calls. This method is efficient for persons 
with motor disabilities [43]. If a BCI based cell phone 
becomes possible, several other applications in this industry 
can arise, including wireless technologies. Comparing with the 
basic or personalized computer platforms, the mobility and 
processing power of cell phones will make the an important 
tool for creating mobile BCIs that require data transmission in 
real time, as well as signal processing in real work 
environments [43]. 

The Autonomous Lab from Berlin Freie Universität has 
several BCI projects, including the BrainDriver one, in which 
the driver uses a BCI to drive his vehicle [41]. The main goal 
of this project is to develop a BCI  based on EEG using a 
handheld computer to control a cursor and other hand tool 
through the brain waves of paraplegic persons. In this case, the 
user wears a tiara with electrodes and the information is sent to 
a computer embedded in the car’s dashboard [44]. 
 

The feedback ability of a BCI allows for several different 
applications, as presented in Table I. It can be used for 
selective control over certain areas of the brain, using the 
neurofeedback in order to modify the person’s behavior.  The 
neural feedback from a BCI can improve cognitive 
performance [3], speech ability [32] and pain management 
[11], and has also been used to treat mental disturbances such 
as epilepsy [42], [38], attention deficit disorder [29], [39], 
schizophrenia [35],  depression [36] and others.  

It is important to point out that the future importance of BCI 
applications will depend on its ability, practicality and 
reliability. Besides, users’ acceptance will increase as these 
substantial advantages go beyond the conventional assistive 
Technologies [10].  
 

TABLE I 
NON EXHAUSTIVE LIST OF BCI APPLICATIONS 

 

IV.  CONCLUSION 

A BCI can interpret neurophysiologic information from a 
device with the goal of recovering or improving cognitive and 
motor functions of a specific person. This paper intended to 
present a short report on the relevant issues to BCIs, as well as 
the potential usage, with reference to several papers related to 
this research topic. 

Current research tries to refine the surgical implantation 
techniques and the analytical algorithms in order to use the 
most efficient signals coming straight from the human brain 
[15].  Besides, its usage requires that several areas of the 
central nervous system, usually involved in the production of 
motor action, adapt in order to improve the control of the 
cortical neuron by the user [47]. In spite of the advances of the 
last decades, there are still challenges to be overcome, from 
the reception and treatment of the brain signal to the 
incorporation of brain prosthetics.  
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