
Revista de Sistemas de Informação da FSMA
 n. 13 (2014) pp. 21-29

http://www.fsma.edu.br/si/sistemas.html

21

Abstract — Recommendation systems based on collaborative

filtering are open by nature, what makes them vulnerable to

profile injection attacks that insert biased ratings in the system

database in order to manipulate recommendations. In this

paper we evaluate the stability and robustness of collaborative

filtering algorithms used to recommend semantic web services

when subjected to random and segment profile injection

attacks. We evaluated four algorithms: (1) IMEAN, that makes

predictions using the average of the ratings received by the

target item; (2) UMEAN, that makes predictions using the

average of the rating made by the target user; (3) an algorithm

based on the k-nearest neighbor (k-NN) method and (4), an

algorithm based on the k-means clustering method. The

experiments showed that the UMEAN algorithm is not affected

by the attacks and that IMEAN is the most vulnerable of all

algorithms tested. Nevertheless, both UMEAN and IMEAN

have little practical application due to the low precision of their

predictions. Among the algorithms with intermediate tolerance

to attacks but with good prediction performance, the algorithm

based on k-NN proved to be more robust and stable than the

algorithm based on k-means.

Keywords — Profile injection attack; collaborative filtering

algorithms; semantic web services.

I. INTRODUCTION

n SOA (Service Oriented Architecture) architectures,

loosely coupled services allow for the creation of

flexible and dynamic business processes and agile

applications that can include different organizations and

computational platforms [1]. Among the central problems

for the creation of those processes, deriving from the

composition of new services from existing ones, is the

discovery of services that can fulfill the users’ requirements

Pedro Henrique Grandin (e-mail: pedro.hg@puccamp.edu.br) and Juan

Manuel Adán-Coello (juan@puc-campinas.edu.br) are with the Computer
Engineering Faculty at Pontifical Catholic University of Campinas (PUC-
Campinas).

and interests, whether they are persons or software agents.

 The discovery of a service is made by matching

algorithms that seek in descriptions repositories which of the

announced services fulfill the requisites of the potential

user. Service discovery architectures are usually based on

the WSDL [2] and UDDI [3] standards and have a series of

limitations that make it difficult to find relevant services for

the users.

Those limitations derive mainly from the informal

descriptions of services’ functionalities and capacities,

usually composed in natural language, generally without the

usage of a vocabulary that is common to the provider and

the consumer of the service. Semantic Web Services are a

recent approach that tries to overcome those limitation

combining the technology of Web Services with elements of

the so called Semantic Web [4,5].

Research in the field of Web Services has focused on

service matching algorithms, either semantic or not.

Nevertheless, recent work showed that the most challenging

issue when we want to provide the user with the desired

service is service selection from a list of candidates instead

of the matching process itself.

The main approaches for service selection include content

based filtering, collaborative filtering, reputation systems,

P2P systems and reference systems [6]. Among them,

collaborative filtering methods, which are the focus of this

paper, are one of the most relevant.

Collaborative filtering is based on the premise that users

with profiles or interests in common usually seek similar

items. The fundamental idea is to use the options of similar

users made when choosing related items to recommend

items to a user [7].

The recommendation problem can then be reduced to

estimate ratings for items that were not accessed by a user

and recommend those with the highest estimated ratings.

Even though recommendation systems can be seen as part

of a search engine, they can also be used autonomously in

Assessing the Stability and Robustness of
Semantic Web Services Recommendation

Algorithms Under Profile Injection Attacks

Pedro Henrique Grandin and Juan Manuel Adán-Coello

I

Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 21-29

 22

order to suggest items to users as they become available,

without the need of explicit and constant searches.

Collaborative filtering is widely used in Web based

systems to recommend different types of items, including

books, music and movies.

The development of new algorithms that increase the

precision and efficacy of recommendation systems or create

models that explain the reasons behind a recommendation is

an issue that has increasing academic and commercial

interest. An example of this interest was the Netfilx prize,

created by Netflix, an online movie distribution company,

that in 2006 announced a one million dollar award to those

who developed a movie recommendation algorithm that was

10% more accurate than the Cinematch algorithm that was

then used by the company. The prize was receive in 2009

by the BellKor's Pragmatic Chaos team, created during the

contest by the merge of different competing groups that

gathered their efforts to created the winning algorithm

ensemble [8].

Recommendation systems based on collaborative filtering

are by nature open, given that they are based on the ratings

made by a user community, making them vulnerable to

profile injection attacks. This type of attack consists in

inserting biased profiles in the system database allowing the

attackers to manipulate the recommendations. The goal of

these attacks may also be to promote items (push) or

obfuscate them (nuke), having as target a user or a group of

users [9].

In this context, analyzing the robustness and stability of

recommendation algorithms becomes a relevant issue. When

analyzing the robustness, we measure the performance of

the system before and after the attack to verify how the

attack affected the system as a whole. In the stability

analysis we intend to verify the deviation from the values

predicted by the system for the attacked items.

Previous works proposed algorithms for the

recommendation of Web Services with semantic markup

[10, 11]. The evaluations performed, without considering

the possibilities of attacks, showed that the algorithms have

good performance when evaluated for precision of the

recommendation, especially in situations where the user-

item matrix that stores the recommendations made by the

user community is sparse. Given that, the goal of the

research we report here is to analyze the stability and

robustness of those algorithms when subject to profile

injection attacks.

The next sections of this paper are organized as follows.

In section II we present the algorithms for collaborative

filtering of semantic web services whose stability we intend

to study. In section III we will characterize in greater detail

the profile injection attacks that are the subject of this work.

In section IV we present and discuss the methods used to

verify the robustness and stability of the algorithms under

consideration and the experiments performed. In section V

we present some related work and in section VI we wrap up

the paper making some final considerations.

II. COLLABORATIVE FILTERING OF SEMANTIC WEB

SERVICES

A. Semantic Web Services

The algorithms discussed in this paper intend to

recommend Web Services semantically annotated according

to the service annotation ontology OWL-S, which is based

on the ontology description language OWL, a standard from

W3C which is based on first-order logic [12]. The OWL-S

ontology is made of three main parts: the service profile,

used to advertise and discover services, the process model,

which provides an accurate description of the workings of

the services and a grounding, which provides details on

how to interoperate with a service through messages.

Most matching systems for services described with OWL-

S use only the service profile, which defines the semantic of

the service signature, that is, the required inputs and the

produced outputs. The profile also allows describing the

preconditions to be satisfied, so that the service can be

executed, and the results expected from its execution. This

information is usually known by the acronym IOPE (inputs,

outputs, preconditions, effects). With this information, we

can use logic reasoning methods to determine the similarity

degree between two services.

The algorithms used in this work to verify the degree of

similarity between two services use only service signatures,

that is, the descriptions of inputs and outputs. This certainly

allows for false positives in some matching attempts, but

this has not shown itself as a relevant problem. The input

and output parameters are associated with concepts from

domain ontologies, such as Person, Doctor, Vehicle, Motor-

Vehicle and not with basic types (int, char, real) or mere

character sequences. Hence, even though we cannot

guarantee that we are comparing services that perform very

different things on inputs that are semantically equal, this

possibility is greatly reduced. Naturally, we would prefer to

have matching algorithms that are not limited to the

comparison of inputs and outputs, but this is not a concern

for this research and should not change a lot the

experimental results.

OWL-S, just like OWL, is based on description logic. We

know that formal logic has limited expression abilities. For

instance, description logic does not allow representing

precisely structured objects arbitrarily interconnected. In

order to partially overcome this limited representation

ability of OWL-S, this work used the hybrid semantic Web

Services matching mechanism implemented in the OWLS-

MX system [13]. This mechanism allows comparing

between two semantic Web services and establishes four

Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 21-29

 23

degrees of semantic similarity using logic reasoning and a

value of syntactic similarity using information retrieval

methods.

B. Collaborative Filtering

Collaborative filtering algorithms can be used to predict

the value a certain user (the target user) will attribute to an

item (the target item) he has not yet evaluated. The

prediction is performed based on the rating history of the

user community for all items under consideration.

We can use some very simple algorithms such as

IMEAN, that evaluates the unknown rating values as equal

to the average of the ratings performed by all users for the

target item, or UMEAN, that estimates the rating of an item

as equal to the average of the ratings performed by the target

user. These algorithms are easily implemented and have

low execution cost, but are not very precise, serving, in

general, only as a comparison benchmark for the rating of

other more elaborate algorithms, like the two other

evaluated in this paper: the first one is based on the k-

nearest neighbors algorithm (k-NN) and the second on the

k-means clustering algorithm.

C. Rating Predictions using K-nn

The k-NN algorithm is an algorithm based on memory

and as such it predicts the rating an user will give to an item

directly from the ratings of the k users more similar to this

user.

In the algorithms described in this paper, the similarity

between two users u and v, su,v is calculated using the

Pearson correlation coefficient (PCC), extended to consider

also similar services, according to equation (1).

∑∑

∑

∈∈

∈∈

−−

−−

=

vu

vu

St
vtv

Ss
usu

vtvu
StSs

su

vu

ffff

ffff
s

2
,

2
,

,,

,

)()(

))((
, (1)

In equation (1), Su is the set of services evaluated by u

and Sv is the set of services accessed by v. uf and vf are

the average values of the ratings performed by the users u

and v, respectively; among the services evaluated by v, t is

the services that is most similar semantically or syntactically

to s (service accessed and evaluated by u), given a minimum

degree of similarity. When both services evaluate the same

service, then s and t are the same.

It is important to notice that the PCC does not weight

differently similar users that evaluated either a small or a

very large set of items in an equivalent way. In the same

way, equation (1) does not differentiate between users

whose similarity is due to the rating of the same items and

those who evaluated similar items. These are issues not dealt

with by this research but are interesting enough to merit

further attention in future work.

TABLE I

EXAMPLE OF AN ITEM-USER MATRIX

Item

User 1 2 3 4 5 6

Similarity with user 1

1 5 2 3 3 ? 1.00

2 2 4 4 1 - 1.00

3 3 1 3 1 2 0.76

4 4 2 3 1 1 0.72

5 3 3 2 1 3 1 0.21

6 4 3 3 3 2 0.94

Table I shows an example of a user-item matrix for

generic items (not necessarily services), without displaying

information that allow to verify the semantic or syntactic

similarity between two items. In this table, the ratings vary

from 1 to 5. An empty position indicates that the user who is

referred to by that line did not evaluate the service referred

by that column. The matrix stores the values of the ratings

performed by six users to six generic items (books, movies,

Web Services, etc). The column to the right of the matrix

shows the similarity between user 1 and all other users,

calculated using the Pearson correlation coefficient.

If we only consider the closest user to user 1 (k=1), the

algorithm based on the k-NN method would predict that

user 1 would attribute to the target item (item 6) a value

close to the one attributed by the user 6 (the most similar to

user 1). Knowing the similarity among users, we can

estimate the rating a user would make of a specific target

item if similar users have evaluated this service or similar

ones. For that, we define the neighborhood V or the user u

with respect to the service s as being made of the k users

most similar to u that accessed service s or services similar

to s. Once we have built the neighborhood, the prediction of

the rating that the user u would make of the service s, fu,s, is

given as the weighted average of all ratings of service s, or

similar services, given by the users in V, as seen in equation

(2).

∑

−∑
+=

∈

∈

Vv

Vv

v

vu

vtvu

usu
s

ffs
ff

,

,,

,

)(
 (2)

In equation (2), as in equation (1), t is the service

accessed by v that is most similar to the service s (accessed

by u), given a minimum similarity threshold. If V is empty,

fu,s is predicted as equal to uf (the average of all ratings

made by u).

Applying equation (2) to the data in Table I, and

considering k=1, the value predicted for the rating of item 6

Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 21-29

 24

by user 1 would be:

f1,6 = 13/4 + (0.94 * (2 - 15/5))/ 0.94 = 2.25

D. Rating Predictions Using K-means

Literature points out that memory-based collaborative

filtering algorithms such as k-NN tend to have high

precision but low scalability given that their predictions are

made directly from the available data. This takes a high

processing time for each prediction to identify the

neighborhood of the target user for each item (service)

under consideration. As an alternative, in model-based

algorithms the predictions are not made directly from the

users closer to the target user, but based on a model built

previously based on available data.

In this paper we also analyze a collaborative filtering

algorithm based on the k-means clustering method. This

algorithm clusters similar user profiles into groups and

makes the predictions based on their centroids. In this

context, the user profile is defined by the ratings a user

made of the available items (a line in the user-item matrix).

For instance, in the user-item matrix given by Table I, the

profile of user 1 is given by the n-uple (5,2,3,3, Ø, Ø), where

Ø indicates that the corresponding item was not evaluated.

The algorithm works as follows: initially k points (user

profiles as defined by the n-uples that contain the ratings

attributed by the users to the items) are chosen as centroids

of k groups, where k is a previously defined parameter.

Next, there is an assignment and an update step until the

algorithm converges. In the assignment step each point

(profile) is associated with the groups with the closest

centroid, while in the update step the group centroids are

updated to the average of the points associated to the group.

The algorithm converges when the centroids become stable,

that is, they do not change in the update step.

In the implementation under study, equation (1) is used to

calculate the distance between a user and a group centroid.

Defined the groups, equation (2) is then used to predict the

rating a user would make of an item, using a neighborhood

made of the centroids of the groups closer to the target user,

instead of the ratings (n-uples) of the closer users. Since the

number of group centroids in the considered neighborhood

is usually a lot smaller than the number of users that make

up a neighborhood in the algorithm based on k-NN, the

algorithm based on k-means has a much small

computational time, as proven in experiments non reported

in this paper.

III. PROFILE INJECTION ATTACKS

In a profile injection attack, the attacker inserts biased

profiles in the user-item matrix of the recommendation

system.

Table II shows the user-item matrix of Table I with the

insertion of a fake profile, user 7. Once this insertion was

made, the closer user to user 1 is the attacker, with a

similarity degree between them of 0.98.

TABLE II

EXAMPLE OF AN ITEM-USER MATRIX WITH AN ATTACK PROFILE (USER 7)

Itens

Usuários 1 2 3 4 5 6

Similaridade com o

usuário 1

1 5 2 3 3 ? 1.00

2 2 4 4 1 - 1.00

3 3 1 3 1 2 0.76

4 4 2 3 1 1 0.72

5 3 3 2 1 3 1 0.21

6 4 3 3 3 2 0.94

7 4 2 3 3 5 0.98

In these conditions, if we use an algorithm such as k-NN,

with k=1, the estimated rating value for item 6 by user 1

would be equal to 4.85. This can be verified by considering

that using equation (2) we have the following values:

• fu,s = f1,6

• uf = (5+2+3+3)/4 = 13/4 ; average of all ratings

performed by user u=1

• su,v = 0.98 ; degree of similarity between users
u=1 and v=7, according to the table;

• fv,t = 5 ; v=7 and t = 6, because user 7 accessed
service 6;

• vf = (4+2+3+3+5)/5= 17/5 ; the average rating

performed by user v=7.
Hence, f1,6 = 13/4 + (0.98 * (5 - 17/5))/ 0.98 = 4.85

Even though it is not a current practice to use such a

small neighborhood, the example above intends to

emphasize the possible negative impact a successful attack

can achieve.

A. Types of Profile Injection Attacks

Profile injection attacks can be characterized by for sets

of items [14]:

• A unit set, containing the target item it;

• A set of selected items with characteristics

determined by the attacker, IS;

• A set of items for filling, IF, usually chosen

randomly, and

• A set of non evaluated items, IØ.

Types of profile injection attacks are defined by the

methods used to identify the selected items, IS, the

proportion of filling items, IF, and the way to determine

associated ratings to each one of these set of items and to

Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 21-29

 25

the target item.

In this paper we present experiments seeking to reproduce

two of the most representative types of profile injection

attacks, the random attack and the segment attack.

In the random attack, IS is empty and the items in IF are

filled randomly according to a normal distribution around

the average rating of all items in the database and it is filled

with the maximum value that can be attributed in a rating.

The knowledge required to create a random attack is very

small, given that the general average of the ratings of a

recommendation system usually can be determined

empirically without great difficulty by an external observer

and, in many cases, is directly available in the system.

Nevertheless, the cost of executing this attack can be high,

because it is necessary to calculate specific random ratings

for each item in the attack profile.

In the segment attack, the items in IS define a category or

segment. These items receive maximum rating when trying

to promote an item (push) or minimal when trying to

obfuscate it (nuke). If those items are, for instance, travel

services, the items in IS would correspond to services in this

category. This attack is usually remarkably effective if its

target belongs to the segment under consideration. The

values in IF are filled with the minimal rating and it with the

maximum one. The literature highlights that this attack is

quite effective and requires little knowledge to be executed.

IV. STABILITY AND ROBUSTNESS OF THE

RECOMMENDATION ALGORITHMS

As stated in the introduction, the goal of this research is

to analyze the stability and the robustness of algorithms for

recommending semantically marked Web Services, when

subjected to profile injection attacks. In order to reach this

goal, we performed an experimental research that executed

the following steps:

i. Selection of a database of semantically marked Web

Services;

ii. Creation of a dataset for training and testing the

algorithms including user profiles characterized by

the ratings performed to a selection of the services

included in the previous step;

iii. Selection of users and items to be targets of the

attack;

iv. Application of the recommendation algorithms

without the presence of attack profiles and

measurement of the normalized mean absolute error

(NMAE) of the predictions made by the algorithms;

v. Injection of the attack profiles;

vi. New application of the recommendation algorithms

and measurement of NMAE and other metrics that

measure the success of the attacks;

vii. Analysis of the obtained results;

These steps and its results are presented and discussed

with more details in this section. Initially, subsection A will

present the metrics used to measure the success of the

attacks. Afterwards, subsection B will describe the

experiments performed and subsection C will present and

analyze the results obtained in the experiments.

A. Rating Metrics

The efficacy of the profile injection attacks on specific

items can be evaluated by an examination of the prediction

shift induced by the attack, the hit ratio of the attack and the

influence of the attack over the mean absolute error of the

predictions performed.

Given a user u and an item i, the prediction shift, ∆u,i, is

calculated using equation (3). In this equation, P’(ru,i) is the

predicted value for the rating that user u would make of the

item i after the attack and P(ru,i) represents the value

predicted before the attack.

∆ u,i = P’ (ru,i) - P(ru,i) (3)

A positive deviation indicates that the attack was

successful in improving the item rating. Nevertheless, even a

high increase in the prediction shift does not guarantee its

recommendation. It is possible that other items are also

affected by the attack or that the item had initially a very

low prediction, so that even a high deviation does not

include it in the top recommended items.

In order to evaluate if items attacked were effectively

recommended we can use the Hit Ratio metric (HR) that

measures the efficacy of the attack oven an item. The hit

ratio for item i is calculated by equation (4), where Hu,i will

be equal to 1 if an item i appears in the list of the N items

recommended to the user u (top-N recommendations). If it

does not appear, its value will be 0; UT is the set of target

users.

∑
∈

=

TUu T

iu
i

U
H

HR , (4)

The effect of the attack considering all the predicted

ratings can be evaluated by the Mean Absolute Error (MAE)

or by the Normalized Mean Absolute Error (NMAE),

metrics that are generally used to evaluate the precision of

predictions made by recommendation algorithms. The MAE

is obtained by the differences between the predicted and

actual values of the ratings, as shown in equation (5), where

ru,i is the real rating given by user u to item i, r’u,i is the

algorithm predicted rating for this item and N the number of

predictions made by the algorithm.

Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 21-29

 26

N

rr

MAE iu

iuiu∑ −

=
,

,, ´

 (5)

MAE can be normalized in order to make it independent

of the rating scale used, giving origin to the Normalized

Mean Absolute Error (NMAE), calculated by the equation

(6).

Nr

MAE
NMAE

iu

iu∑
=

,

,

 (6)

B. Experiments Description

The experiments performed intended to evaluate the

impact of profile injection attacks of the random and

segment type over the collaborative filtering algorithms

IMEAN, UMEAN, k-NN and k-means presented in section

II. The performance of those algorithms without attacks,

particularly when the user-item matrix is sparse, is analyzed

in [11].

One of the main difficulties to evaluate algorithms for the

recommendation of Semantic Web Services is the need for a

public base of services with semantic markings. The closest

we have to this is the OWLS-TC1 collection, which was

used in this work. It was created to evaluate the

performance of matchmaking algorithms for Semantic Web

Services described according to the OWL-S 1.1 service

annotation ontology. In the experiments descrived we used

version 2.2 of this base which includes 1004 Web Services

of various domains.

In order to perform the experiments we created 50 users,

20 with the profile “tourist” and 30 with the profile

“student”. The items evaluated included 108 services,

related to the subjects “cars”, “food”, “books”, “hotels”,

“cameras”, “publications”, “surf” and “movies”. Each user

evaluated 18 services that would be characteristic to his

profile. A tourist, for instance, would be more interested in

hotels than students and, therefore, there is a possibility of

finding more hotel ratings in the tourists group than in the

students’ one.

We used parameters similar to those used in [14] to create

the attacks. This way, we inserted in the user-item matrix an

amount of attack profiles equal to 15% of the number of

users, resulting in the injection of eight attackers whose goal

was to promote an item (push). We chose five users and four

services randomly as targets, corresponding approximately

to 5% of the users and 3% of the total of items. In the attack

profiles, the filling items (IF) corresponding to 6% of the

1 http://projects.semwebcentral.org/frs/?group_id=89

total of services. Filling items are chosen randomly after

specifying the amount of profiles to be created. In the

segment attack, we defined a segment (IS) characterized by

three items. The segment chosen for the attacks was “food”,

because it is presumed that both students and tourists would

be interested in this type of service, so that this choice

should affect both group of users.

C. RESULTS AND DISCUSSION

The experiments described in this section were repeated

10 times, so that the values presented for the NMAE, hit

ratio and prediction shift are the average of the values

obtained in those predictions.

Influence of the attacks on NMAE

Table III presents the NMAE for the algorithms under

study before and after the attacks of the segment and

random types.

TABLE III

NMAE OF THE EVALUATED ALGORITHMS

No attack

Random

attack

Segment

attack
UMEAN 0.33111 0.33111 0.33111

IMEAN 0.33064 0.48232 0.47835

k-NN 0.27781 0.28239 0.28415

k-médias 0.29305 0.30015 0.30193

As we can see in Table III, UMEAN is not affected by the

attacks. This makes sense, given that the addition of profiles

does not affect this algorithm, because an item rating is

simply the average of the ratings made by the user himself,

and no consideration is given to the ratings made by the

attackers.

For the IMEAN algorithm, we expected the attacks to

have a large impact on the NMAE and the hit ratio, given

that its predictions are based on the ratings of the whole user

community. Table III and Fig. 1 show that this expectation

was fulfilled. In Table III we can observe that for IMEAN

the random attack increased the NMAE in 45.9% (from

0.33064 to 0.48232) and the segment attack in 44.7% (from

0.33064 to 0.47835).

 In the case of the k-NN and k-means algorithms, the

attacks resulted in visible increases in the NMAE,

eventhough they are much less expressive that those verified

for IMEAN. The random attack increased the NMAE in

1.6% for k-NN (from 0.27781 to 0.28239) and 2.4% for k-

means (from 0.29305 to 0.30015); on the other hand, the

segment attack increased the NMAE by 2.3% for k-NN

(from 0.27781 to 0.28415) and 3.0% for k-means (from

0.29305 to 0.30193).

Hit Ratio and Prediction Error

Fig. 1 presents the hit ratio of the attacks for the IMEAN

algorithm. The x-axis indicates the number of items to

Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 21-29

 27

recommend for the user, the top-N (the N items with the

highest predicted ratings), while the y-axis represents the hit

ratio. The closest to 1 the hit ratio, the highest the percent of

attacked items that will be recommended to the users. A hit

ratio equals to one indicates that all target items were

recommended.

We can see in Fig. 1 that both the random and the

segment attack presented similar results for IMEAN. This

happens because this algorithm uses the ratings of all users

for the target item, making both attacks achieve similar

effects. For top-N up to 20 items and above 70, the effects

of the attacks were not perceptible, but for top-N between

20 and 70, the hit ratio was quite high, implying in high

success rates in the inclusion of the attacked items in the

users’ recommendation lists.

Both attacks generated a prediction shift equals to

2.70966 (not shown in the figures), which is quite high when

compared to the values observed for the k-NN and k-means

algorithms, presented next.

In order to measure the prediction shift for the k-NN and

k-means algorithms, we varied the minimum similarity value

among users (k-NN) and among users and group centroids

(k-means), used in the moment of choosing the k closer

neighbors and then applying equation (2). Besides, we

established as 2 the number of clusters used during the tests

with k-means (this value of k was chosen after a series of

preliminary adjustment experiments).

Fig. 2 presents the results obtained. It can be seen that the

prediction shifts for the k-NN and k-means algorithms are

perceptibly lower than those verified for UMEAN and

IMEAN. It can also be noticed that starting at a 20% of

similarity between users for the k-NN algorithm and 70%

for k-means, the prediction shift remains constant at zero,

which means that starting from those values, the similarity

required was enough to exclude attack profiles from the

item rating estimation.

In the analysis of the hit ratio of the attacks over k-NN

and k-means, we used similarity values that resulted in a

high prediction shift and that were close to the value where

the prediction shift falls to zero. The values adopted were

5% to the k-NN algorithm and 50% for the k-means

algorithm.

It can be seen in Fig. 3, which shows the hit ratio for k-

NN, that the random and segment attack had some success

on the top 60 and 70, but the segment attack had an elevated

hit ratio for top 20 and 50.

Fig. 4 shows that for k-means we only observe a

remarkable hit ratio for top 50 and 60 and once again there

is some higher importance for the segment attack.

Fig. 1. Hit ratio when using the IMEAN algorithm

Fig. 2. Prediction error of the k-nn and k-means algorithms as a function of

the minimum similarity between users

Fig. 3. Hit ratio for k-NN

Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 21-29

 28

V. RELATED WORK

The random attack was originally proposed by Lam and J.

Riedl [25]. The knowledge required to perpetrate this attack

is small, but its execution cost can be quite high, given that

it is necessary to attribute ratings for each item in the attack

profile. On the other hand, as these authors showed and our

results confirmed, this attack is not very effective.

The segment attack was introduced by Mobasher et al.

[14]. The authors showed and our experiments confirmed

that it is possible to execute successful attacks of this type

against recommendation systems based on collaborative

filtering without the need of having a substantial knowledge

on the system or on the users.

Several papers, including [14][17][20][21], showed that

profile injection attacks can damage a lot the robustness of

recommendation systems. This lead several authors to

search for recommendation systems more robust and stable

using a variety of mechanisms, including attacker influence

thresholds [18], dynamics rating sequences instead of static

sets of rating profiles [22] and event to offer monetary

incentives for other evaluators to correct the system

distortions, whether or not they were provoked by attacks

[23]. Several authors propose using strategies to detect

attacks, using, among others, unsupervised or semi-

supervised learning mechanisms [16, 24] and statistical

models [19].

In this paper, the term stability is associated to measuring

the dynamic of the system predictions when it is under

external attack. When measuring stability, we evaluate the

change in the system predictions for the items under attack.

Some authors, such as Adomavicius and Zhang [15], studied

a different aspect of stability, called internal consistency,

which represents the consequences of internal

inconsistencies of the algorithms of the recommendation

systems. For those authors, a stable recommendation

algorithm offers consistent prediction as time goes by,

assuming that the new ratings that become available are

according to the previous system predictions.

VI. CONCLUSION

The experiments performed to evaluate the stability and

robustness of the algorithms IMEAN, UMEAN, k-NN and

k-means for the recommendation of semantic Web Services,

when subject to profile injection attacks, showed that the

UMEAN algorithm is not affected by attacks and the

IMEAN algorithm is the most vulnerable to those attacks.

Nevertheless, those two algorithms are used only to provide

a performance baseline for the analysis of the other

algorithms, since both present low precision, particularly

when the user-item matrix is sparse, as shown in [10] and

[11].

For the other two studied algorithms, we concluded that

k-NN arrives at a prediction shift close to zero at quite low

similarity rates between users (20%) while in k-means this

is only possible for higher values (70%).

On the other hand, in the experiments presented to

analyze the hit ratio, k-means presents better results when

compared to k-NN when k-NN employs a base user

similarity value much lower than the one used in k-means.

With high similarity values between users, k-NN presents

better results also in this issue. In spite of those results,

when choosing an algorithm to use in a concrete application,

one must consider that, according to the literature, k-means

tends to be more scalable than k-NN. In terms of attack

efficacy, experiments showed that the segment attack is

more effective than the random attack.

The algorithms were also evaluated considering the usage

of semantic and syntactic similarity between Web Services

when computing the similarity between users with equation

(1) and when predicting the value of a rating with equation

(2). The experiments showed that this has not influenced in

a meaningful way the results, which is coherent with the

results found in [10], where it was verified that using

semantic similarity between services affect in a relevant way

the precision of the algorithms only when the user-item

matrix is sparse, which does not occur in the experiments

describe in this paper.

Future works should include experiments to evaluate the

behavior of the algorithms when subject to attacks

considering data sets of higher dimensions and user-item

matrices with sparse data.

ACKNOWLEGMENTS

We would like to thank the anonymous reviewers and the journal editor,

Prof. Dr. Ricardo Linden, for the careful reviews and valuable corrections,

recommendations and comments that have contributed to improve this

paper’s clarity and precision.

Fig. 4. Hit ratio for k-means

Grandim, P. H.; Adán-Coello, J. M. / Revista de Sistemas de Informação da FSMA n. 13 (2014) pp. 21-29

 29

REFERENCES

[1] H. Chesbrough and J. Spohrer, “A research manifesto for services
science,” Commun. ACM, vol. 49, no. 7, pp. 35–40, 2006.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
Services Description Language (WSDL) 1.1, 2001,” At http://www.
w3. org/TR/2001/NOTE-wsdl-20010315, 2001.

[3] L. Clement, A. Hately, C. von Riegen, and T. Rogers, “UDDI
Version 3.0.” OASIS, 19-Oct-2004.

[4] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,”
Intelligent Systems, IEEE, vol. 16, no. 2, pp. 46–53, 2005.

[5] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic Web,”
Scientific American, vol. 284, no. 5, pp. 28–37, 2001.

[6] R. M. Sreenath and M. P. Singh, “Agent-based service selection,”
Web Semantics: Science, Services and Agents on the World Wide
Web, vol. 1, no. 3, pp. 261–279, 2004.

[7] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in Artificial Intelligence, vol. 2009, pp. 1–19,
2009.

[8] S. Lohr, “The contest that shaped careers and inspired research
papers,” CHANCE, vol. 23, no. 1, pp. 25–29, 2010.

[9] J. J. Sandvig, B. Mobasher, and R. Burke, “A survey of collaborative
recommendation and the robust-ness of model-based algorithms,”
IEEE Data Engineering Bulletin, vol. 31, no. 2, pp. 3–13, 2008.

[10] J. M. Adán-Coello, Y. Yuming and C. M. Tobar, “A Memory-based
Collaborative Filtering Algorithm for Recommending Semantic Web
Services. Revista IEEE América Latina, v. 11, p. 795-801, 2013.

[11] J. M. Adán-Coello, C. M. Tobar and Y. Yuming , “Improving the
Performance of Web Service Recommenders Using Semantic
Similarity”. Submetido.

[12] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S.
McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, and
others, “OWL-S: Semantic Markup for Web Services,” 2004.

[13] M. Klusch, B. Fries, and K. Sycara, “OWLS-MX: A hybrid Semantic
Web service matchmaker for OWL-S services,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 7, no. 2,
pp. 121–133, Apr. 2009.

[14] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Toward
trustworthy recommender systems: An analysis of attack models and
algorithm robustness,” ACM Transactions on Internet Technology
(TOIT), vol. 7, no. 4, p. 23, 2007.

[15] G. Adomavicius and J. Zhang, “Stability of recommendation
algorithms,” ACM Transactions on Information Systems (TOIS), vol.
30, no. 4, p. 23, 2012.

[16] R. Bhaumik, B. Mobasher, and R. D. Burke, “A clustering approach
to unsupervised attack detection in collaborative recommender
systems,” in Proceedings of the 7th IEEE international conference on
data mining, Las Vegas, NV, USA, 2011, pp. 181–187.

[17] G. Shani and A. Gunawardana, “Evaluating recommendation
systems,” Recommender Systems Handbook, pp. 257–297, 2011.

[18] P. Resnick and R. Sami, “The influence limiter: provably
manipulation-resistant recommender systems,” in Proceedings of the
2007 ACM conference on Recommender systems, 2007, pp. 25–32.

[19] N. Hurley, Z. Cheng, and M. Zhang, “Statistical attack detection,” in
Proceedings of the third ACM conference on Recommender systems,
2009, pp. 149–156.

[20] S. Ray and A. Mahanti, “Strategies for effective shilling attacks
against recommender systems,” in Privacy, Security, and Trust in
KDD, Springer, 2009, pp. 111–125.

[21] B. Van Roy and X. Yan, “Manipulation robustness of collaborative
filtering,” Management Science, vol. 56, no. 11, pp. 1911–1929,
2010.

[22] B. Van Roy and X. Yan, “Manipulation-resistant collaborative
filtering systems,” in Proceedings of the third ACM conference on
Recommender systems, 2009, pp. 165–172.

[23] R. Bhattacharjee and A. Goel, “Algorithms and incentives for robust
ranking,” in Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, 2007, pp. 425–433.

[24] J. Cao, Z. Wu, B. Mao, and Y. Zhang, “Shilling attack detection
utilizing semi-supervised learning method for collaborative

recommender system,” World Wide Web, vol. 16, no. 5–6, pp. 729–
748, 2013.

[25] S. K. Lam and J. Riedl, “Shilling recommender systems for fun and
profit,” in Proceedings of the 13th international conference on World
Wide Web, 2004, pp. 393–402.

