
World of Computer Science and Information Technology Journal (WCSIT)

ISSN: 2221-0741

Vol. 5, No. 8, 135-141, 2015

135

Free Scale and SOLR Architectures for Load

Handling of Social Networking Sites

Nirmal Dhara

Department of Computer Science

Christ University

Bangalore, India

Shashank K

Department of Computer Science

Christ University

Bangalore, India

Abstract— The social networking sites are adding enormous load to the servers. Balancing such an increasing load for faster

response is really challenging. We propose a cost effective, loosely coupled and highly scalable middleware architecture, Free Scale

Architecture (FSA), which helps the sites to handle increasing load with minimal changes to its fundamental architecture by

dividing the load among several servers. FSA uses Classification Data Engine (CDE), Tiny Intelligent Agent (TIA), Logical Router

(LR), Dynamic Bottleneck Tracker (DBT) and SOLR as part of the architecture which helps fetch data and classify, into clusters,

shrink Master and Slave data, balance the increasing load, help find the reason of any bottleneck with balancing and routing the

load among servers, and cache the most frequently used data for faster retrieval, respectively. Further, CDE requires starting a

separate thread to copy the clusters into a local domain, and this is known as parallel process. The parallel process saves nearly 80%

of the time. We also discuss the implementation of FSA and SOLR architecture for social networking sites, and how social

networking sites can use the FSA and SOLR architecture to increase scalability and handle the unexpected load.

Keywords-Free Scale Architecture (FSA); Logical Router (LR); Classification Data Engine (CDE); Social Networks (SN); Failure

Management (FM); Dynamic Bottleneck Tracker (DBT); Simple Failure Handling (SFH); Permanent Failure (PF); Temporary

Failure (TF); Critical Failure (CF); Tiny Intelligent Agent (TIA).

I. INTRODUCTION

Social networking sites are the most common sites and
tools for many, especially, the younger generation. These sites,
sometimes, also act as marketing tools. The number of
transactions per second of some social networking sites is
much higher than traditional web applications. There is still an
enormous potential for growth among these social networking
sites in terms of users and data. Social networking sites handle
loads of data about the users and their usage patterns. They also
handle a lot of personal information data. The major challenge
for social networking sites is to balance the ever growing data
load due to the exponential usage of those sites. The ever
growing increase in the number of registered users, in many
cases, has failed the servers in providing performance and
reliability.

User performance is the key to the social networking sites’
better performance. Social networking sites are generally
deployed as a cluster of systems. It becomes difficult to handle
the rapid growth of data if there is no architecture to support a
high performance. There are available solutions to handle the
rapidly growing load by means of increasing hardware
resources. But the approach is expensive. The total number of
monthly active users of Facebook as of January 2015 is 1.35
billion. The sudden increase by 1382% of Twitter users in 2009

was a difficult task to handle. Twitter changed their
architecture several times mostly to manage the increase in
active users. Many social networking sites are obsolete as they
were not able to handle the sudden load of increasing users.
These examples project scalability issues. The main aim of the
current work is to increase throughput and data load.

The main purpose of increasing the scalability is to
accommodate the changes in the data growth. Scaling an
existing system will be more difficult than a new system. The
easiest way of scaling an existing system is by adding more
hardware. Social networking sites, as big as Facebook require
few hundreds of terabytes of memory across thousands of
servers. To overcome this problem, adding an extra layer on
Free Scale Architecture (FSA) will cache the data from the
main system for local users. FSA is a middleware which will
divide the load among several servers in a cost effective
manner. Caching the data will be periodically done for reading
and writing the data to the main system. Extra data processing
will be available in this FSA middleware.

LR in both the local and the main systems play the vital
role to reduce the media load. These logical routers is
configured in such a way that the routers are auto-generated as
the load increases. Every logical router is asynchronous in
nature. The social networks are different than the other
networks since the other networks may not have the increasing

WCSIT 5 (8), 135-141, 2015

136

load issues. Online social network users visualize the
complexity of relations and interaction. There will be a TIA
which would run periodically and replicates the database to a
local server. It is important to know the relationship among
these tables. A few algorithms which take into account the
community structures in social networking sites have been
proposed [1]. This TIA will be intelligent enough such that it
can copy the data to suitable local system, and there should not
be any duplication of data among local systems. TIA will be
multi-threaded and will not run in the main server or in the
local system. There will be a separate system with multi-
tasking, which will have the address of all local systems, and it
will start large number of threads to complete the copy process.
Scaling for sites like Facebook and Twitter is really difficult
due to the unknown nature of increasing load and the status
update in Twitter will be very high than any other popular SN.

 Facebook requires hundreds of Terabytes of memory
across thousands of machines and will cost more. As the
number of users increase it will increase the internet traffic,
memory and CPU usage. So the whole system becomes slow.
Performance of the response and request depends on the
number of users, CPU and memory.

II. SOCIAL NETWORKING MODEL

 A social network is a combination of user, links,
groups and likes. The user should register to participate in a
social network. Without registration, no user will be allowed to
access any data from the database. A registered user may create
new groups, may like the content of other users’ post and will
also be allowed to create several others links. Suppose any user
is sharing a link for marketing purpose, then the visiting
permission for that link should be set ahead of time. A user is
not allowed to see any private content of the other users. Users’
read permission will be divided as public, private, friends and
friends of friends. They are the four permission of data reading.
If any user’s data is public, it will be visible by all registered
users and non-registered users, as well. And the data will be
available in any search engine. Private content is visible to
existing users or can be accessed by other users who are
authorized to access such data. For example, if the content
security level is set to friends then only friends of the user will
be allowed to access the data. Also if the security level of the
content is set to friends of friends then all the friends of a friend
of the user is allowed to access the data. Social networking
users often share the content like uploading the video and
music. Most of the social networking sites like Facebook and
Twitter have similar functionalities. Sometimes the social
networking sites will allow the user to send the free Short
Message Service (SMS) and chat with other users. Considering
social networking as a graph, then graph G = (V, E) Where V
will be visited users and E is the load. SN graphs are highly
dynamic as users join frequently, and it increases the density.

Figure 1. (A) SN without FSA load increase rapidly on the
basis of increasing users, (B) SN used FSA, load increase

slowly on the basis of increasing users.

III. CONTRIBUTIONS IN FSA

The main contribution of FSA is design and
implementation. Dividing the main architecture into several
middleware’s will help the social networking sites to reduce the
network traffic and accelerate the performance.

IV. FUNCTION OF FSA

 FSA reduces the new social networking site
architecture designer’s time. Designers can concentrate on
designing light weight User Interface and modules that can be
added on the new social networking sites. Achieve faster
response with low cost at quick turnaround time to solve the
bottlenecks of existing social networks; there is no need to
change the entire architecture. Instead, FSA needs to combine
two extra middleware, TIA and LR. FSA is a new design
pattern that reduces heavy load and traffic in web applications.
FSA will be good practice for a new developer or an architect
to start their new social networking sites. FSA will be easy and
clearly understandable for any users. It will not only reduce the
traffic over social networks, but it also passes the data in a
secure way. It ensures data sequence and the relation among
the objects during data snap shot. Clustering is another added
benefit. Many new social networking sites were unable to
handle the load; due to the poor load balancing, due to which
many users left using the particular social networking site and
moved to other.

V. NATURE OF FSA

 FSA solves the bottlenecks for any online web
applications. It creates two extra layers called TIA and LR. The
response time of the servers is slow, though all the SN has
multiple numbers of servers for every country. This kind of
issue occurs due to poor network routing. Most of the time
routers are overloaded and may not be able to handle the load,
some routers are free and some routers are overloaded. FSA
uses Classification Data Engine (CDE), Tiny Intelligent Agent
(TIA), Logical Router (LR), Dynamic Bottleneck Tracker
(DBT) and SOLR as part of the architecture which helps fetch

WCSIT 5 (8), 135-141, 2015

137

data and classify, into clusters, shrink Master and Slave data,
balance the increasing load, help find the reason of any
bottleneck with balancing and routing the load among servers,
and cache the most frequently used data for faster retrieval,
respectively. Further, CDE requires starting a separate thread to
copy the clusters into a local domain, and this is known as
parallel process. The parallel process saves nearly 80% of the
time.

A. Logical Router (LR)

 LR transfers the load to another router whenever it is
overloaded. All of the LRs have intelligent method to check the
load; it always checks if the existing LR is overloaded. If the
existing LR is overloaded then the method looks for nearby LR
and transfer the load to another LR. If all of the LRs are
overloaded, it calls for create method in order to create a new
LR. However, all LRs being overloaded are a rare situation.

 LR is self-created, hence the developer or architect does
not have to spend time over this. It is difficult to predict which
LR will take the responsibility for which request, and it will ask
for which server to handle the request; hence all of these
systems work independently. There will be another process
which will check if more LRs are free or not utilized for a long
time then it will kill the LR. Internally LR routing uses the
shortest path algorithm. Each time a physical slave (node) is
added to an FSA, immediately it will calculate the distance
among other connected nodes. Hence, it will keep the record as
long as the nodes are alive. This process helps us to reach to the
destination quickly.

Over
Loaded LR

LR
Newly

Created
LR

End UserEnd User End User End User End User End User End User

Transfer The Load
Transfer The Load

Figure 2. Shows logical router, creates new LR and transfer

the load to LR.

B. Tiny Intelligent Agent

 TIA is a dynamic backend process which helps to
respond quickly. The main goal of TIA is shrinking the master
and slave servers. There will be an intelligent data divider,
which will take care of the logical linking among the objects
when dividing the data. There will be several processes to copy
the data from the master server to the slave server and vice
versa. After coping, it resumes linking the data and the problem
does not arise during data shrinking request. This shrinking
process will happen live and to take the snap shot of the data,
there will be no need to restart the server. So, the uptime of the
server will be close to 100%.

Master Server

Slave Slave Slave Slave

TIA

Figure 3. TIA working process using threads.

 If there is a power failure for any slave servers, then

TIA will work for remaining servers. It will retain the shrinking
history. So the loss of data and duplication is avoided. There
will be a minimum of one TIA for each slave. If the work is
more and requires data copy, then automatically a new TIA
will be created. There will be another type of TIA which will
write the data in the master server. TIA maintains a hash table
at the time of linking. It matches the hash number if all the data
has been linked properly.

C. Data Partitioning (DP)

 Data is stored in the form of a stream. Before copying
the data, DP partitions the data into several clusters. Before
dividing into several clusters, data relationship should be taken
into consideration.

 FSA uses graph partitioning to reduce the edges. Data
should be in the same bucket. Whenever the data is divided into
clusters, a number is assigned for every chunk and including
the location. Hence, the data can be read easily. TIA may read
or write the data cluster, and it will put the data in a proper
place. Once the entire cluster is copied, then it will create the
link among the entire data. If there are any errors during
copying, TIA will register the time of linking. By this process,
TIA will reinitiate the process. Hence, the performance of the
process is drastically increased. Existing social network users
partitioning the data for backend cleanup host the disjoint data
into several servers [2].

D. Minimize Interactions between Master and Slave Servers

 TIA always keeps the record about the master and slave.
It reduces the transaction between both the servers. If there are

WCSIT 5 (8), 135-141, 2015

138

any updates for master server, then transaction will happen
between the master and slave servers, else transaction will
happen between slave and client servers. If master server is
busy and one slave is writing the data into the master server,
then all other servers need not wait for the writing. They will
write the data into persistent data. The entire master has auto
refresh functionality. Whenever TIA finds any persistent
content, it will refresh the data and save it into a database.

slave

Master

Data

persist
ent

TIA write

slave

w
rit

eb
u

sy

Auto refresh

Figure 4. Master Slave data refresh using TIA.

E. Dynamic Bottleneck Tracker (DBT)

 During runtime, DBT will always check for
performance bottlenecks. If it finds any performance issue, it
immediately will note the situation and send the notification to
the developer about the issue. In addition to this, if the DBT
finds any runtime error or situation where changes are required,
it will report to the concerned team.

VI. IMPLEMENTATION OF FSA

Firstly, the requirements that FSA need to address is
described. Next, we discuss regarding the problem solved by
FSA. Finally, we discuss why existing social partitioning
solutions will be inadequate to meet our set of requirements.

A. Requirements

Maintain local cache with securities: At the time of local
caching, security is of primary concern. All related data should
be copied from the slave server. If the nearest slave is down or
there is no connectivity, it does not notify any messages.
Instead, it looks for the nearest slave server. If all the slave
servers are down or upon not finding any slave server, it will
directly take the data from the master server. All sensitive data
fields will be encrypted so the other applications would not be
able to use the data though it is available locally. Encryption is
the key for every application and will be unique, that is,
dynamically generated for each application. There will be one
auto validator which will check for the sequence of data. If all
the data is copied in the correct sequence, then it is in ideal

state or else, destroy mechanism will be activated and that will
delete the particular portion of the data which is not copied.
Hence, backup mechanism for the deleted portion is initiated.

Master server

Slave Server

Slave Server

Slave Server

Slave Server

TIA

LR

LR

LR

LR

LR

LR

LR

LR

LRLR

End user

End user
End user

End user
End user

End user

End user

End user

End user

End user

End user

End user

End user

End user
End user

End user

End user

End user

End user

End user

Figure 5. FSA Architecture.

B. Replica Matrix (RM)

RM will be a two dimensional array and maintains a matrix
at the time of writing the data between slave and master. Based
on operation level success, RM updates the matrix accordingly.
Initially, the matrix will be set to false. If all values in the
matrix is set to true, then it will stop copying the data from the
master server. Always TIA looks for the matrix value in order
to avoid duplicate operation. RM saves the time by avoiding
duplicate operations.

C. Load Balancing (LB)

LB becomes a major issue in social networking sites. There
will be huge requests of data operation on which load
increases. To handle the increasing load, the system should
divide the load among several servers. Logical router will play
a vital role here. Internally it will use the shortest path
algorithm to route the load among many servers. The entire
server may not have the updated data, if system routes the
request to another server due to huge load and that server does
not have the updated data, it will again route to another server
until system finds the updated data or finished searching among
all the servers. Finally, if the server is not available, then it will
do the update from existing server, and it will send the response
with the updated data.

WCSIT 5 (8), 135-141, 2015

139

N1 N3

N2

N4

N5

40

55

3045

50
42

40

40

Figure 6. Shortest path used in LR.

D. Stability

Operations are dynamic and ensure that all operation should
be stable which helps the social networking site to increase
stability. There should not be any failure of reading and writing
the data, if they exist, then system should automatically report
the issue. System will consider the nodes as a graph connected
with each other. At the time of routing, stability should be
considered. Each time FSA partitions the graph, or connect the
note, system should calculate the runtime and give the access
for the calculated time. Operations like read, write and server
uptime is considered during stability. All servers are not
restarted during the process. If any server restarted
automatically the entire load will be transferred to another
server. So our server uptime is always 100%. Next is persistent
data. This is a separate database, which is not modified
frequently. Whenever the database is busy, and not able to take
the load, it writes the data into persistence. Hence, the read and
write of data will never fail. Stability provides information
about performance, whenever performance goes down
immediately. When performance crosses the limit, system takes
the decision to transfer the load handled by LR.

At the time of copying the data, system handles
performance and stability. If some request comes to a server
and data copying is going on that server, then LR will transfer
the request to another server. Data copy is not simultaneous for
all servers. FSA do not keep the higher number of replica as it
increases the network traffic. FSA removes the replica
automatically.

E. Minimize the duplication

To calculate the duplicate data FSA uses matrix. If any
matrix value is false then only FSA copies the data, or else, it
does not copy it. This process saves time to find the duplicate
data. Instead of comparing all the data, it compares only the
matrix. FSA should keep in mind that there are no duplicate
data; if there are any duplicates then they are no longer in use,
that data should be cleaned. Before cleaning the data, FSA
must check if there are any dependencies. FSA should take care
the LR and dynamic slaves. Any unused LR and dynamic
slaves should kill the process to free the memory.

F. Adding new slave node

Adding new node would be simple for plug and play. No
need to restart the FSA or master server. Whenever any node is
added, it will install the required software and inform the
master. The master will immediately assign the LR, and then it
will increase the number of nodes. Next, master will refresh
the FSA and the entire node will be active and will be able to
handle the response.

G. Remove a slave node

Slave removal process is followed to remove a slave. Node
should not be removed directly. Data loss can happen if nodes
are removed directly. FSA should inform the master regarding
the slave which will be removed. Once FSA starts that process,
the master will update any dependency of slave and will
transfer the request to the nearest slave. Next, master will give
message to remove the node from FSA and will remove the
server logically and physically. If a processing node is removed
suddenly from FSA, then request will transfer from LR to other
slave servers at a certain time.

H. UI Evaluation

FSA recommends optimization on User Interface level. All
the request and response should be Ajax based so that the page
loading time can be reduced. All the frequently used pages
need to cache in the local system, so there is no need to load
the page again and again. Only data needs to be sent to the
browser and server.

I. Relational Data Classification

To increase the performance of reading the data, FSA has
taken a new approach. There will be a CDE. This CDE will run
periodically in the backend. The main task of the CDE is
classifying the data into many branches. Data in social
networks are not similar. There will be data for “like”, “share”,
“personal details”, or “friend details”. This will help us to copy
the data to a local server; it will reduce the chances of linking
the data in a wrong way. Here FSA may take the input from the
developer to classify the data. If no input from the developer
then FSA will randomly classify the data into possible clusters.
All the related data will be copied at a time. So it will be faster
to copy the work. Not only classification will help us to copy
the data without any mistake it will reduce the copy time.
Suppose there is 20 GB of data and it takes 4 hours to copy,
FSA divides the data into 8 related clusters. And they take 20,
50, 30, 20, 10, 40, 30, 40 minutes respectively. Now our idea is
to start all the relational data and copy at the same time. If the
entire task starts parallel, then it will take maximum 50 minutes
to finish the task. So, FSA can save 190 minutes which is
79.16% of efficiency. Here calculation of data may involve
some time due to backend process which is not considered by
FSA.

J. Failure handling

 For any application, there will be a failure situation. So
there should be a system which will handle the failure. Similar
kind of mechanism exists in FSA, and this is known as Simple
Failure Handling (SFH). All the clusters are interrelated; it

WCSIT 5 (8), 135-141, 2015

140

maintains the hierarchy at the time of copying the data and it
includes Failure Management (FM). In case of error, FM will
try to fix the issue by calling some predefined functions. If FM
fails to fix the issue, then a notification will be sent to the
admin with the details. FM is divided the error into three types,
namely Permanent Failure (PF), Temporary Failure (TF) and
Critical Failure (CF). PF is treated as link failure, server
removal and power cut. There will be some predefined method
to automatically solve the issue. SFH defines the number for
each failure. To handle the PF, SFH needs to do manual work.
So SFH reports to the developer or admin that there is a failure
in a particular server with the failure number. Then the admin
will check the failure number and will find the exact error and
will take the decision, so that it will be easy for them to solve
the issue. TF is treated as a code dump, memory issue and late
response. Bad logic results all kind of bottleneck, if there are
any kinds of TF it will try to invoke the system call and will
pick the appropriate method which will help us to solve the
issue automatically. CF is very critical and it may stop the
social network from working. SFH will report the admin with
line number. If there are any issues in CF, CF will create red
bullet ticket with admin details. If red bullet ticket is created,
then the developer needs to solve the issue within one hour.

Client Layer

FSA

Database LayerLike Post Video Share Group

LR TIA

DP

DBTLB

RM

CDE SFH

Data Center Data Center Data Center

CD CD CD CD CD CD

LR- Logical Router

CDE - Classification Data Engine

SFH- Simple Failure Handling

TIA-Tiny Intelligent Agent

LB- Load Balancing

DBT- Dynamic Bottleneck Tracker

DP- Data Partitioning RM- Replica Matrix

CD- Cache Data

PF TF CF

PF-Permanent Failure

TF-Temporary Failure

CF- Critical Failure

Friends

Figure 7. FSA Layers.

VII. SOLR ARCHITECTURE

 SOLR is pronounced as "solar". It is an open source
enterprise search platform from the Apache Lucene project. Its
major features include full-text search, hit highlighting, faceted
search, dynamic clustering, database integration and rich
document handling.

A. Administration User Interface for SOLR

The SOLR web based admin interface provides various
views that includes file configuration, query submission,
settings to view log files, settings to control java environment
and managing distributed configurations.

B. SOLR Fields and Schema Design

 SOLR organizes the data for indexing and explains how
a SOLR schema defines the fields and field types. SOLR uses
the data to organize within the document files.

C. SOLR Analyzers, Tokenizes and Filters

SOLR prepares text for indexing and searching. Analyzers
parse text and produce a stream of tokens, lexical units used for
indexing and searching. Tokenizes break field data down into
tokens. Filters perform other transformational or selective work
on token streams.

D. SOLR Indexing and Data Operations

 Commit, optimize and rollback describes the indexing
process and data operations.

E. Searching

Searching presents an overview of the search process in
SOLR. It describes the main components used in searches,
including request handlers, query parsers and response writers.
It lists the query parameters that can be passed to SOLR, and it
describes features such as boosting and faceting, which can be
used to fine-tune search results [3].

F. Well-Configured SOLR Instance

SOLR instance discusses performance tuning for SOLR. It
begins with an overview of the solrconfig.xml file, then tells
you how to configure cores with solr.xml, how to configure the
Lucene index writer and more [3].

G. SOLR Management

SOLR Management discusses important topics for running
and monitoring SOLR. It describes running SOLR in the
Apache Tomcat servlet runner and Web server. Other topics
include how to back up a SOLR instance, and how to run
SOLR with Java Management Extensions (JMX) [3].

H. SOLR Cloud

SOLR Cloud describes the most exciting and newest
features of SOLR. SOLR Cloud also provides comprehensive
distributed capabilities.

I. SOLR Distribution

SOLR Distribution describes how to grow and divide a
large index into sections called shards, which are then
distributed across multiple servers or by replicating a single
index across multiple services.

https://cwiki.apache.org/confluence/display/solr/Using+the+Solr+Administration+User+Interface
https://cwiki.apache.org/confluence/display/solr/Documents%2C+Fields%2C+and+Schema+Design
https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations
https://cwiki.apache.org/confluence/display/solr/Searching
https://cwiki.apache.org/confluence/display/solr/The+Well-Configured+Solr+Instance
https://cwiki.apache.org/confluence/display/solr/Managing+Solr
https://cwiki.apache.org/confluence/display/solr/SolrCloud

WCSIT 5 (8), 135-141, 2015

141

J. Client APIs

Client APIs describes how to access SOLR through various
client APIs, including JavaScript, JSON and Ruby [3].

K. SOLR Database Evaluation

 SOLR uses MYSQL and Oracle as the most popular
RDBMS. Developer can be found easily and most of the
developers understand these RDBMS. SOLR provides the
minimum loading facility. Initially SOLR will load the latest 25
rows for the entire query and gives the functionality to get the
older data in a mouse scroll. 10 rows will be appended to the
page on every scroll. Most frequently, data will be indexed.
Indexing is done to provide the quick search results and
separate program which creates the indexing every 20 minutes.
Whenever search command is fired, SOLR searches in the
index table first, if not found, then immediately it will run the
indexing program. If it is still not found, then it will return the
message as not found. For SQL join special care taken by
SOLR. If any SQL query takes more time to execute, then
SOLR stores that query into a table and sends the notification
to the developer. This way, SOLR reports the entire bottleneck.

Figure 8. SOLR Architecture.

VIII. CONCLUSION

 The proposed architecture focuses more on increasing
the scalability of social networking sites by dividing the
network load and route them among servers using LR. LR is
50% faster than normal routing; hence reduces the time for
routing and increases response time. TIA is used to buffer the
data on local machine and write the data to the master server
automatically. During the write operation thread concept will
be used to increase the usage of CPU. CDE is thread based and

operates in parallel, which reduces the time at least by 80%.
This paper discusses comparison of data and analysis using
SFH. SFH will handle the issues and ensures more stable social
networking sites. This paper also discusses full-text search, hit
highlighting, faceted search, dynamic clustering, database
integration and rich document handling using SOLR.

ACKNOWLEDGMENT

We thank Chandra J who is our lecturer who helped us in
formatting the paper and suggesting the journal.

REFERENCES

[1] M. E. J. Newman. Modularity and community structure in networks.
Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006).

[2] J. Leskovec, K. J. Lang, A. Dasgupta and M. W. Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters.

[3] CoRR, abs/0810.1355, 2008.

[4] Apache Solr Reference Guide.
https://cwiki.apache.org/confluence/display/solr/.

[5] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B.
Bhattacharjee. Measurement and analysis of online social networks. In
ACM IMC ’07.

[6] Apache Solr from the Solr website.

[7] http://lucene.apache.org/solr/.

[8] B. Carrasco, Y. Lu, and J. M. F. da Trindade. Partitioning social
networks for time-dependent queries. SNS 2011, pp. 2:1–2:6.

[9] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing
user behavior in online social networks. In Proc. of IMC’09, pages 49–
62, New York, NY, USA, 2009. ACM

[10] F. Schneider, A. Feldmann, B. Krishnamurthy and W.Willinger.
Understanding online social network usage from a network perspective.
In IMC ’09.

[11] J. Gray, P. Helland, P. E. O'Neil, D. Shasha. The dangers of replication
and a solution. SIGMOD Conf. 1996: pp.173-182 MSR-TR-96-17.

[12] J. Leskovec, J. Kleinberg and C. Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM
Transactions on KDD, 1:1, 2007.

[13] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra
and P. Rodriguez. The little engine(s) that could: scaling online social
networks. SIGCOMM 2010, pp.375–386.

[14] M. E. J. Newman and Juyong Park. Why social networks are different
from other types of networks. Phys. Rev. E 68, 036122 (2003).

[15] Notes from scaling mysql up or out.
http://venublog.com/2008/04/16/notes-from-scaling-mysql-up-or-out/.

[16] Rightscale. http://www.rightscale.com.

[17] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric
embeddings and graph partitioning. J. ACM, vol. 56, no. 2, pp. 1–37,
2009.

[18] Status net. http://status.net.

[19] Tsung: Distributed load testing tool.

[20] http://tsung.erlang-projects.org/.

[21] Twitter architecture

[22] http://highscalability.com/scaling-twitter-making-twitter-10000-percent-
faster.

https://cwiki.apache.org/confluence/display/solr/Client+APIs
https://cwiki.apache.org/confluence/display/solr/Client+APIs
https://cwiki.apache.org/confluence/display/solr/
http://lucene.apache.org/solr/
http://venublog.com/2008/04/16/notes-from-scaling-
http://www.rightscale.com/
http://highscalability.com/scaling-twitter-making-

