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ABSTRACT 

 The oscillation of solutions of the second order nonlinear damped dynamic equation (�(�)�	(�(�))�∆(�))∆ +		(�)�∆(�) 	+ 	
(�, �(�	(�))) 	= 	0 on an arbitrary time scale � is investigated. A generalized Riccati transformation is 

applied for the study of the Kamenev-type oscillation criteria for this nonlinear dynamic equation. Several new sufficient 

conditions for the oscillation of solutions are obtained to extend some known results in the literature. 
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INTRODUCTION 

 Much recent attention has been given to dynamic equations on time scales, we refer the reader to the landmark 

paper of S. Hilger [1]. Since then, several authors have expounded on various aspects of this new theory; see the survey 

paper by Agarwal, Bohner, O'Regan and Peterson [2]. A time scale � is an arbitrary nonempty closed subset of the real 

numbers �. Thus, �; �; �;��, i.e., the real numbers, the integers, the natural numbers, and the nonnegative integers are 

examples of time scales. On any time scale �, we define the forward and backward jump operators by 

�(�) = inf 	��	 ∈ �, �	 > 	�� , �(�) 	= 	sup	��	 ∈ 	�, �	 < 	��. 
 A point t � ∈ 	�, �	 > 	#$
	� is said to be left dense if 	�(�) 	= 	�, right dense if 	�	 < 	�%		� and  �(�) 	= 	�, left 

scattered if �(�) 	< 	�, and right scattered if �(�) 	> 	�.  A function	
 ∶ 	� → �		is called rd-continuous provided that it is 

continuous at right dense points of T, and its	left-sided limits exist (finite) at left-dense points of	�. The set of rd-

continuous functions	is denoted by )*+(�, �). By )*+, (�, �), we mean the set of functions whose delta derivative	belongs to )*+(�, �). In recent years, there has been much research activity concerning the oscillation and nonoscillation of solutions 

of various equations on time scales (see [5],[6],[7]). However, there are few results dealing the oscillation of solutions of 

delay dynamic equations on time scales [8-13]. Following this trend, we are concerned in this paper with oscillation 

for the second-order nonlinear delay dynamic equations of the type 

           (�(�)�	(�(�))�∆(�))∆ + 		(�)�∆(�) 	+ 	
(�, �(�	(�))) 	= 	0																																																																																											(1.1) 
 We assume that 

       (./)		�, �		 and 		 are real-valued positive rd-continuous functions defined on  �,	 
          0	 ≤ 	(�) ≤ 	1		and there are two positive constants 1,, 12	 such that 1, ≤ 	�	(�(�)) ≤ 12.	
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				(.3)	� ∶ 	�	 → 	� is strictly increasing, and		�(�) ≤ 	� and � → ∞ as � → ∞  

				(.4)	
(�, %) 	∈ )*+(�	 × �, �) satisfies %
(�, %) 	> 	0,  for  %	 ≠ 	0 and there exists a positive 

          rd-continuous function 7 defined on  � such that			89(:,;); 8 ≥ 7(�)			for  %	 ≠ 	0. 

2. MAIN RESULTS 

 We need the following lemma for the proof of main results. 

Lemma 2.1. Assume that �(�) is a positive solution of Eq. (1.1) on [��,∞)>. If 

? @AB(C)DEF(C)(:,	:G)*(:) 	∞� ∆�	 = 	∞                                                                  (2.1) 

and  

? �(�)7(�)∞� 	∆�	 = 	∞ ,                                                                   (2.2) 

 then there exists �, ∈ [��,∞)>,  such that 

(I)	�∆(�) > 	0, (�(�)	�(�(�))�∆(�))∆ < 	0			for  �, ∈ [��,∞)> 

(II)	 J(:): 				is decreasing.	
Proof.  Assume that �(�) is a positive solution of Eq. (1.1) on [��,∞)>. Pick �2 ∈ [��,∞)> ,	such that �(�) 	> 	0 and �(�(�)) 	> 	0  on [�2,∞)> . Then without loss of generality we can take �∆(�) 	< 	0 for all �	 ≥ �2 ≥	 �,. Now from (1.1) 

we have 

                              

(�(�)�	K�(�)L�∆(�))∆ + 		(�)�∆(�) = −	
K�, �N(�)L < 0.							                                                 (2.3) 

 Putting O(�) = −	�(�)�	K�(�)L�∆(�),  then we can write (2.3) in the form 

P −O∆(�) − 	(�)�(�)�	K�(�)L 	QO(�) < 0	
 Thus 

O∆(�) > − 	(�)1,�(�) 	QO(�)	
 Therefore 

O(�) > 	O(�2)RST(:)UE*(:)	(�, �2)	
 i.e. 

−	�(�)�	K�(�)L�∆(�) > −	�(�2)�	K�(�2)L�∆(�2)RST(:)UE*(:)	(�, �2)	
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	�∆(�) < 	 �(�2)�	K�(�2)L�∆(�2)�	K�(�)L
RST(:)UE*(:)	(�, �2)�(�) 	

  Then 

�(�) < 	�(�V) + �(�2)�	K�(�2)L�∆(�2)1, W RST(X)UE*(X)	(�, �2)�(�):
:Y ∆�	

By (2.1) we can see that �(�) → −∞  as  � → ∞  which contradicts the assumption �(�) > 	0	so 	�∆(�) > 0			and hence (�(�)	�(�(�))�∆(�))∆ < 	0	 for all large �. Now to prove (II), we define Z	(�) = 	�(�) − 	��∆(�),  if there is a �V ∈[�2,∞)> such that Z	(�) 	> 	0. Suppose this is false, then Z	(�) 	< 	0 on  [�V,∞)>, thus 

(�(�)� )	∆ =	 ��∆(�) − P 	�(�)��(�) = −Z	(�)��(�) > 0.	
 Hence  

J(:): 		is strictly increasing on [�V,∞)> .Pick  �[ ∈ [�V,∞)> , so that �(�) 	≥ �	(�[) for all �	 ≥ �[. Then 

�(�	(�))�	(�) ≥ �(�	(�[))�	(�[) ≔ ] > 0	
�K�	(�)L ≥ ]�(�).			                                                                            (2.4) 

 But from (1.1) we have 

(�(�)�	K�(�)L�∆(�))∆ + 		(�)�∆(�) = −	
K�, �N(�)L < 0.		 
 i.e. 

(�(�)�	K�(�)L�∆(�))∆ ≤ −	
K�, �N(�)L ≤ −7(�)�N(�) ≤ −Q]7(�)�(�)	
�(�)�	K�(�)L�∆(�) − �(�[)�	K�(�[)L�∆(�[) ≤ −Q]W 7(�)�(�):

:^ ∆�	
 i.e. 

�(�[)�	K�(�[)L�∆(�[) ≥ ]W 7(�)�(�):
:^ ∆�	

 This contradicts (2.2). Therefore Z	(�) 	> 	0  for all � ∈ [�V,∞)> , and hence �(�) > ��∆(�).	Also we see that 

(�(�)� )	∆ =	 ��∆(�) − P 	�(�)��(�) = −Z	(�)��(�) < 0.	
 So   

J(:):     is strictly decreasing on [�V,∞)>. 

Theorem 2.2.  Suppose that (2.1) holds. Furthermore, suppose that there exists a positive ∆ −differentiable function	_(�)  
such that, for all sufficiently large �, ∈ [��,∞)> , one has 

	lim:→∞ �%	W b_(�)7(�)�(�)�(�) − 12��(�)c2(�)4_(�)�(�) e ∆� = ∞:
:E 																																																																																																			(2.5)	 
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 where 			c(�): = 	 _∆(�) − i(:)T(:)Uj*(:)  . Then Eq. (1.1) is oscillatory. 

Proof. Suppose to the contrary that �(�) is a nonoscillatory solution of (1.1). We may assume that �(�) > 	0, �K�(�)L >
	0			∀			� ∈ [�,,∞)>. The proof when �(�) is eventually negative is similar. From Lemma 2.1 and Eq. (1.1) it follows that 

�K�(�)L > 	0, �∆(�) > 0, (�(�)	�(�(�))�∆(�))∆ < 	0			∀	� ≥ �,	.  Define 

l(�) 	= 	_(�) �(�)�	K�(�)L�∆(�)�(�) 	
 Then 

l∆(�) = 	_∆ m��	�∆� no + _ m��	�∆� n∆	
= 	 _∆_o lo + (��	�∆)�o

∆ − _ ��	(�∆)2��o 	
 From (1.1) and (.4) we have 

l∆(�) ≤ _∆_o lo − _	�� ��	�∆�o − _7 �N�o − _ ��	�∆�o ��	�∆���  

 Since	� > 	�, then in view of (./), and (���∆)∆ < 	0, we have 

l∆(�) ≤ _∆_o lo − _	12� (��	�
∆)o�o − _7 �N�o − _12� (��	�

∆)o�o (��	�∆)o�o �o�  

 Since  
J:   is strictly decreasing and � < �; 	�	 < �,  then  

JpJq ≥ No 	,					JqJ ≥ o:  ,  thus 

l∆(�) ≤ _∆_o lo − _	12�_o lo − _7�� − _�12��(_o)2 (lo)2 

= riqlo − ioUj*:(iq)j (lo)2 − isNo                                           (2.6) 

 i.e. 

l∆(�) ≤ t 1_o u _�12��_o lo − c2u12��_� v
2
+ 12��c24_� − _7��  

 therefore 

l∆(�) ≤ 12��c24_� − _7��  

 Integrating this inequality from �2		 to   �, we get 

W b_(�)7(�)�(�)�(�) − 12��(�)c2(�)4_(�)�(�) e ∆�:
:j ≤ l(�2) − l(�) ≤ l(�2) 
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 This contradicts with (2.5), hence the proof is completed. By choosing 	_(�) = 	1,				� ≥ 	 ��   in Theorem 2.2 we 

have the following oscillation result. 

Corollary 2.3.  Assume that the assumptions of Theorem 2.2 hold and for all sufficiently large �,,  

lim:→∞ �%	W b7(�)�(�)�(�) − �	2(�)412�(�)�(�)e ∆�
:
:E 	= ∞ 

 Then every solution of Eq. (1.1) is oscillatory on [��,∞)>. By choosing _(�) = �,				� ≥ 	 ��   in Theorem 2.2 we 

have the following oscillation result. 

Corollary 2.4.  Assume that the assumptions of Theorem 2.2 hold. Then every solution of Eq. (1.1) is oscillatory on [��,∞)>  provided that 

lim:→∞ �%	W b�7(�)�(�)�(�) − 12�(�)c2(�)4�(�) e ∆�:
:E 	= ∞ 

 where 		c(�) = 	1 − :T(:)Uj*(:) . 
      Now, we define the function space 	ℜ  as follows: x	 ∈ ℜ		provided x	is defined for   �� ≤ 	�	 ≤ �, �, �	 ∈	[��,∞)> , x(�, �) = 	0, x(�; 	�) ≥ 0  and  x		has a nonpositive continuous ∆ −partial derivative  x∆y(�, �) ≥ 0  with 

respect to the second variable and satisfies for some ℎ ∈ ℜ.		The following theorem extends Theorem 2.2 of [5]. 

x∆y(�, �) 	+ 	x(�, �) c(�)_o(�) = −ℎ(�, �)_o(�) {x(�, �)	
Theorem 2.5.  Suppose that the assumptions of Theorem 2.2 hold. If there exists a positive functions 	x, ℎ ∈ ℜ  such that 

for all sufficiently large �, ∈ 	 [��,∞)> , one has then every solution of Eq. (1.1) is oscillatory on [��,∞)>. 

lim:→∞ sup 1x(�, ��)W b_(�)7(�)�(�)�(�) x(�, �) − 12	�	�(�)ℎ2(�, �)4_(�)�(�) e ∆�:
:G 	= ∞,																																																																		(2.7) 

Proof.  Suppose to the contrary that �(�) is a nonoscillatory solution of (1.1). Then as in Theorem 2.2 we have �K�(�)L >
	0, �∆(�) > 0, (�(�)	�(�(�))�∆(�))∆ < 	0			∀	� ≥ �, ∈ 	 [��,∞)>. We define 	l(�)  as in Theorem 2.2, then from (2.6) we 

have 

			_7�� ≤ −l∆ + c_o lo − _�12��(_o)2 (lo)2																																																																																																																								(2.8) 
 Multiplying (2.8) by x(�, �) and integrating from �,  to  �, we get 

W _(�)7(�)�(�)�(�) x(�, �)	∆�:
:E ≤ W l∆(�)x(�, �)	∆�:

:E +W c(�)_o(�) lo(�)x(�, �)	∆�:
:E  

		−W _(�)�(�)12�(�)�K_o(�)L2 (lo)2(�)x(�, �)	∆�:
:E  

= l(�,)x(�, �,) + W x∆y(�, �)	lo(�)	∆�		:
:E +W c(�)_o(�) lo(�)x(�, �)	∆�:

:E  
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	−W _(�)�(�)12�(�)�K_o(�)L2 (lo)2(�)x(�, �)	∆�:
:E  

 Thus  

W _(�)7(�)�(�)�(�) x(�, �)	∆�:
:E ≤ l(�,)x(�, �,) 

−W ~ 1_o(�)u_(�)�(�)x(�, �)12�(�)� lo(�) + ℎ(�, �)2 u 12�(�)�_(�)�(�)�
2
	∆�:

:E +W 12�(�)�ℎ2(�, �)4_(�)�(�) 	∆�		:
:E  

≤ l(�,)x(�, �,) + W 12�(�)�ℎ2(�, �)4_(�)�(�) 	∆�		:
:E  

 i.e. 

1x(�, �,)W b_(�)7(�)�(�)�(�) x(�, �) − 12	�	�(�)ℎ2(�, �)4_(�)�(�) e ∆�:
:G ≤ 	l(�,) 

 which contradicts (2.7) and hence the proof is completed. 

Theorem 2.6.  Suppose that (2.1) holds. Furthermore, suppose that there exists a function 	�(�)  such that �(�)�(�) is a 	∆ − 	P differentiable function and there exists a positive real rd-function �(�) such that, for all sufficiently large �, ∈	[��,∞)> , one has 

	lim:→∞ �%	W ��(�) − �2(�)4�(�)�∆�:
:E 	= ∞,																																																																																																																																			(2.9) 

 where 				�(�):= �q(:):Uj*(:)o(:)�j(:) ,																						�(�): = �∆(:)�(:) − :�q(:)T(:)Uj*(:)o(:)�(:) 	+ 2:�q(:)�(:)Ujo(:)�(:) ,		and    �(�): = 	 �q(:)s(:)N(:)o(:) +
:*(:)�q(:)�j(:)Ujo(:) − :T(:)�q(:)Ujo(:) − �o(�)[�(�)�(�)]∆.	Then Eq. (1.1) is oscillatory. 

Proof.  Suppose to the contrary that �(�) is a nonoscillatory solution of (1.1). We may assume that �(�) > 	0, �K�(�)L >
0					∀	� ∈ 	 [�,,∞)>. The proof when �(�) is eventually negative is similar. From Lemma 2.1 and Eq. (1.1) it follows that 

�K�(�)L > 	0, �∆(�) > 0, (�(�)	�(�(�))�∆(�))∆ < 	0			∀	� ≥ �, ∈ 	 [��,∞)>. Define 

%(�) 	= �(�)[�(�)�K�(�)L�∆(�)�(�) + �(�)�(�)]	
 Then 

%∆(�) = 	�∆ m��	�∆� + ��n + �o m��	�∆� + ��n∆ 

=	�∆� % + �o (��	�∆)�o
∆ − �o ��	(�∆)2��o +�o[��]∆	

 From (1.1) and (.4)	we have 
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%∆(�) ≤ 	 �∆� % − �o	�� ��	�∆� ��o − �o7 �N�o − �o�� ��o (%� − ��)2+�o[��]∆ 

 Using Lemma 2.1 and (./), we get 

%∆(�) ≤ 	 �∆� % − �o	�12�� �%� − ��� − �o7�� − �o�%212���2 + 2�o�%12�� −�o���212� + �o[��]∆ 

 i.e. 

%∆(�) ≤ 	 �∆� % − �o	�12��� % + �o	��12� − �o7�� − �o�12���2 %2 + 2�o�%12�� −�o���212� + �o[��]∆ 

= −�%2 + �% − � = −[√�	% − �2√�]2 + �24� − � 

 i.e. 

%∆(�) ≤ �2(�)4�(�) − �(�) 
 By integrating the above inequality, we obtain 

W ��(�) − �2(�)4�(�)�∆�:
:j ≤ %(�2) − %(�) ≤ %(�2) 

 This contradicts (2.9), and the proof is completed. We can get the following result by choosing �(�) = 1  in 

Theorem 2.6. 

Corollary 2.7.  Assume that the assumptions of Theorem 2.5 hold and for some 	�,  sufficiently large . We have 

		lim:→∞ �%	W ��(�) − �2(�)4�(�)�∆�:
:E 	= ∞,									 

 where				�(�): = :Uj*(:)o(:) , �(�): = − :T(:)Uj*(:)o(:) 	+ 2:�(:)Ujo(:),		and�(�): = 	 s(:)N(:)o(:) + :*(:)�j(:)Ujo(:) − :T(:)�(:)Ujo(:) − [�(�)�(�)]∆.	 
Then Eq. (1.1) is oscillatory. 
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