REVERSE DERIVATIONS ON SEMI PRIME RINGS

C．JAYA SUBBA REDDY，S．VASANTHA KUMAR \＆G．VENKATABHASKARA RAO
Department of Mathematics，S．V．University，Tirupati，Andhra Pradesh，India

Abstract

In this paper，we prove some results concerning to reverse derivations on semi primerings are presented． We prove that let d be a commuting reversed erivation of a semi primering R ．Then $\alpha \in \Delta$（d）if and only if $\alpha \in \mathrm{Z}$ and $\operatorname{ad}(\mathrm{x} 2)=0$ ，for all $\mathrm{x} \in \mathrm{R}$

KEYWORDS：Derivation，Reverse Derivation，Semi Prime Ring，Center

INTRODUCTION

I．N．Herstein［4］has introduced the concept of reverse derivations of prime rings and proved that anon－zero reversed erivation＊of a primering Aisa commutative integral domain and＊is an ordinary derivation of A ．Later Bresar and Vukman［2］have studied the notion of reversed erivation and some properties of reversed erivations．M．Samman and N ．Alyamani［6］have studied some properties of reversed erivations on semi primering s and proved that amapping d on as emiprimering R is are verse derivation if and only if，it is a central derivation．Also proved that if a primering R admitsa non－zero reverse derivation，then R is commutative．K．Suvarna and D．S．Irfana［7］studied some properties of derivation so n semi primerings．Laradji and Thaheem［5］first studied the dependent elements in endomorphisms of semiprimerings and generalized a number of results of［3］for semiprimerings．Ali and Chaudhry［1］investigated the decomposition of as emiprimering R using dependent elements of a commuting derivation d ．

Preliminaries

An additive map d fromaring R to R is called a derivation if $d(x y)=d(x) y+x d$（ y ）for all x ，yin R ．An additive map d from a ring R to R is called are verse derivation if $d(x y)=d(y) x+y d(x)$ for all x, y in R ．A mapping $d: R \rightarrow R$ is called commuting derivation if $[d(x), x]=0$ ，for all x in R ．A mapping $d: R \rightarrow R$ is called commuting reverse derivation if $[\mathrm{x}, \mathrm{d}(\mathrm{x})]=0$ ，for all x in R ．A ring R is called semi prime if x ax $=0$ implies $\mathrm{x}=0$ for all x, a in R ．Through out this paper R will denote as emiprime ring，$D(d)$ is the collection of all dependent elements of d and Z its center．

MAIN RESULTS

Theorem1：If d is a commuting in nerreverse derivation on as emiprimering R ，then $d=0$ ．Now，we prove the following result：

Theorem2：Let d bea commuting reversed erivation of a semiprimering R ．Then $a \in D(d)_{\text {if }}$ and only if $a \in Z$ and $\operatorname{ad}\left(x^{2}\right)=0$ ，for all $x \in R$ ．

Proof：Let $a \in D(d)$ ．Then，
$a d(x)=a[x, a]$, for all $x \in R$
If we replace x by $y x$ in equ.(1), then we get,
$\Rightarrow a d(y x)=a[y x, a]$
$\Rightarrow a(d(y) x+y d(x))=a(y[x, a]+[y, a] x)$
$\Rightarrow a d(y) x+a y d(x)=a y[x, a]+a[y, a] x$, for all $x, y \in R$
From equ.'s (1) and (2), we get,
$\Rightarrow a[y, a] x+\operatorname{ayd}(x)=a y[x, a]+a[y, a] x$
$\Rightarrow \operatorname{ayd}(x)=a y[x, a]$, for all $x, y \in R$
If we multiply equ. (3) by z on the left, then we get,
$\Rightarrow z \operatorname{ayd}(x)=z a y[x, a]$
By replacing y by $z y$ in equ. (3), we get,
$\Rightarrow a z y d(x)=a z y[x, a]$
By subtracting equ. (5) From equ. (4), we get,
$\Rightarrow z a y(x)-\operatorname{azy} d(x)=z a y[x, a]-a z y[x, a]$
$\Rightarrow(z a-a z) y d(x)=(z a-a z) y[x, a]$
$\Rightarrow[z, a] y d(x)=[z, a] y[x, a]$

By multiplying equ. (6) by x on the right, we get,
$\Rightarrow[z, a] y d(x) x=[z, a] y[x, a] x$

If we replace y by $y x$ in equ. (6), then we get,
$\Rightarrow[z, a] y x d(x)=[z, a] y x[x, a]$

By subtracting equ. (7) from equ. (8), then we get,
$\Rightarrow[z, a] y x d(x)-[z, a] y d(x) x=[z, a] y x[x, a]-[z, a] y[x, a] x$
$\Rightarrow[z, a] y(x d(x)-d(x) x)=[z, a] y(x[x, a]-[x, a] x)$
$\Rightarrow[z, a] y[x, d(x)]=[z, a] y[x,[x, a]]$

Since $d_{\text {is commuting, from equ.(9), we get, }}$,
$\Rightarrow[z, a] y[x,[x, a]]=0$

If we multiply equ. (10)by ${ }^{z}$ on the left, then we get,
$\Rightarrow z[z, a] y[x,[x, a]]=0$

Now we replace $y_{\text {by }} z y_{\text {in (}}(10)$, then we get,
$\Rightarrow[z, a] z y[x,[x, a]]=0$

By sub tracting equ.(12)from equ.(11), then
$\Rightarrow z[z, a] y[x,[x, a]]-[z, a] z y[x,[x, a]]=0$
$\Rightarrow(z[z, a]-[z, a] z) y[x,[x, a]]=0$
$\Rightarrow[z,[z, a]] y[x,[x, a]]=0$

Replace $^{z}{ }^{\text {by }}{ }^{x}{ }_{\text {in }}$ the above equation, then we get,
$\Rightarrow[x,[x, a]] y[x,[x, a]]=0$
By using the semi primenes s of R, we get,
$\Rightarrow[x,[x, a]]=0$, for all $x \in R$
Thus the inner derivation $\psi: R \rightarrow R_{\text {defined by }} \psi(x)=[x, a]_{\text {is commuting }}$.
Hence $\psi(x)=0_{\text {byTheorem: }} 1$, whichimplies $[x, a]=0$. Thus $a \in Z$.Further from
Equ .(1), we get, $a d(x)=0$.
Now $\operatorname{ad}\left(x^{2}\right)=a(d(x) x+x d(x))$
$=\operatorname{ad}(x) x+\operatorname{axd}(x)$
$=\operatorname{axd}(x)$, since $a \in Z$
$=\operatorname{xad}(x)$
Therefore, $\operatorname{ad}\left(x^{2}\right)=0$
Conversely, let $a \in Z$ and $\operatorname{ad}\left(x^{2}\right)=0$. Then, $\operatorname{ad}\left(x^{2}\right)=0$ implies $a d(x) x+\operatorname{axd}(x)=0$.
Since d is commuting, $a d(x) x+a d(x) x=0$
$\Rightarrow 2 a d(x) x=0$
Since R is of char $\neq 2, a d(x) x=0$.
By multiplying the above equation by $a d(x)$ on the right, we get,
$A d(x) \operatorname{xad}(x)=0$.
Since R is semi prime, then $a d(x)=0=a[x, a]$.

Hence $a \in D(d)$

This completes the proof of the theorem.

Proof: Since $a \in D(d)$, then
$\operatorname{ad}\left(x^{2}\right)=0$ implies $a d(x)=0$, for all $x \in R$
We replace x by $d(x)$ in equ. (14), then
$\Rightarrow a d(d(x))=0$
$\Rightarrow a d^{2}(x)=0$, forall $x \in R$
From equ.(14), we get,
$\Rightarrow d(a d(x))=0$
$\Rightarrow d(0)=0$, which implies that,
$\Rightarrow d(x) d(a)+a d^{2}(x)=0$

By using equ.(15),we get,
$\Rightarrow d(x) d(a)=0$
We replace x by $x a$ in equ. (16) And using equ. (16) again, we get,
$\Rightarrow d(x a) d(a)=0$
$\Rightarrow(d(a) x+a d(x)) d(a)=0$
$\Rightarrow d(a) x d(a)+a d(x) d(a)=0$
$\Rightarrow d$ (a) $x d(a)=0$, for all $x \in R$
By using the semi primenes s of R, we get, $d(a)=0$.
Corollary2: Let R be as emiprimering and d a commuting reversed erivation of R. Then $D(d)$ is a commutative semi prime subring of R.

Proof: Let $a, b \in D(d)$.Then by Theorem: 2, a, $b \in Z, a d(x)=0$ and $b d(x)=0$, For all $x \in R$. Obviously $a-b \in Z$ and $a b d(x)=0$. So,$a-b$ and $a b \in D(d)$.

Since $a, b \in Z$,so, $a b=b a$.Thus $D(d)$ isacommutativesubringof R.Toshowsemiprimenessof $D(d)$, we consider $a D(d)=0, a \in D(d)$. Then $a x a=0$, for all $x \in D(d)$.

In particular $a^{3}=0$, which implies $a=0$ because R has no central nil potents. Thus $D(d)$ is a commutative semi prime subring of ring R.

Corollary3: Let R be a commutatives emiprimering and d are verse derivation of R. Then $D(d)$ is an ideal of R.
Proof: Since R is commutative, so, d is commuting. Let $a, b \in D(d)$.Then by Corollary:2, $a-b \in D(d)$.Let $a \in D(d)$ and $r \in R$. Then $a d(x)=0$, for all $x \in R$.Thusrad $(x)=0$.Since $a r=\operatorname{ra}$, sorad $(x)=\operatorname{ard}(x)=0$, forall $x \in R$.Hence $a r=r a \in D(d)$. Thus $D(d)$ is an ideal of R.

Remark 1: If R is as emiprimering and U an ideal of R, then it Is easy to verify that U is as emi prime subring of R and $Z(U) \subseteq Z$.

Remark 2: If d is a commuting reverse derivation on R and $a \in D(d)$. Then by Theorem:2,
$\operatorname{Ad}(x)=0$,forall $x \in R$.Thisimplies $0=a d(x y)=a d(y) x+a y d(x)=\operatorname{ayd}(x)$,
Which gives ayd $(x)=0$.Thus $d(x)$ ayd $(x) a=0$, forall $x, y \in R$, which by
Semi primeness of Rimplies $d(x) a=0$

REFERENCES

1 Ali. F. and Chaudhry. M. A. Dependent elements of derivations, on semi prime rings, Inter. J. Math and Math. Sci 10 (2009), 1-5.

2 Bresar. M. and Vukman. J.On some additive mappings in rings with involution, A equationes Math. 38 (1989), 178-185.

3 Choda. H., Kasahara. I. and Nakamoto. R. Dependent elements of auto morphisms of a C*-algebra, Proc. Japan Acad. 48 (1972), 561-565.

4 Herstein. I. N.Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
5 Laradji. A. and Thaheem. A. B. On dependent elements in semi prime rings, Math. Japonica. 47 (1998), 576-584.
6 Samman M. and Alyamani. N. Derivations and reverse derivations in semi prime rings, International Mathematical Forum, 2, (2007), No.39, 1895-1902.

7 Suvarna. K. and Irfana. D. S. Dependent elements of derivations in semi prime rings, Advances in Mathematical and Computational Methods, Vol. II, Jan (2011), 333-336.

