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Abstract 

The paper introduces the computational experiment approach to school 
mathematics curriculum by investigation a variety of mathematical models 
that were typically considered advanced in the pre-computer age. This 
approach makes it possible to connect sophisticated mathematical context 
and the modern day teaching practice. The talk will demonstrate how 
mathematical experimentation in the technological paradigm creates 
conditions for collateral learning to occur including the development of skills 
important for engineering applications of mathematics. 
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1. Introduction 
 

 In this paper, the word experiment stems from the use of computing technologies in 
support of pre-college mathematics curriculum, in particular, as it is introduced by the author 
in mathematics teacher education courses. These modern digital tools when integrated with 
mathematics instruction have great potential to create and enhance conditions for learners’ 
inquiry into mathematical structures represented through interactive graphs, dynamic 
geometric shapes, and electronically generated and controlled arrays of numbers. In the 
context of mathematical education in general, experimental mathematics makes use of such 
representations as a way of motivating learners’ conjecturing of mathematical propositions 
followed up (whenever possible) by their formal demonstration. 
 In developing ideas about experimental pre-college mathematics, a number of 
commonly available computer applications allowing for lucid presentation of grade-
appropriate mathematical ideas can be used. One such application is an electronic spreadsheet 
used to support a variety of numeric calculations. The tool was conceptualized in educational 
terms by its inventor, Dan Bricklin, as ‘an electronic blackboard and electronic chalk in a 
classroom’ [40]. Another application is the Graphing Calculator 4.0 produced by Pacific 
Tech [8] that facilitates experimentation in algebra through the software’s capability of 
constructing graphs from any two-variable equation, inequality, or a combination of those. A 
remarkable computer program available free on-line is Wolfram Alpha developed by 
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Wolfram Research – a tool that allows for different types of experimentation with 
mathematical concepts, including the construction of graphs of functions and relations and 
carrying out complicated symbolic computations. Mathematical experiments can also be 
carried out in the context of The Geometer’s Sketchpad, a dynamic geometry application 
created by Nicholas Jackiw in the late 1980s. Nowadays, especially in Europe, GeoGebra 
[22] – a free, open-source application for teaching and learning geometry and algebra – is 
used extensively making it another appropriate tool for mathematical experimentation. 
Finally, briefly in this paper some computational results carried out by Maple [11] – a 
powerful tool for mathematical modeling – are presented.   
 Whereas the notion of experiment in the context of education has multiple meanings, 
learning as the goal of experiment is what all the meanings have in common. In a seminal 
book on experiment in education, McCall [31] recognized the power of experiment as a 
milieu where “teachers join their pupils in becoming question askers” (p. 3). Mathematics is 
especially conducive to the development of an environment in which reflective inquiry, 
referred to by Dewey [16] as a problem-solving method that blurs the distinction between 
knowing and doing by integrating knowledge with experience, is the major learning strategy. 
 The bedrock of any mathematical experiment is observation – an activity of the mind 
that feeds reflective inquiry and builds up experience. Euler, the father of modern 
mathematics, including number theory, emphasized the important role of observations and 
so-called quasi-experiments or thought processes (experiments) that stem from observations: 
“the properties of the numbers known today have been mostly discovered by observation, and 
discovered long before their truth has been confirmed by rigid demonstration” (Euler, cited in 
[39, p. 3]). Yet, as Euler advised, “we should take great care not to accept as true such 
properties of the numbers which we have discovered by observation and ... should use such a 
discovery as an opportunity to investigate more exactly the properties discovered and to 
prove or disprove them; in both cases we may learn something useful” (ibid, p. 3). In that, 
Euler pointed at the importance of formal justification of the results of a mathematical 
experiment. These results, by providing basis for insight, give birth to theory. In reciprocity, 
theory can be used to support an experiment as its conditions become more and more 
complex. In this paper, several examples of interplay between theory and the grade 
appropriate modern day mathematical experiment will be provided. 
 

2. Developing interest in mathematics through a computational experiment 

 At the end of the 19th century, an American psychologist William James studied the 
art of teaching (called pedagogy) from the point of view of psychology. One of his ideas 
about developing learners’ interest in a subject matter was as follows: “Any object not 
interesting in itself may become interesting through becoming associated with an object in 
which an interest already exists” [25, p. 62]. More than a century later, the National Council 
of Teachers of Mathematics [34] – the major professional organization of mathematics 
educators in North America – asserted, “Effective teachers optimize the potential of 
technology to develop students’ understanding, stimulate their interest, and increase their 
proficiency in mathematics” (p. 1, italics added). What James had proposed long before the 
digital era can be applied to the modern technology-enhanced classroom. The experimental 
mathematics approach can provide interplay between computing (experiment) and formal 
demonstration (theory). This approach can utilize technology for the development of 
reasoning skills in the context of pre-college mathematics curricula of teacher education 
programs. 
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3. Defining computational experiment in the pre-college context 
  
3.1. International dimension of the use of technology 
 The notion of computational experiment as an inquiry into mathematics brings about 
the term experimental mathematics in the modern pre-college classroom. The advent of 
computers made it possible to extend the notion of experimental mathematics to include the 
idea of advanced problem solving made possible by computationally supported mathematical 
education environments. Through such inquiry, both the complexity of mathematics to be 
involved and the sophistication of technology to be used can vary on the spectrum from 
precollege level to that of mathematical research. Although the use of paper and pencil allows 
for some basic computations also, the current emphasis on the use of technology in the 
teaching of mathematics in the countries (referring to sources available in English) like 
Australia [36], Canada [19, 37], England [7, 15], Japan [46], Singapore [33], the United 
States [12, 13, 23, 24, 34, 35, 41], and other places in the world as a way of making its 
learning more accessible is the main reason for the author to emphasize the use of the tools 
available in the digital era. So, in the context of this paper, the term experimental 
mathematics means an approach to mathematics teaching and learning made possible by the 
use of various commonly available and user friendly computational tools. Furthermore, 
methodology of the experiment remains the same regardless at which grade level it is used 
and what tools it employs.  
 
3.2. Bridging the gap between the past and the present 
 Introducing experimental mathematics approach into pre-college mathematics 
curriculum, note that, unlike experimentation in mathematics research, the approach, usually, 
does not offer results that were not possible to obtain in the pre-digital era. For example, 
through unsophisticated experimentation with the first two terms of Fibonacci sequence F

n
 

defined recursively as 

F
n2

 F
n1
 F

n
, n  0,1, 2, ..., F

0
 F

1
 1 ,   (1) 

one can “discover” that regardless of the values F
0
 and F

1
, the ratios F

n1
/ F

n  always tend 

to the same number known as the Golden Ratio. What is hidden in such a computational 
experiment is that the n-th term of the Fibonacci-like sequence x, y,x  y,x  2y,2x  3y, ..., 
in which each term beginning from the third is the sum of the previous two terms, has the 

form f
n
(x, y)  F

n2
x  F

n1
y  and that for all (real) x and y lim

n

f
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(x, y)

f
n
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
1 5

2
— the 

Golden Ratio. This fact was known long before the digital era and it can be confirmed 
through formal demonstration without much difficulty. What was not known until recently 
[6] is that if the difference equation in (1) is parameterized to the form F

n2
 aF

n1
 bF

n
,  

where a, bR , the lim
n

F
n1

/ F
n may cease to exist and, instead, the ratios may be attracted 

by the strings of numbers of any given length. In other words, for some values of a and b the 
ratios may form cycles of any given period. 
 However, in general, what a computer allows mathematics educators to achieve is to 
bridge the gap between pedagogical practices of the past and the present. Mathematical 
content such as Fibonacci numbers and the Golden Ratio available in the past to only very 
few mathematically advanced students, presently can be accessed by the majority of students 
through the use of technology. Fibonacci numbers and the Golden Ratio represent an 
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example of such content. Another example of how a computer can bridge this gap between 
the past and the present is the availability of software that can graph both functions and 
relations.  

 To clarify, consider the equation x2  ax 1 0 with variable x and parameter a. By 
constructing its locus using Wolfram Alpha (or the Graphing Calculator 4.0), one can 
immediately see (Figure 1) that when | a | 2 this equation does not have real roots because 
no line a  const  for those values of a has a point in common with the locus. To obtain this 
result without a computer would require one first to convert the quadratic equation to the 

form a  x 
1

x  
and

 
then

 
to

 
construct the graph of the function f (x)  x 

1

x  
.
 

To 

construct the graph without technology, one has to use a number of facts from the secondary 
mathematics curriculum including the behavior of f(x) in the neighborhood of zero and at 

infinity, the arithmetic mean-geometric mean inequality x 
1

x
 2

 
for x > 0, and the 

symmetry of the graph of f(x) about the origin. At the same time, a computational experiment 
requires one only to use skills in interpreting the graph constructed by software (provided, of 
course, that a user can correctly enter the quest for graphing into the input box of software 
used).  
 

 
Figure 1. The locus of the equation x2  ax 1 0. 

4. Mathematical experiment as signature pedagogy  
 

4.1. Three structures of signature pedagogy 
 Shulman [44] introduced the notion of signature pedagogy in the context of studies of 
medicine and law and argued for the importance of developing in students the habits of mind 
of professionals working in the field they are preparing to join. This notion was explored for 
a variety of disciplines [21], including mathematics [3, 18, 27, 38]. Common characteristics 
for all signature pedagogies varying across disciplines comprise three entities – surface 
structure of teaching, deep structure of teaching, and implicit structure of teaching – called by 
Shulman [44] the structures of signature pedagogy. When a teacher possesses only very basic 
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subject matter knowledge, their pedagogical skills and abilities lie within the surface structure 
of teaching. In mathematics, teaching at the surface structure level fails to appreciate such 
pillars of knowledge development as problem solving, reflective inquiry and conceptual 
learning. Instead, someone holding to the surface structure of mathematics teaching 
emphasizes memorization of rules without understanding their meaning. Mathematical 
experiment cannot be used in the classroom as a teaching method unless a teacher is prepared 
psychologically to gravitate away from the surface structure of teaching. 
 
4.2. Deep structure of teaching mathematics 
 A pedagogy used to support the deep structure of teaching is based on one’s good 
knowledge of content he or she teaches. This pedagogy requires one’s understanding how 
different areas and concepts of a discipline are connected. It is open to the practice of 
teachers and students exploring jointly mutually generated questions. In mathematics, deep 
structure of teaching implies the need for a teacher to know mathematics, understand its main 
ideas and concepts, be able to demonstrate and interpret connections among the concepts, and 
have a rich repertoire of motivational techniques for the introduction of such concepts. In 
other words, a teacher must have a strong command of pedagogical content knowledge [42, 
43], currently considered as the basis for students’ progress in learning mathematics [9]. 
Motivational techniques may include computer experimentation with mathematical concepts 
as was suggested more than 40 years ago: “the computer provides mathematicians with an 
unparalleled opportunity to motivate students towards experimentation with mathematics” 
[32, p. 295]. Therefore, with the advent of technology, deep structure of mathematics 
pedagogy can also be characterized by a mathematical experiment that stems from one’s 
understanding of how mathematics and technology interact.  
 
4.3. Three descriptors of signature pedagogy 
 Teaching students to do mathematics is inherently linked to Shulmans’ [45] three 
descriptors of signature pedagogy—uncertainty, engagement, and formation.  If a teacher 
incorporates reflective inquiry pedagogy, thereby acting at the deep structure of teaching, a 
student, by asking an unexpected question, can pose a “new” problem. This problem might be 
too difficult to solve even in an experimental fashion. The realization of this fact points to the 
uncertainty of mathematics pedagogy. Next, doing something presupposes engagement; so 
problem-solving focus of current mathematics pedagogy does require students’ engagement. 
Finally, regardless of the outcome of this engagement, one develops a kind of professional 
disposition towards the discipline of mathematics even when a problem is not solved from 
the first attempt. In this case, it is very important for a teacher to provide students with a 
qualified assistance. As noted by de Lange [14], the students’ excitement with problem 
solving and the teacher’s growing confidence with mathematical content have great potential 
to overcome the issue of uncertainty in the classroom. In the digital era, at any grade level, 
problem solving and mathematical exploration can be supported by the use of computers, an 
innovation which brings the elements of uncertainty, engagement, and formation to the 
mathematics classroom. Therefore, these ever changing teaching tools, in Shulman’s [44] 
words, “create an opportunity for reexamining the fundamental signatures we have so long 
taken for granted” (p. 59).  
 

5. Two types of technology application 
 

 Maddux [28] introduced the notion of Type I vs. Type II applications of technology 
referring to the latter type as “new and better ways of teaching” (p. 38, italics in the original). 
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In the context of pre-college mathematics, an emphasis on better ways of teaching is due to 
the need to move away from using a computer for drill and practice with its either-right-or-
wrong educational philosophy or for transmitting (often formal) mathematics instruction in a 
mode which is inherently entertaining. The most common Type I applications of technology 
to mathematics education are those that support the above two pedagogical approaches – drill 
and practice and entertainment. On the contrary, solving multistep problems or exploring 
curricular topics that otherwise are not attainable are examples of Type II application of 
technology in mathematics education. In the problem-solving-oriented mathematics 
education, using technology for analysis, conjecturing and justification, when ideas are born 
in the minds of students who are assisted in this process by a teacher as a ‘more 
knowledgeable other’, does encourage individualized instruction as the core of the Type II 
concept [29].  
 The concept of Type I/Type II application of technology turned out to be a very 
powerful theoretical shield against sometimes rather strong critique and persistent skepticism 
regarding the worth and purpose of using computers in the schools. More recently, Maddux 
and Johnson [29] argued that “the boring and mundane uses to which computers were often 
being applied [at the infancy of their educational applications] had set the stage for a major 
backlash against bringing computers into schools” (p. 2). Therefore, the experimental 
mathematics approach cannot be viewed an educationally successful tool unless a teacher 
acts at the deep structure level of signature pedagogy, is capable of dealing with uncertainty 
when supporting students’ engagement in computationally enabled problem solving, and has 
skills to foster mathematical mindset of the students. 
 Encouraging reflection and supporting analysis of the action by a student implies that 
one acts at the deep structure level of teaching. This kind of professional behavior requires 
broad pedagogical knowledge of what a specific computer environment affords, intellectual 
courage to motivate students to reflect on their actions, readiness to answer unexpected 
questions, and willingness to support students’ natural curiosity that develops within the 
“zone of proximal development” [50]. When a student’s performance becomes fully assisted, 
the teaching occurs at the deep structure level. Teaching at that level also requires knowledge 
of current national standards of the subject matter taught, understanding connections which 
exist between concepts that belong to different grade levels, and, more importantly, skills of 
using computers to support concept learning. When a computer is used at the deep structure 
level, Type II application of technology occurs.  
 

6. Two styles of assistance in the digital era 
 

 Teachers’ beliefs about mathematics pedagogy and instructional uses of computers 
are the major elements of their implicit structure of signature pedagogy.  An individual 
teaching philosophy either keeps the teacher at the surface structure level or motivates a 
quick transition from one level to another. Experience working at the deep structure level, in 
turn, affects the extent of the richness of the implicit structure of the pedagogy.  
 Similarly to the two types of technology integration, one can talk about two styles of 
assistance that teachers can offer to their students [3]. Style I assistance is typified by the 
surface structure of teaching and it is limited by one’s teaching philosophy which does not 
view teaching, for the most part, as assisted performance [48]. Style II assistance is typified 
by the deep structure of teaching and it is open to promoting reflective inquiry and taking an 
intellectual risk by going into an uncharted territory brought to light through an open-ended 
classroom discourse. Likewise, teachers’ superficial knowledge of technology offers students 
Style I assistance only. By the same token, Style II assistance in the students’ design and/or 
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utilization of a computational learning environment requires a high level of technological 
literacy on the part of a teacher. These two styles of assistance, observed within the general 
instructional setting, underlie one’s implicit structure of signature pedagogy and determine 
the composition of two other structures. 
 

7. Parallel structures of teaching and learning 
 
7.1. Linking teaching to learning  
 The theoretical construct of signature pedagogy can be augmented to include students 
as the beneficiaries of the pedagogy. This augmentation is consistent with the underlying 
principles of educational scholarship, which sees the concept of signature pedagogy as an 
application of the theory of learning to the practice of teaching [44]. In particular, in the 
context of mathematical education this concept serves as a link between teaching and 
learning [18].  However, in general, the proposed extension is neither grade nor content 
specific and it may be applied to any discipline.  
 By extending the notion of signature pedagogy to include students, two separate but 
interdependent universes can be considered: teacher’s universe and student’s universe. Each 
universe comprises three levels echoing Shulman’s classical structures of signature 
pedagogy, which can be then considered as a part of the whole teaching and learning process. 
In this process, teaching affects learning and vice versa; that is, the way students learn (or 
aspire to learn) can affect the way teachers teach. Due to such reciprocity of teaching and 
learning, the same three structures — surface structure of learning, deep structure of learning, 
and implicit structure of learning — can be considered in the student’s universe.  
 
7.2. A need for Style II assistance in the zone of proximal development 
 The teacher’s and the student’s universes consist of matching parts which constantly 
affect each other as both participants of the process of education navigate through the 
structures of teaching and learning. In the presence of computers, teaching at the surface 
structure keeps a student at the surface structure of learning when the use of a computer is 
expected only to support enjoyment or, at most visualization of some very basic 
mathematical structures such as the multiplication table (Figure 2). Yet, the teacher cannot 
always control students’ use of technology. In the context of “playing” with numbers within a 
spreadsheet-based multiplication table, a student might recognize patterns that the program 
generates and then ask the teacher various questions about those patterns. For example, why 
does a path connecting by a k-gnomon two identical factors k (Figure 2) comprise the 

products the sum of which is equal to the third power of the factor, k 3 ? Or, why do the pairs 
of products equidistant from the borders of the multiplication table have equal sums? Of 
course, if the sums of products within a gnomon (like the one connecting the threes where 3 + 
6 + 9 + 6 + 3 = 33) are not recognized as cubed integers in a numeric environment, it is 
unlikely that one would be able to proceed from experiment to theory and to establish at the 
symbolic level within the k-gnomon the following chain of equalities 

k  2k  3k  ... (k 1)k  k 2  (k 1)k  ... 3k  2k  k

 2[k  2k  3k  ... (k 1)k] k 2  2k(1 2 3 ... k 1) k 2

 2k 
(k 1)k

2
 k 2  k 2(k 11)  k 3,

 
from where, taking into account [35, p. 337] that the sum of all numbers in the multiplication 
table is equal to  
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(1 2 3 ... n)2 
n(n1)

2











2

 , 

the formula k3

k1

n

 
n(n1)

2











2

 results. 

 One can ask: why do the numbers within a gnomon add up to a cubic number? This 
question calls for an explanation of the interplay between the procedural perspective on 
algebraic symbolism and the conceptual understanding of a symbol, k3, involved. Through 
such an explanation one can appreciate a link that exists between thinking of symbol as a 
process and seeing it as a concept [47]. To this end, note that the right-bottom element of a k-
gnomon, being a symbol representing a square number, can be interpreted as one of the k 
layers of a k  k  k -cube which represents a square-based parallelepiped of the unit height. 
In order to build a cube, one needs to augment this parallelepiped with additional k – 1 
parallelepipeds of the same size. As was shown above, 

; that is, we have a cube  

consisting of k identical parallelepipeds of the unit height. 
 

 
Figure 2. A numeric environment of the multiplication table. 

 
 In that way, a computer spreadsheet that generates the multiplication table may 
become a thinking device for a student, thereby, bringing him or her to the deep structure of 
learning. However, the student’s entry into this structure may turn to be unstable and the 
degree of its instability depends on the teacher’s willingness or readiness, in turn, to enter the 
deep structure of teaching; in other words, it depends on a style of assistance a teacher is 
prepared to offer. If the student enters the deep structure of learning, but does not receive 
Style II assistance from the teacher (e.g., connecting the summation of the first n cubed 
integers to the sum of numbers in the n n  multiplication table or explaining a geometric 
meaning of the summation of numbers within a gnomon as a process of building a cube), it is 
quite likely that he or she would exit it back to the surface structure of learning.  
 Furthermore, receiving no support for intellectual curiosity affects one’s cognitive 
disposition towards the continuation of having ‘a good time’ at the surface structure of 
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learning. This kind of a student’s functioning within his or her universe is consistent with the 
dynamism of cognition expressed through the theoretical construct of the zone of proximal 
development [50]. The longer both the teacher and the student function at the deep structures 
of their universes; in other words, the longer Style II assistance for Type II application of 
technology is provided, the more concept learning can result from computational 
experiments. 

 
8. Technology-enabled mathematics pedagogy 

 
 The notions of two types of technology application and two styles of assistance lead 
to the development of the concept of technology-enabled mathematics pedagogy (TEMP). 
This new concept can become a major pillar of modern signature pedagogy of mathematics 
as it can focus on the unity of mathematical experiment and mathematical proof. One of the 
major differences between TEMP and a mathematics pedagogy that does not incorporate 
technology pertains to the interplay between mathematical content under study and the scope 
of student population to which this content can be made available. Whereas problems that can 
be approached through TEMP may be fairly complex, using technology as a support system 
makes it possible to develop mathematical insight, facilitate conjecturing, and illuminate 
plausible problem-solving approaches to those problems. In comparison with mathematics 
pedagogy of pre-digital era that, in particular, lacks empirical support for conjectures, using 
TEMP has great potential to engage a much broader student population in significant 
mathematical explorations. TEMP provides teachers with tools and ideas conducive to 
engaging students in the project-based, exploratory learning of mathematics by dividing a 
project in several stages – empirical, speculative, formal, and reflective. Even if TEMP helps 
a student to reach the level of conjecturing without being able to proceed to the next level, its 
use is still justified.  
 By examining TEMP through the combined lens of teaching and learning, one can 
recognize significant merits of the pedagogy and its potential for achieving substantial 
learning outcomes. A student’s entrance into deep structure of learning may be motivated by 
a sudden recognition of a mathematical concept that a computer supports, be it by a teacher’s 
design or not. In the student’s universe, the implicit structure of learning includes previous 
learning experiences and beliefs about what it means to learn and do mathematics [18]. Just 
as in the case of implicit structure of teaching, the implicit structure of learning affects both 
surface and deep structures of learning. An example of this relationship is a student’s belief 
that any mathematical model, be it symbolic or iconic, serves only a single problem rather 
than multiple problems. Even if the same model emerges in different contexts, this belief 
prevents one from recognizing the sameness, affects one’s desire to move from surface to 
deep structure of learning and, thereby, hinders conceptual understanding of mathematics. 
However, if a teacher functions at the deep structure of teaching, he or she can guide a 
student to understanding that just as different problem-solving strategies can be applied to a 
single problem, different problems may be resolved through a single approach. TEMP 
grounded in mathematical experiments does provide such an approach. 

 
9. Collateral learning in the technological paradigm 

 
 9.1. Mathematical experiment and discovery by serendipity 
 John Dewey, the most influential contributor to the reform of American educational 
system in the first part of the twentieth century, made a case that a pedagogy which promotes 
and inspires learners’ reflection on the material studied creates conditions for what he called 
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collateral learning – an activity which does not result from the immediate objective of the 
curriculum under study. Rather, the activity stems from a hidden domain of the curriculum. 
The following argument emphasizes the educational significance of collateral learning: 
“Perhaps the greatest of all pedagogical fallacies is the notion that a person learns only the 
particular thing he is studying at the time” [17, p. 49]. TEMP requires from teachers deep 
knowledge of mathematics and proper understanding of how to integrate mathematics and 
technology in order to navigate students through obscure instances of collateral learning. 
Experimental mathematics approach is also conducive to “unintentional discovery” [26, p. 
33], be it a new knowledge for a student, teacher, or professional mathematician. For a 
curious mind that continuously uses known concepts as the building blocks of unknown 
concepts to be discovered by serendipity, the use of a computer at a tool for experimentation 
with mathematics is conducive to the discovery of facts that were not expected to come about 
at the outset of a computational experiment. That is, computer-supported mathematical 
experiment is an essential mechanism for discovery learning. 
 
9.2. Hidden mathematics curriculum 
 In a more general context, the notions of collateral learning and unintentional 
discovery bring to mind another educational construct known as hidden curriculum—“those 
nonacademic but educationally significant consequences of schooling that occur 
systematically” [30, p. 124].  This kind of learning experience is taking place within a context 
that is much broader than a topic of any given lesson and, through reflection, enables students 
to become aware of rules and guidelines typically associated with social relations and control 
of individual actions. The notion of hidden curriculum can be extended to include collateral 
learning and unintentional discovery that may take place within a pure academic domain 
when one is expected and even encouraged to make connections among seemingly 
disconnected ideas and concepts related to a specific subject matter. Thus, one can talk about 
hidden mathematics curriculum [2] – a didactic approach to the teaching of mathematics that 
motivates learning in a larger context that one “is studying at the time.” Computing 
technology provides a learning environment to support this approach through which hidden 
messages of mathematics can be revealed to students by teachers as ‘more knowledgeable 
others’. By the very design of a mathematical experiment and the nature of signature 
pedagogy of mathematical experiment, students are provided with ample opportunities for 
collateral learning and unintentional discovery as they develop mathematical habits of mind 
through continuous reflection on the results of a computational experiment. Several examples 
of using hidden mathematics curriculum framework to enable collateral learning are 
presented in the next few sections. 

 
10. Comparing two types of experiments 

 
 A computational experiment made possible by TEMP can motivate the development 
of an analytic solution of a mathematical problem. The solution, in turn, can be modeled 
within another mathematical experiment and then the results of the two experiments – 
technology-enabled experiment and solution-enabled experiment – can be compared. Such 
comparison requires one’s ability to correctly interpret different representations and use their 
similarity or identity to compare experimental results. A concept map between the two types 
of experiments is shown in Figure 3. 

As an illustration, consider the derivation of quadratic formula for the equation x2  x  c  0
         (2) 
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where c is a real coefficient. Using the Graphing Calculator 4.0 one can graph the locus of 
equation (2) shown in Figure 4. Any line c  const  has two points in common with the 
locus. In turn, any pair of such points with the coordinates x

1
 and x

2
 can be connected by a 

segment the mid point of which has the coordinates (
1

2
, c)  whence x

1.2
 

1

2
   where the 

value of   has to be determined. Furthermore, one can discover computationally that 

x
1
 x

2
 c  and, therefore,  

  
c  x

1
 x

2
 (

1

2
 )(

1

2
 ) 

1

4
 2 , 

whence  
1

4
 c  and  

x
1,2
 

1

2


1

4
 c .        (3) 

 In that way, formula (3) is a computationally developed quadratic formula that 
solves equation (2). It can be verified by graphing the relations  

x  
1

2


1

4
 c  and x  

1

2


1

4
 c  

in the plane (x, c). As a result, each of the last two relations would coincide graphically with 
the right and left branches of the locus of equation (2), respectively. That is, a quadratic 
formula may be obtained experimentally and then graphed as a way of verifying the 
correctness of the original experiment. 

 

 
Figure 3. Interplay between two types of experiment. 
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Figure 4. Loci of: left – equation (2) and right – formula (3). 

 
11. Experiment informed by theory: An example 

 
 11.1. A historical investigation in the modern context 
 Consider the following question: How can one arrange small square-shaped desks 
each of which seats four people (one at each side) in the form of rectangle so that the number 
of people seated around this rectangular desk is equal to the total number of small desks? 
 This exploration can be carried out experimentally by using The Geometer’s 
Sketchpad capable of constructing such rectangles (through trial and error) and calculating 
interactively the values of area (the number of desks) and perimeter (the number of people) in 
each case. With a relative ease, one can come up with two rectangles already known to 
Pythagoreans [49, p. 96]: 4 4 and 3 6 rectangles. However, experiment without theory is 
incomplete: it remains to be shown that there are indeed only two rectangles with such a 
property. To this end, a different environment created in the context of The Geometer’s 
Sketchpad can be used to establish isomorphism between the construction of rectangles and 

covering fraction circle 
1

2
 using two other fraction circles with no gaps or overlaps.  

 Indeed, if x and y are the (whole number) side lengths of a rectangle with the sought 

property, then xy  2x  2y whence 
xy

2xy


2x

2xy


2y

2xy
 or 

1

2


1

x


1

y
. The last equation has 

the following geometric interpretation through fraction circles: one-half can be split into two 
equal parts, that is, into two one-fourths, and if the parts are not equal, one of them is bigger 
than one-fourth that could only be the fraction one-third. The latter, in combination with one-

sixth creates one-half. That is, 
1

2


1

4


1

4


1

3


1

6
.  

 
11.2. Theory evolves to inform experiment 
 Now one can explore a more difficult problem of finding rectangles with the four to 
one ratio of area to semi-perimeter. This time, finding such rectangles through pure 
experimentation in the context of The Geometer’s Sketchpad (or any other dynamic geometry 
application) is quite a challenge. However, by using electronic fraction circles one can 
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discover that there exist three ways to split fraction circle 
1

4
 into two fraction circles (Figure 

5) and then show that the equation 
1

4


1

x


1

y
 is equivalent to xy  4(x  y)  by dividing 

both sides of the latter equation by 4xy . In that way, a theory developed around the 
partitioning of fraction circles in two other fraction circles informs experimental work with 
rectangles enabling one to know exactly the dimensions of the rectangles to be constructed. 
And when computer confirms that, indeed, the 8 8, 612and 5 20 rectangles (Figure 6) 
have the four to one ratio of area to semi-perimeter, one not only has an informed experiment 
but the confirmation of theory through experiment as well.  
 The exploration with rectangles followed by the one with fraction circles that, in turn, 
facilitates a more complicated exploration with rectangles, illustrates an interplay that exists 
between experiment and theory. A simple experiment with the square-shaped desks by 
lacking full interpretation motivates the development of theory, which, in turn, informs other 
more technologically complex experiments. That is, the quest for internal validity of 
experiment becomes a basis for the development of theory and its subsequent external 
validation through application. Finally, the geometric results can be presented alternatively in 

a graphic form by constructing the locus of a two-variable Diophantine equation 
1

x


1

y


1

n  
with parameter n using the Graphing Calculator and demonstrating that when n  4  the 
points (8, 8), (12, 6) and (20, 5) belong to the locus of the equation (Figure 7). Alternatively, 
this equation can be modeled numerically within a spreadsheet using inequalities as the 
means of achieving computational efficiency of the software [1]. 
 

 
Figure 5. Three ways of splitting fraction circle one-fourth in two fraction circles. 

 
Figure 6. Experiment informed by theory. 
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Figure 7. Graphical solution of the equation 
1

x


1

y


1

4
. 

12. On the duality of experiment and theory 
 Experimental mathematics approach makes it possible to use uncomplicated context 
of pre-college mathematics curricula in order to illustrate a conceptually rich interplay 
between theory and computing. A conventional wisdom is that the use of technology 
facilitates access to complex ideas by hiding the complexity of mathematics within a 
computational environment. This section provides an example illustrating how theory 
(including paper-and-pencil computations) and computational experiment can complement 
each other. 

 Consider the case of solving in whole numbers the equation 
1

2


1

x


1

y


1

z
 which, in 

particular, describes all right rectangular prisms with integral dimensions x, y, and z, and 
volume being numerically equal to surface area. Indeed, for such a prism we have the 
equation xyz  2(xy  xz  yz). Dividing both sides of the latter equation by 2xyz yields the 
former equation. To solve this equation, note first that as shown in section 11.1, 
1

2


1

4


1

4


1

3


1

6
. In order to partition 

1

2
 into three unit fractions, one has to partition each 

of the three fractions— 
1

3
,

1

4
,

1

6
— into two unit fractions. As  

1

3


1

6


1

6


1

4


1

12
,

1

4


1

8


1

8


1

5


1

20


1

6


1

12
,

1

6


1

12


1

12


1

7


1

42


1

8


1

24


1

9


1

18


1

10


1

15
,

 

 
the following nine solutions of the original equation result 

   

    

 

1

2


1

4


1

5


1

20
,

1

2


1

4


1

6


1

12
,

 

1

2


1

4


1

8


1

8
,

1

2


1

3


1

7


1

42
,
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,    

 

 At the same time, one can observe (perhaps, after using a spreadsheet as shown in 

Figure 8) that the solution 
1

2


1

3


1

5


1

10
 was not listed above. One may wonder: what is 

special about this missing representation? To answer this question, consider the equality 
1

2


1

4


1

5


1

20
  (see cells C1, A2, C2 in Figure 8), which can be further transformed to the 

following representation of one-half as the sum of four unit fractions 
1

2


1

5


1

20


1

5


1

20
. 

Due to the equality 
1

20


1

20


1

10
, in which two unit fractions convolute into one, the 

missing representation, 
1

2


1

5


1

5


1

10
, found through spreadsheet modeling has been 

discovered.   

 
  Figure 8. Ten representations of 1/2 as a sum of three unit fractions. 
 
 The case of a missing representation merits special consideration. It appears that the 
non-computational approach described above, although was based on a system, 
notwithstanding, had a flaw and, thereby, cannot be trusted. Without using technology, in 
order to overcome a possible deficiency of paper and pencil calculations, one has to continue 
partitioning fractions into the sums of four unit fractions to see if other cases when a sum of 
two unit fractions convolutes into one such a fraction could be found. This case demonstrates 
the didactical significance of the unity of computational and theoretical approaches in 
exploring mathematical ideas. Whereas one needs a theory in order to make sense of a 

 

1

2


1

3


1

8


1

24

1

2


1

3


1

9


1

18
,

 

1

2


1

3


1

10


1

14
,

1

2


1

3


1

12


1

12
,

1

2


1

6


1

6


1

6
.
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computational experiment, one also can benefit from the use of instructional computing as a 
means for the validation of theoretically developed results.  
 

 13. Validating mathematical experiment: An illustration  
 

13.1. Internal and external validation of an experiment 
 In education, any experiment can be validated through both internal and external 
means [10]. Internal means of validation of experiment comprise the basic set of skills and 
abilities needed for the interpretation of experimental results. In turn, informed interpretation 
creates conditions for generalizing from the experiment. It is through generalization that the 
experiment is validated externally. In the case of a computationally supported mathematical 
experiment, one has to possess some basic (grade appropriate) mathematical knowledge and 
skills in order to be able to interpret information generated through the experiment and, 
therefore, develop a more general perspective on this interpretation.  
 
13.2. Fibonacci numbers as sums of binomial coefficients 
 As an illustration, consider the following spreadsheet-based computational 
experiment that starts with generating partial sums of the series 1, 1, 1, 1, ...  , that is, with 
generating the natural number series 1, 2, 3, 4, ... . The two series are arranged in a two-
column array as shown in Figure 9, columns A and B. The next step is to generate partial 
sums of natural numbers (triangular numbers, column C), than partial sums of triangular 
numbers (tetrahedral numbers, column D), than partial sums of tetrahedral numbers 
(pentatope numbers, column E), and so on. But each time, the first term of each new 
sequence is shifted down by two positions.  
 The experiment continues by computing the sums of numbers in each row of the 
spreadsheet. These numbers are 2, 3, 5, 8, 13, 21, ... (column K).  In order to grasp the 
intended meaning and appreciate the mathematical significance (in educational sense) of this 
computational experiment, one has to be able to recognize the nature of the numbers in 
column K comprising this final sum. Otherwise, that is, if these numbers are not recognized 

as Fibonacci numbers and the elements of the sums as the binomial coefficients C
nk
k , one is 

unable to proceed from experiment to theory. This transition is needed to establish the 
external validity of the experiment that deals with the issue of generalizability. In this case, 
the theoretical justification of the experiment consists in formal demonstration of the 
emerging conjecture, namely, that  

C
n
0 C

n1
1 C

n2
2  ...C

nr
r  F

n
, n = 2, 3, 4, ... , where r  n / 2 

 
.  (4) 

Here x   denotes the greatest integer smaller than or equal to x.  
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Figure 9. Generating successive partial sums. 

 
13.3. Developing situational referents for Fibonacci numbers   
 Therefore, if one does not possess mathematical knowledge necessary for 
establishing the internal validity of an experiment, he or she is not prepared for the discussion 
of its external validity, or, at the very least, any effort in establishing the external validity of 
an experiment may go astray. By connecting computational experiment to a real-life context 
such knowledge can be developed. Considering “every obstacle an opportunity for the 
exercise of ingenuity instead of an insuperable barrier” (McCall, 1923, p. 7), one can precede 
a somewhat abstract computational experiment with a more concrete hands-on activity 
involving familiar objects. According to Freudenthal [20], “It is independency of new 
experiments that enhances credibility ... [for] repeating does not create new evidence, which 
in fact is successfully aspired to by independent experiments” (pp. 193-194). Having 
different representations of an experimentally developed concept makes it easier to establish 
internal validity of experiment. In doing so, one can simplify the abstractness of symbols in 
relation (4) by introducing a context from which relation (4) can be independently developed. 
The following problem can provide such a context to serve as a situational referent for 
Fibonacci numbers. 
 
 Buildings of different number of stories are given and one has to paint them with a 
single color in such a way that no two consecutive stories are painted with it. How many 
ways of such painting of one, two, three, four, etc.–storied buildings are possible? Note: not 
painting a building at all is considered a special case of painting as in that case the main 
condition of not having consecutive stories painted is satisfied. 
 
 Without using technology, it is not difficult to conclude that the number of different 
paintings of one, two, three and four-storied buildings is equal, respectively, to 2, 3, 5, and 8. 

In general, there exist C
nk
k  ways to paint an (n – 1)-story building so that exactly k non-

adjacent stories are painted with one color. Indeed, C
nk
k  represents the number of ways to 

choose k objects (e.g., stories) out of n – k objects (stories), where 0 ≤ k ≤ n. In order to 
separate k painted stories, one needs to insert (k – 1) additional stories. In that way, a (n – k)-
storied building turns into the building with (n – k) + (k – 1) = n – 1 stories in which k non-
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adjacent stories are painted.  Therefore, a (n – 1)-story building can be painted in C
nk
k

k0

n/2 

  

ways. In particular, a one-story building (n = 2) can be painted in 

C
2k
k

k0

2/2 

  C
2
0 C

1
1  11 2 ways, a two-story building (n = 3) can be painted in 

C
3k
k

k0

3/2 

  C
3
0 C

2
1 C

1
2  1 2 0  3

 
ways, a three-story building (n = 4) can be painted in 

C
4k
k

k0

4/2 

  C
4
0 C

3
1 C

2
2  1 31 5ways, and a four-story building (n = 5) can be painted 

in C
4k
k

k0

5/2 

  C
5
0 C

4
1 C

3
2 C

2
3  1 4 3 0  8  ways. Note that 2, 3, 5, and 8 are 

consecutive Fibonacci numbers.  
 
13.4. Mathematical proof as external validation of the experiment 
 Now, one can proceed to proving identity (4) which connects combinations to 

Fibonacci numbers. Following [4], consider the function F(x)  F
n
xn

n0



 , where the numbers 

Fn are defined by recurrence relation (1). Noting that  

F
n1

n2



 xn1  F
n

n1



 xn  F(x) F
0
x0  F(x)1 and F

n2
n2



 xn2  F
n

n0



 xn  F(x) , 

one can write 

F(x)  F
0
x0  F

1
x  F

n
n2



 xn  1 x  (F
n1

n2



  F
n2

)xn 1 x  x F
n1

n2



 xn1  x2 F
n2

n2



 xn2

 1 x  x[F(x)1] x2F(x)  1 xF(x) x2F(x),
 
from where the generating function for Fibonacci numbers results 

F(x) 
1

1 (x  x2 )
 . 

Now, using the rule of summation of geometric series, the binomial expansion 

(1 x)k  C
k
r

r0

k

 xr  , 

and the substitution n = k + r yields  

F(x) 
1

1 (x  x2 )
 (x  x2 )k

k0



  xk (1 x)k

k0



  xk

k0



 C
k
r

r0

k

 xr  xn

n0



 C
nr
r

r0

n/2 

 .   

Finally, from the uniqueness of the power series expansion about x = 0 the equality 

F
n
 C

nr
r

r0

n/2 

 results, which is an alternative way of writing relation (4).   
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13.5. From mathematical experiment to an unsolved problem 
 Consider Figure 9. If one uses the strings of numbers displayed in rows 1, 2, 3, 4, ..., 
11 of the spreadsheet as coefficients in the powers of x, one can construct the polynomials 

   

P
1
(x)  x 1, P

2
(x)  x  2, P

3
(x)  x2  3x 1, P

4
(x)  x2  4x  3,...,

P
11

(x)  x6 11x5  45x4 84x3  70x2  21x 1,
 

called Fibonacci-like polynomials [5] and defined in the general form as 

P
n
(x)  xmod( n,2)P

n1
(x) P

n2
(x), n  2, P

0
(x)  1, P

1
(x)  x 1,   

where mod(n,2) is the remainder of n divided by 2. An interesting, in fact, remarkable, 
property of these polynomials is that they don’t have complex roots for any nN . This 
property was established [5] computationally using Maple for n ≤ 100 and it remains an open 
problem in mathematics. This example shows how the mathematical experiment approach 
applied to the context of a well-known and thoroughly studied entity of mathematics, 
Fibonacci numbers, can open a window to a mathematical frontier and thus bridge 
mathematics education and mathematics research. 
 

15. Concluding remarks 
 

 At the focus of this paper was the notion of a mathematical experiment in the 
technological paradigm as signature pedagogy of mathematics at the pre-college level. A 
number of software products such a an electronic spreadsheet, the Graphing Calculator, 
Maple, Wolfram Alpha, and The Geometer’s Sketchpad was suggested as appropriate tools 
for mathematical experimentation.  The paper reviewed mathematics education literature and 
the modern day educational standards related to the use of computers for teaching 
mathematics in the schools. It connected pioneering ideas by Euler about mathematical 
experiments with numbers to the use of the word experiment in grade-appropriate 
mathematics teaching practices. The paper highlighted the notions of collateral learning, 
unintentional discovery, and hidden mathematics curriculum as essential mechanisms of 
technology-enabled mathematics pedagogy. The relationship between the so-called 
technology-enabled and solution-enabled experiments was discussed in the context of 
experimentation with parameter-dependent quadratic equations. The classic context of pre-
college mathematics was used to illustrate how a mathematical experiment could be first 
validated internally through the interpretation of numeric results in order to provide a basis 
for moving to its external validation at the symbolic level through doing a formal 
mathematical proof. The final idea of the paper was to demonstrate how a mathematical 
experiment at the pre-college level could be extended to open a window to a mathematical 
frontier and formulate an unsolved problem in mathematics about the roots of polynomials 
associated with Fibonacci numbers. 
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