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INTRODUCTION

A continuous function f = u + iv is a complex
valued harmonic function in a complex domain C if
both u andv are real harmonic in C . In any simply
connected domain D < C, we can writef = h + g,
where h and g are analytic in D. We call h the
analytic part and g the co-analytic part of f . A
necessary and sufficient condition for f to be
locally univalent and sense —preserving in D is
that|h'(z)| > |g'(z)lin D, see (Clunie, 1984). In
1984, Clunie and Sheil-Small (Clunie, 1984)
investigated the class AHg and studied some
sufficient bounds.Since then the-re have been several
paper published related toAHs and its subclasses. In
fact by introducing new subclasses Sheil-small
(Sheil-Small, 1990), Silverman (Silverman, 1998),
Silverman and Silvia (Silverman, 1999), Jahangir
(Jahangiri, 1999) and Ahuja (Ahuja, 2005) presented
a systematic and unified study of harmonic univalent

functions. Furthermore we refer to Duren (Duren,
2004), ponnusamy (Ponnusamy, 2007) and ref-
erences there in for basic results on the subject.

Denoted by AHs , the class of function f = h +
g that are harmonic, univalent and sense-preser-ving
in the unit disk U={Z:|Z] <1} whith
normalization  f(0) = h(0) = £,(0) —1 = 0.Then
for f =h+g €AHg , we may express the analytic
functions h and g as
h(z) = z+ ¥, apz*, g(Z) =
z+ Yo bk, |by| < 1.

1)

Observe that AHg reduces to , the class of
normalized univalent functions, if the co- analytic
part of f is zero. Also, denoted by AH"the subclass
of AHs , consisting of function f that map U onto a
starlike domain.

For f = h+ g given by (1) and D*f(z) is the
Ruscheweyh derivative of f and defined by

A+DA+2) .. (A+n—1)

DA f(z) = ZBk(/l)ck 0> —1,B,(A) =
k=1

alsoD*f(z) = D*h(z) + D*g(2)

(n—-1)!
@

Recently Rosy et al. (Rosy, 2001) defined the subclass G¢ © AHg consisting of a harmonic univalent

function f(z) satisfying the condition
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@)

They proved that if f = h 4+ g is given by (1) and if
w Qk=1-y) Qk+1+y)

Yisi—q,y lul+ = lal 2,0 <y <1, 3)
thenf isin Gs (y).
This condition is proved to be also necessary by Rosy ef al. if h and g are of the form

h(z) = z = Xiolac )z, g(2) = — Xi-q|bilz"* (4)

Motivated by this aforementioned work, new we introduce the class Gs(A, @.p) as the subclass of functions of

the form (1) satisfy the following condition

Re< (1 +e'®) >y,0< y<1l,a€R.

pAta (@)

ReX (1 + pe'®) e

—pe®} >y, 0 y<l,a€Rp=0,q€N, (5)

whereD? f(z) is defied by (2)

Let Gs(4, a,p) denoted that the subclass of Gg(A, a, p) which consists of harmonic function f;, = h + g
such that h and g are the form
h(z) = z = Biolaxlz*, g, (2) = (=1)" Zi_qlbe |2 . (6)

In this paper, we will give sufficient condition for function f = h + g ,where h and g are given by (1) ,to
be in the class Gs(4, «,p) it is shown that is coefficient condition is also necessary for function in the class
Gg(A, a,p) .Also we obtain distortion theorem and characterize the extreme point and convolution conditions for
functions inGs(4, a, p) .

Closure theorems and application of neighborhood also obtain.

Coefficient Inequality:
We being with a sufficient condition for in G¢(4, a, p).
Theorem 2.1: Let f = h + g be given by (2.1). If
Yi=1l{k@ + p) — (a + p}ap| + {k(1 + p) + (a + p}b |1 Bx (D) < 2(1 — ), ()
1+1DA1A+2)....A+n-1)
wherea; = 1,1 € Ny, B, (1) = =D
Preserving harmonic in U and f € Gs(4, @, p).
Proof: If Z; # Z, , then
f(z1) = f(z) 9(z1) — g(z2)
h(z1) — h(z) h(z1) — h(z,)

,p=0and 0 < a < 1,then fis sense —

>1-

D bzl —2)
k=1
=1-
(n—2)+ Y, ap(zk —25)
k=2
Z klby|
k=1
S L B ®)
1- kla|
k=1
Z [{k(1+p)+(a+p}1Bg (D)|by|
k=1
2 1 _ 1—(1

D G +atol] Bl
k=2

1-—

1-a
>0,
which proves univalence. Not that f is sense preserving in U.This is because
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W@ 2 1= ) Kl Iz
k=2

z1—i k(1 +p) = (a + pIB (D)l |

T 1—-«a
>1-Y%, {k(1+p)+(rii2}3k(/1)|bk | @
- Z (kL +p) + (@ + pIB Db 121" Z Kla 211
1—-«a
k=1 k=2
> |g'@)|-
Using the fact thatRe w > « if and only if |1 — a + w| = |1 + a — w| it suffice to show that
|- @)+ @+ pe) 2O petr| — |14 @)~ (1 +pe) 2D peir| =0 (10)
DA f(2) DAf(2) -
Substituting the value of D*£(z) in (10) yields, by(7),
(1 — @ — pe™ID*f(2) + (1 + pe™)D**1f(2) | = |=(1 + @ + peID* f(2) + (1 + pe™)D**1f (2)]

Q-a)z+ ) {k(1+pe™)+ (1 —a—peT)}B, (1) X a,z*
k=2

— (~1F D (1 + pe™) = (1 - @ = peM}B(2) by 2"
k=1

—az + Z{k(l +pe™) + (1 + a+ pe™)}Bi(A) a,z*
=2

— (~1F D k(L + pe™) + (1+ @ + pe)}B (1) B2k
k=1

R~ [1_ k(1 +p) = (a+pNBDlallzl* < k(1 +p) +(a+p)}Bk(A>|bk||z|kl

1—«a 1—«a
k=2 k=1

1—a 1—a
k=2 k=1

This last expression is non-negative by (8) ,and so the proof is complete.m
The harmonic function

>2(1 - a)z [1 Nk +p) = (a+pB@Dla] k(L +p) +(a +p)}Bk(A>|bk|]_

_ o 1—a k 0
f2) =2+ Y @z %+ Bt Gy

1—a Zk
TatpnBra) Yk

11)

where A€ N ,0 < p < land lekl + Zlykl = 1, shows that the coefficient bound given

k=2 k=1
by (7) is sharp. The functions of the form (11) are in G5(4, a, p)because
w  [k(+p)— k(1
Ny [(HREE) g | 4 KRR 1 ] By () (12)

1-a - w
=14 ) Il + ) vl =2
k=2 k=1

In the following theorem, it is shown that the condition (7) is also necessary for functions f, = h + g,
where h and g,, are of the form (6).
Theorem 2.2: Let f, = h + g, be given by (7).Then f, € Gs(4,a,p) if and only if
Yi=illk(@ +p) — (a + p}Hap| + {k(1 + p) + (a + p}b |1 Bk (D) < 2(1 — ) (13)
A+1DA1A+2)....(A+n-1)
where a; = 1,A € Ny, B, (1) = =D
Proof: Since G5(4, a,p) < Gs(A, a, p) we only need to prove the "only if" part of Theorem (2.2). To this
end, for functions f,, of the form (6) , we notice that the condition (5) is equation to

,p=20and0 <a<1.

Dl+q(z)-_
D*f(2)

Re< (1 + pe'@) (pe“+ap; =0
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pe L0+ PP () = (pet + D f @)}
D*f(2)

=

|((1 +pe)(z— z kB, ()|ay |z + Z (=1)*"*1k|by | B, (D) Z*

k=2 k=1
Re
z— Y, B@laylz" + (-1)2 ) b |B (D)2
k k=2 k=1
(pe” +a)z— Y kBy(Wlaylz" + (D)D" klby|B,(A)Z*
_ k=2 k=1 >0
2= ByMlaglzk + (1% Y |by|B,(D)z* J
k=2 k=1
-
( S - - k-1
| (=)= D [k(1+ pe) — (pe” + a)]B(A)lay |z
Re i
|1 Y. Be@laglzt = +2(=1)% )" B ()b 7+
k=2 k=1
g(—nﬂz [k(1+pe™)+(pe +a)]Br (Db |2k
- =2 >0 (14)

k=2 1

k=
The above condition (14) must hold for all values of z on the positive real axes, where, 0 < |z| =
1, we must have

1_2 Bk(/l)laklz"_1+§(—1)2/12 Bk(/l)lbklzk—lJ

( 0
| A—a)= D, (k—a)BM)layly*?
Re{ =2
Ll > BWlagly =t + (12 Y By@lagly !
k=2 k=1

(DY (k+ B (W)bly " — pe”
k=

(k = DB (Dlaely*

0

1= BuMlayly* + (-1)2
k=2

DM | 2D

B, (D) by [y

=~
I

1

(D)% pe” D (k + DB (A)|bely*

k=2
- =0
1- ) B@lagly*='+ (1% ). B, (Db ly*? )
k=2 1
Since Re(—e'") > —|e'"| = —1, the above inequality reduce to
(1-a)- k@ + p) = (p + OB (Dlarly ™
k=2

= BWlaly*t+ D B@Iby Iyt

k=2 k=1
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0

D K+ )4 +aBD bl
k=2
- > 0. (15)

1—2 BrMlagly*—1+ Z B by lyk=1

k=2 k=1

If the condition (13) does not hold, then the numerator in (15) is negative for y sufficiently close to
1.Hence there exists a z, = y,in (0, 1) for which the quotient in (15) is negative. This contrad- icts the
condition for f € G, (4, a,p) and so proof is complete.

3.Distortion Bounds:
In this section, we will obtain distortion bounds for function in Gg(4, a, p) .
Theorem 3.1: Let f, € Gg(A, a,p) .Then for|z| =y < 1, we have

1-a) 1+2p+a
1-a) 1+2p+a
@IS A+ -~ GaT oy ola Dl 1oa ]

Proof: We only prove the lift —hand inequality .The proof for the right inequality is similar and is thus
omitted. Let £, € Gg(A, a, p).Taking the absolute value of £, , we obtain

h@I

= ‘Z - Z a zk + (-1)*" Z b, z*
=1

k=2

< @+1bDy+ ) (el + Iyt
k=2

< @+1bDy+ ) (ol +IbiDy?

o l1-a

20+p) — (p+ DA+ 1)

<> (2(1 -+, | 20+p) -0 Z @ +1) |bk|>y2

<@+ Dy +

l1-«a I+ 1-
k=2
<1+1b 1—«a
=Dy oG+ D
k(1+p)—(p+ a)Bi (1) k(1 +p)+ (p+ a)Br(A) )
x> - oy | + el | + 7
—-a 1—«a
k=2
l1-«a A+p)+(p+a) 5
< —
I A Tenys sy e b 1-a Ibdl |
l1-«a 2+p+a
< - 2,
D A Tepnys sy ropng) 1- 'bll]y
The functions
1—«a 2+p+a _2

f@ =zt bt e -Gt 2a+m-Gral’
l1-«a 2+p+a

1
A+1120+p) - (p+a) 2(1+p)—(p+a) z*

f@@)=Q0Q-1bDz—-

for |by| £ ———
or | 1|_1+2p+a:

The following covering result follows form the left -hand inequality in Theorem 3.1.

Show that the bounds given in the Theorem 3.1 are sharp

4 .Convex Combination And Extreme Points:
Let the function f,, ; (z) be defined, for j=1,2 ...m, by
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faj (@) =2z — Z}f:2|ak,j |Zk + (D" Z?{O:1|bk,j |Z_k . (16)
Theorem 4.1: Let the function f, ; (z) defined by (16) be in the class Gg(4,a,p) for every j=1, 2..m. Then the
functions t; (z)defined by

t](Z) = Z}'nzl ijn,j (Z),O < C} <1 ) (17)
m
are also in the classGs (4, a, p), where Z G =1
j=1
Proof: A cording to the definition of ¢; , we can write
o0 m 0 m
ti(z) =z _Z ch |ai ;| |2* + (—1)nz Z|bk,j|
k=2 \j=1 k=1 \j=1
Further, since f,, ; (z) are inGg(4, a, p) for every j=1, 2....m, then
0 m m
DA ka+p =@+ )| D g law| |+ (K +p) + @+ )| D g byl || B
k=1 j=1 j=1
m 0
> (Z [t + p) = (@ + ) [ag | + (kL +p) + (@ + ) by, |]Bk(A)>
j=1 k=1

m
< Z ¢ 2(1 —a) < (1 — a). Hence theorem 4.1 follows .
j=1 _
Corollary 4.2: The class Gg(4, @, p) is closed under convex liner combinations.
Proof: Let the functions f,, ; (z) = (=1, 2...., m) defined by (16) be in the class Gg(A, a,p). Then the function
Y(z) defined by
¥(2) = pfo; @D+ A= wfy; (@), 0sp<1
is in the class Gs(4, a, p) .
Next we determine the extreme point of closed convex hulls of G, (4, a, p) , denoted by clocoGs (4, a, p).
Theorem 4.3:Let £, be given by (7) .Then f, € Gg(A, a,p) if and only if

L@ =) (K@ +Y,9,,@),

=1
where
l1—a
h@) =z,h(z)=z2 ( )z L Z=2,3, s,
k(1 + q) —(a+p)B, (1)
—a
9@ = 7= (-1 ( )7
’ k(1+p)+ (a+ p)Bi(2)
and Z(XK +Y) =1,X; =0,Y; = 0.In particular, the extreme points of Gg(4, a, p)are
=1

{hk} and {gnk }
Proof: For the function f,, of the form (4.3), we have
L@ =) (Y@ + Ygui@)

e 5 o

l1—a l1—a

fo(2) = Z(X" +Y)z - X,z* + (=1)" Y, 7.

& k(1 +p) = (a+p)B(A) k(1 +p) + (a+p)B (D)
Then
Zc;co k(1+p)— (P‘HZ)BI((A) | I + Zk . k(1+P)+1(P:a)Bk(A) |b | (18)

ZXk+ZYk—1—X1 <1,

and so fn € clco Gs(A,a,p) .
Conversely, suppose that f, € clco Gs(4, a, p). Setting

X, = KRB 1 0 < X, < 1,k = 23, (19)
_k(+p) -0+ a)B. (D)
=
1_

|bk|,OSYk < 1,k=2,3,....,
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andX; =1- Z X, + Z Y, then f, can be written as

@ = 2= ) lalz + (<" ) Ibyl7*
k=2 k=1

-, (1 - a)Xk Zk n (_1)11 (1 - a)Yk —k
k

L +p) + @+ B

— k(1 +p)—(a+ p)Bk(/l)

=7+ Z(h(z) — DX + Z(gnk(@ ~ 2,

th(z)xk +Zgnk(zm +2(1 - Zxk +2Yk

= Z(hk @)X + gni (DY), as required . (20)
k=2
Using corollary (4.2) we have clco Gg(4, a,p) = Gs(4, a, p) .Then the statement of Theorem (4.3) is true
for f €Gs(A,a,p).

5. Neighborhoods:
The § — neighborhood Ns(f) off is the set (see ( Atintas, 2000) and (Rucsheweyh, 1981)):

Ns(f) = {F: X2 k(lay — Ag| + |by — Bg| + |by — B;| < 63}, (21)
where the function F(z) is given by
F(z) =z+3Y7,Az" +Xi_ Bizk (22)

In [8], 0ZTURK and YALCIN .defined the generalized §-neighbrohood of f to be the set:

Ns(f) = {F:Z(k —a)(la, — Arl + by = Bg| + (1 = )by — By < (1 — ).

k=2 _ _

Theorem 5.1: Let f(2) = z + byz + ¥, (ay + byz* ) be a member of Gs(4, a, p). If
2p(1—a) -

e |by|,then N (f) € Gs(4, a, p).

Proof: Let f € Gg(4, a,p)

F(2) =Z+m+z (Arz* + Biz*)

k=2
belong toN (f).We have

(L= IBil + ) (k= ) (1Al +IByl)
k=1

< = @IBy = byl + ) (k= ) (1Ae = @l + 1B = bil) + (1 = @byl + ) e = )lag| + b
k=1 k=1

SA-a)d+ A —-a)lb|+ —Z{(k(l +p) = (a+p)+ (1+p) + (a + p)}Br (D (Jar| + b )

2(1- )
S(l—a)6+(1—a)|b1|+pTS1—a,
. 2p(1—a)

<= = .

Thus F € Gg(A,a,p).
6. Integral Operators:

Now, we examine a closure property of class Gs(4, a, p) under the generalized Bernurdi-Libera-Livingston
integral operator L.(f) which is defined by
4

L.(f) = Cziclf tf(t)dt,c > —1.

0
Theorem 6.1: Let f € Gg(4, a,p) . Then L.(f) € Gg(A, a,p)
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Proof: From the representation of L.(f (2)), it follows that

L(f) =

t"h(2) + g(0)]dt.
0

00 ¥4

c+1
= — ftc 1(t—Zakt")dt—ftC 1(t—2bkt’<) dt.

2 = 0
_Z_ZAkZ —ZBkz
+1 c+1
WheTeAk —k+1ak, Bk =k+1bk
Therefore,

k(1+p)+(p+a)(c+1

- k(l+p)—(p+a)/c+1
;( 1-a (k+1>|ak|+ 1-a

k(l+p)+(p+a)

IA

= k(1 -
Z(( +p) (p+0f)|ak|+

1—-«a 1-
k=1

k+1ym03mm

|bk|) By (1)

< 2(1 — a).Sincef € Gs(4,a,p), therefor by Theorem (2.2),L.(f) € Gs(A,a,p).
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