DEUZI DEUZi

ISSN:1991-8178

Australian Journal of Basic and Applied Sciences

On Subclass of Harmonic Univalent Function Defined by Ruscheweyh Derivative

¹Abdul Rhman S. Juma, ²Hassn H Ebrahim and ³Shamil I Ahmed

ARTICLE INFO

Article history:

Received 12 November 2014 Received in revised form 26 December 2014 Accepted 29 January 2015 Available online 10 February 2015

Keywords:

Univalent functions, harmonic, Ruscheweyh derivative, distortion theorem, starlike functions, convex functions,δ-neighborhood, integraloperat-or,extreme

ABSTRACT

In the present paper, we introduce a new subclass of harmonic function in the unit disc U by the Ruscheweyh derivative. Also, we obtain coefficient condition, convolution condition, convexcombinations, extreme point, δ -neighborhood, integral operator.

© 2015 AENSI Publisher All rights reserved.

To Cite This Article: Abdul Rhman S. Juma, Hassn H Ebrahim and Shamil I Ahmed, On Subclass of Harmonic Univalent Function Defined by Ruscheweyh Derivative. *Aust. J. Basic & Appl. Sci.*, *9*(5): 307-314, 2015

INTRODUCTION

A continuous function f = u + iv is a complex valued harmonic function in a complex domain C if both u and v are real harmonic in C. In any simply connected domain $D \subset C$, we can write $f = h + \bar{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense -preserving in D is that |h'(z)| > |g'(z)| in D, see (Clunie, 1984). In 1984, Clunie and Sheil-Small (Clunie, 1984) investigated the class AH_S and studied some sufficient bounds. Since then the-re have been several paper published related to AH_S and its subclasses. In fact by introducing new subclasses Sheil-small (Sheil-Small, 1990), Silverman (Silverman, 1998), Silverman and Silvia (Silverman, 1999), Jahangir (Jahangiri, 1999) and Ahuja (Ahuja, 2005) presented a systematic and unified study of harmonic univalent

functions. Furthermore we refer to Duren (Duren, 2004), ponnusamy (Ponnusamy, 2007) and references there in for basic results on the subject.

Denoted by AH_S , the class of function $f=h+\overline{g}$ that are harmonic, univalent and sense-preser-ving in the unit disk $U=\{Z\colon |Z|<1\}$ whith normalization $f(0)=h(0)=f_z(0)-1=0$. Then for $f=h+\overline{g}\in AH_S$, we may express the analytic functions h and g as

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
, $g(Z) = z + \sum_{k=1}^{\infty} b_k z^k$, $|b_1| < 1$.
(1)

Observe that AH_S reduces to , the class of normalized univalent functions, if the co- analytic part of f is zero. Also, denoted by AH_S^* the subclass of AH_S , consisting of function f that map U onto a starlike domain.

For $f = h + \overline{g}$ given by (1) and $D^{\lambda} f(z)$ is the Ruscheweyh derivative of f and defined by

$$D^{\lambda}f(z) = \sum_{k=1}^{\infty} B_k(\lambda)c_k \quad z^k , \lambda > -1 , B_k(\lambda) = \frac{(\lambda+1)(\lambda+2).....(\lambda+n-1)}{(n-1)!}$$

 $also D^{\lambda} f(z) = D^{\lambda} h(z) + \overline{D^{\lambda} g(z)}$ (2)

Recently Rosy et al. (Rosy, 2001) defined the subclass $G_S \subseteq AH_S$ consisting of a harmonic univalent function f(z) satisfying the condition

¹Department of Mathematics, Alanbar University. Ramadi-Iraq

²Department of Mathematics, Tikrit University. Tikrit-Iraq

$$Re\left\{(1+e^{i\alpha})\frac{zf'(z)}{f(z)}-e^{i\alpha}\right\} \geq \gamma, 0 \leq \gamma < 1, \alpha \in R.$$

They proved that if
$$f = h + \overline{g}$$
 is given by (1) and if
$$\sum_{k=1}^{\infty} \frac{(2k-1-\gamma)}{(1-\gamma)} |a_k| + \frac{(2k+1+\gamma)}{(1-\gamma)} |a_k| \le 2, 0 \le \gamma < 1,$$
 (3)

then f is in $G_S(\gamma)$.

This condition is proved to be also necessary by Rosy ef al. if h and g are of the form

$$h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k , g(z) = -\sum_{k=1}^{\infty} |b_k| z^k$$
(4)

Motivated by this aforementioned work, new we introduce the class $G_S(\lambda, \alpha, p)$ as the subclass of functions of the form (1) satisfy the following condition

$$Re\left\{ (1 + pe^{i\alpha}) \frac{D^{\lambda + q}(z)}{D^{\lambda} f(z)} - pe^{i\alpha} \right\} \ge \gamma, 0 \le \gamma < 1, \alpha \in R \ p \ge 0, q \in \mathbb{N},$$

$$(5)$$

Let $\overline{G_S}(\lambda, \alpha, p)$ denoted that the subclass of $G_S(\lambda, \alpha, p)$ which consists of harmonic function $f_k = h + \bar{g}_k$ such that h and g are the form

$$h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k, g_n(z) = (-1)^n \sum_{k=1}^{\infty} |b_k| z^k.$$
(6)

 $h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k$, $g_n(z) = (-1)^n \sum_{k=1}^{\infty} |b_k| z^k$. (6) In this paper, we will give sufficient condition for function $f = h + \overline{g}$, where h and g are given by (1), to be in the class $G_S(\lambda, \alpha, p)$ it is shown that is coefficient condition is also necessary for function in the class $\overline{G_S}(\lambda,\alpha,p)$. Also we obtain distortion theorem and characterize the extreme point and convolution conditions for functions in $\overline{G_S}(\lambda, \alpha, p)$.

Closure theorems and application of neighborhood also obtain.

Coefficient Inequality:

We being with a sufficient condition for in $G_S(\lambda, \alpha, p)$.

Theorem 2.1: Let $f = h + \overline{g}$ be given by (2.1). If

$$\sum_{k=1}^{\infty} \left[\left\{ k(1+\rho) - (\alpha+\rho) \middle| a_k \middle| + \left\{ k(1+\rho) + (\alpha+\rho) \middle| b_k \middle| \right\} B_K(\lambda) \le 2(1-\alpha), \right.$$
 (7)

$$\sum_{k=1}^{\infty} \left[\left\{ k(1+\rho) - (\alpha+\rho) \right\} | a_k | + \left\{ k(1+\rho) + (\alpha+\rho) \right\} | b_k | \right] B_K(\lambda) \le 2(1-\alpha),$$
where $a_1 = 1, \lambda \in \mathbb{N}_0$, $B_k(\lambda) = \frac{(\lambda+1)(\lambda+2) \dots (\lambda+n-1)}{(n-1)!}$, $\rho \ge 0$ and $0 \le \alpha < 1$, then fis sense –

Preserving harmonic in U and $f \in G_S(\lambda)$

Proof: If $Z_1 \neq Z_2$, then

$$\left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| \ge 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right|$$

$$\sum_{k} b_k(z_1^k - z_2^k)$$

$$= 1 - \left| \frac{\sum_{k=1}^{\infty} b_k (z_1^k - z_2^k)}{(z_1 - z_2) + \sum_{k=2}^{\infty} a_k (z_1^k - z_2^k)} \right|$$

$$\geq 1 - \frac{\sum_{k=1}^{\infty} k|b_k|}{1 - \sum_{k=1}^{\infty} k|a_k|} \tag{8}$$

$$\geq 1 - \frac{\sum_{k=1}^{\infty} \frac{[\{k(1+\rho) + (\alpha+\rho\}]B_K(\lambda)|b_k|}{1 - \alpha}}{\sum_{k=2}^{\infty} \frac{[\{k(1+\rho) + (\alpha+\rho\}]B_K(\lambda)|a_k|}{1 - \alpha}}$$

which proves univalence. Not that f is sense preserving in U. This is because

$$|h'(z)| \ge 1 - \sum_{k=2}^{\infty} k|a_{k}||z|^{k-1}$$

$$\ge 1 - \sum_{k=2}^{\infty} \frac{\{k(1+\rho) - (\alpha+\rho\}B_{k}(\lambda)|a_{k}|\}}{1-\alpha}$$

$$\ge 1 - \sum_{k=1}^{\infty} \frac{\{k(1+\rho) + (\alpha+\rho\}B_{k}(\lambda)|b_{k}|\}}{1-\alpha}$$

$$\ge 1 - \sum_{k=1}^{\infty} \frac{\{k(1+\rho) + (\alpha+\rho\}B_{k}(\lambda)|b_{k}||Z|^{k-1}\}}{1-\alpha} \ge \sum_{k=2}^{\infty} k|a_{k}||z|^{k-1}$$

$$\ge |g'(z)|.$$
(9)

Using the fact that $Re \ w > \alpha$ if and only if $|1 - \alpha + w| \ge |1 + \alpha - w|$ it suffice to show that

$$\left| (1 - \alpha) + (1 + \rho e^{ir}) \frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)} - \rho e^{ir} \right| - \left| (1 + \alpha) - (1 + \rho e^{ir}) \frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)} - \rho e^{ir} \right| \ge 0.$$
 (10)

Substituting the value of
$$D^{\lambda}f(z)$$
 in (10) yields, by(7),
$$\left| (1 - \alpha - \rho e^{ir})D^{\lambda}f(z) + (1 + \rho e^{ir})D^{\lambda+1}f(z) \right| - \left| -(1 + \alpha + \rho e^{ir})D^{\lambda}f(z) + (1 + \rho e^{ir})D^{\lambda+1}f(z) \right|$$

$$= \left| (2 - \alpha)z + \sum_{k=2}^{\infty} \{k(1 + \rho e^{ir}) + (1 - \alpha - \rho e^{ir})\}B_{k}(\lambda) \times a_{k}z^{k} \right|$$

$$- (-1)^{k} \sum_{k=1}^{\infty} \{k(1 + \rho e^{ir}) - (1 - \alpha - \rho e^{ir})\}B_{k}(\lambda) b_{k}z^{k} \right|$$

$$- \left| -\alpha z + \sum_{k=2}^{\infty} \{k(1 + \rho e^{ir}) + (1 + \alpha + \rho e^{ir})\}B_{k}(\lambda) a_{k}z^{k} \right|$$

$$- (-1)^{k} \sum_{k=1}^{\infty} \{k(1 + \rho e^{ir}) + (1 + \alpha + \rho e^{ir})\}B_{k}(\lambda) \overline{b_{k}z^{k}}$$

$$\geq 2(1-\alpha)|z|\left[1-\sum_{k=2}^{\infty}\frac{\{k(1+\rho)-(\alpha+\rho)\}B_k(\lambda)|a_k||z|^k}{1-\alpha}-\sum_{k=1}^{\infty}\frac{\{k(1+\rho)+(\alpha+\rho)\}B_k(\lambda)|b_k||z|^k}{1-\alpha}\right]$$

$$\geq 2(1-\alpha)|z|\left[1-\sum_{k=2}^{\infty}\frac{\{k(1+\rho)-(\alpha+\rho)\}B_k(\lambda)|a_k|}{1-\alpha}-\sum_{k=1}^{\infty}\frac{\{k(1+\rho)+(\alpha+\rho)\}B_k(\lambda)|b_k|}{1-\alpha}\right].$$

The harmonic function

$$f(z) = z + \sum_{k=2}^{\infty} \frac{1-\alpha}{\{k(1+\rho) - (\alpha+\rho)\}B_k(\lambda)} x_k z^k + \sum_{k=1}^{\infty} \frac{1-\alpha}{\{k(1+\rho) + (\alpha+\rho)\}B_k(\lambda)} \overline{y_k z^k}$$
(11)

where $\lambda \in \mathbb{N}_0$, $0 \le \rho \le 1$ and $\sum_{k=2} |x_k| + \sum_{k=1} |y_k| = 1$, shows that the coefficient bound given

by (7) is sharp. The functions of the form (11) are in $G_S(\lambda, \alpha, p)$ because

$$\sum_{k=1}^{\infty} \left[\frac{k(1+\rho) - (\alpha+\rho)}{1-\alpha} |a_k| + \frac{k(1+\rho) + (\alpha+\rho)}{1-\alpha} |b_k| \right] B_k(\lambda)$$
(12)

$$=1+\sum_{k=2}^{\infty}|x_k|+\sum_{k=1}^{\infty}|y_k|=2.$$

In the following theorem, it is shown that the condition (7) is also necessary for functions $f_n = h + \overline{g_n}$, where h and g_n are of the form (6).

Theorem 2.2: Let
$$f_n = h + \overline{g_n}$$
 be given by (7). Then $f_n \in \overline{G_S}(\lambda, \alpha, p)$ if and only if
$$\sum_{k=1}^{\infty} [\{k(1+\rho) - (\alpha+\rho) | a_k| + \{k(1+\rho) + (\alpha+\rho) | b_k|\} B_K(\lambda) \le 2(1-\alpha)$$
 (13) where $a_1 = 1, \lambda \in \mathbb{N}_0, B_k(\lambda) = \frac{(\lambda+1)(\lambda+2) \dots (\lambda+n-1)}{(n-1)!}$, $\rho \ge 0$ and $0 \le \alpha < 1$.

Proof: Since $\overline{G_S}(\lambda, \alpha, p) \subset G_S(\lambda, \alpha, p)$ we only need to prove the "only if" part of Theorem (2.2). To this end, for functions f_n of the form (6), we notice that the condition (5) is equation to

$$Re\left\{ (1+pe^{i\alpha})\frac{D^{\lambda+q}(z)}{D^{\lambda}f(z)} - (pe^{i\alpha} + \alpha \right\} \ge 0$$

$$Re \frac{\left\{ (1 + \rho e^{ir}) D^{\lambda+1} f(z) - (\rho e^{ir} + \alpha) D^{\lambda} f(z) \right\}}{D^{\lambda} f(z)} \ge 0$$

$$\Rightarrow$$

$$Re \begin{cases} (1 + \rho e^{ir}) (z - \sum_{k=2}^{\infty} k B_{k}(\lambda) |a_{k}| z^{k} + \sum_{k=1}^{\infty} (-1)^{2\lambda+1} k |b_{k}| B_{k}(\lambda) \bar{z}^{k} \\ \hline z - \sum_{k=2}^{\infty} B_{k}(\lambda) |a_{k}| z^{k} + (-1)^{2\lambda} \sum_{k=1}^{\infty} |b_{k}| B_{k}(\lambda) \bar{z}^{k} \\ \hline - \frac{(\rho e^{ir} + \alpha) (z - \sum_{k=2}^{\infty} k B_{k}(\lambda) |a_{k}| z^{k} + (-1)^{2\lambda+1} \sum_{k=1}^{\infty} k |b_{k}| B_{k}(\lambda) \bar{z}^{k} \\ \hline z - \sum_{k=2}^{\infty} B_{k}(\lambda) |a_{k}| z^{k} + (-1)^{2\lambda} \sum_{k=1}^{\infty} |b_{k}| B_{k}(\lambda) \bar{z}^{k} \\ \Rightarrow$$

$$Re \begin{cases} (1 - \alpha) - \sum_{k=2}^{\infty} [k(1 + \rho e^{ir}) - (\rho e^{ir} + \alpha)] B_{k}(\lambda) |a_{k}| z^{k-1} \\ \hline 1 - \sum_{k=2}^{\infty} B_{k}(\lambda) |a_{k}| z^{k-1} + \frac{\bar{z}}{z} (-1)^{2\lambda} \sum_{k=1}^{\infty} B_{k}(\lambda) |b_{k}| \bar{z}^{k-1} \\ \hline - \frac{\bar{z}}{1 - \sum_{k=2}^{\infty} B_{k}(\lambda) |a_{k}| z^{k-1} + \frac{\bar{z}}{z} (-1)^{2\lambda} \sum_{k=1}^{\infty} B_{k}(\lambda) |b_{k}| z^{k-1}} \\ \ge 0 \end{cases}$$

$$(14)$$

The above condition (14) must hold for all values of z on the positive real axes, where, $0 \le |z| = \gamma < 1$, we must have

$$Re \begin{cases} \frac{(1-\alpha) - \sum_{k=2}^{\infty} (k-\alpha)B_{k}(\lambda)|a_{k}|\gamma^{k-1}}{1 - \sum_{k=2}^{\infty} B_{k}(\lambda)|a_{k}|\gamma^{k-1} + (-1)^{2\lambda} \sum_{k=1}^{\infty} B_{k}(\lambda)|a_{k}|\gamma^{k-1}} \\ - \frac{(-1)^{2\lambda} \sum_{k=2}^{\infty} (k+\alpha)B_{k}(\lambda)|b_{k}|\gamma^{k-1} - \rho e^{ir} \sum_{k=2}^{\infty} (k-1)B_{k}(\lambda)|a_{k}|\gamma^{k-1}}{1 - \sum_{k=2}^{\infty} B_{k}(\lambda)|a_{k}|\gamma^{k-1} + (-1)^{2\lambda} \sum_{k=1}^{\infty} B_{k}(\lambda)|b_{k}|\gamma^{k-1}} \\ - \frac{(-1)^{2\lambda} \rho e^{ir} \sum_{k=2}^{\infty} (k+1)B_{k}(\lambda)|b_{k}|\gamma^{k-1}}{1 - \sum_{k=2}^{\infty} B_{k}(\lambda)|a_{k}|\gamma^{k-1} + (-1)^{2\lambda} \sum_{k=1}^{\infty} B_{k}(\lambda)|b_{k}|\gamma^{k-1}} \end{cases} \ge 0.$$
Since Re $(-e^{ir}) \ge -|e^{ir}| = -1$, the above inequality reduce to
$$\frac{(1-\alpha) - \sum_{k=2}^{\infty} \{k(1+\rho) - (\rho+\alpha)\}B_{k}(\lambda)|a_{k}|\gamma^{k-1}}{1 - \sum_{k=2}^{\infty} B_{k}(\lambda)|a_{k}|\gamma^{k-1} + \sum_{k=1}^{\infty} B_{k}(\lambda)|b_{k}|\gamma^{k-1}} \end{cases}$$

$$-\frac{\sum_{k=2}^{\infty} \{k(1+\rho)+(\rho+\alpha)\}B_{k}(\lambda)|b_{k}|\gamma^{k-1}}{1-\sum_{k=2}^{\infty} B_{k}(\lambda)|a_{k}|\gamma^{k-1}+\sum_{k=1}^{\infty} B_{k}(\lambda)|b_{k}|\gamma^{k-1}} \ge 0.$$
(15)

If the condition (13) does not hold, then the numerator in (15) is negative for γ sufficiently close to 1. Hence there exists a $z_0 = y_0$ in (0, 1) for which the quotient in (15) is negative. This contradicts the condition for $f \in \overline{G_s}(\lambda, \alpha, p)$ and so proof is complete.

3.Distortion Bounds:

In this section, we will obtain distortion bounds for function in $\overline{G_S}(\lambda, \alpha, p)$.

Theorem 3.1: Let
$$f_n \in \overline{G_S}(\lambda, \alpha, p)$$
. Then for $|z| = \gamma < 1$, we have $|f_n(z)| \le (1 + |b_1|)\gamma + \frac{(1 - \alpha)}{[2(1 + \rho) - (\rho + \alpha)](1 + \lambda)} \left[1 - \frac{1 + 2\rho + \alpha}{1 - \alpha}|b_1|\right]\gamma^2$.

$$|f_n(z)| \leq (1+|b_1|)\gamma - \frac{(1-\alpha)}{[2(1+\rho)-(\rho+\alpha)](1+\lambda)} \left[1 - \frac{1+2\rho+\alpha}{1-\alpha}|b_1|\right] \gamma^2.$$
 Proof: We only prove the lift –hand inequality .The proof for the right inequality is similar and is thus

omitted. Let $f_n \in \overline{G_S}(\lambda, \alpha, p)$. Taking the absolute value of f_n , we obtain

$$|f_n(z)|$$

$$= \left| z - \sum_{k=2}^{\infty} a_k z^k + (-1)^{2n} \sum_{k=1}^{\infty} b_k \bar{z}^k \right|$$

$$\leq (1 + |b_1|)\gamma + \sum_{k=2}^{\infty} (|a_k| + |b_k|)\gamma^k$$

$$\leq (1 + |b_1|)\gamma + \sum_{k=2}^{\infty} (|a_k| + |b_k|)\gamma^2$$

$$\leq (1 + |b_1|)\gamma + \frac{1 - \alpha}{2(1 + \rho) - (\rho + \alpha)(\lambda + 1)}$$

$$\leq (1 + |b_1|)\gamma + \frac{1 - \alpha}{2(1 + \rho) - (\rho + \alpha)(\lambda + 1)} \times \sum_{k=2}^{\infty} \left(\frac{2(1 + \rho) - (\rho + \alpha)(\lambda + 1)}{1 - \alpha} |a_k| + \frac{2(1 + \rho) - (\rho + \alpha)(\lambda + 1)}{1 - \alpha} |b_k| \right) \gamma^2$$

$$\leq (1+|b_1|)\gamma + \frac{1-\alpha}{2(1+\rho)-(\rho+\alpha)(\lambda+1)} \times \sum_{k=2}^{\infty} \left[\frac{k(1+\rho)-(\rho+\alpha)B_k(\lambda)}{1-\alpha} |a_k| + \frac{k(1+\rho)+(\rho+\alpha)B_k(\lambda)}{1-\alpha} |b_k| \right] + \gamma^2$$

$$\leq (1+|b_1|)\gamma + \frac{1-\alpha}{2(1+\rho) - (\rho+\alpha)(\lambda+1)} \left[1 - \frac{(1+\rho) + (\rho+\alpha)}{1-\alpha} |b_1| \right] \gamma^2$$

$$\leq (1+|b_1|)\gamma + \frac{1-\alpha}{2(1+\rho)-(\rho+\alpha)(\lambda+1)} \left[1-\frac{2+\rho+\alpha}{1-\alpha}|b_1|\right]\gamma^2.$$

The functions

$$f(z) = z + |b_1|\bar{z} + \frac{1}{\lambda + 1} \left[\frac{1 - \alpha}{2(1 + \rho) - (\rho + \alpha)} - \frac{2 + \rho + \alpha}{2(1 + \rho) - (\rho + \alpha)} \right] \bar{z}^2$$

$$f(z) = (1 - |b_1|)z - \frac{1}{\lambda + 1} \left[\frac{1 - \alpha}{2(1 + \rho) - (\rho + \alpha)} - \frac{2 + \rho + \alpha}{2(1 + \rho) - (\rho + \alpha)} \right] z^2$$

for $|b_1| \le \frac{1-\alpha}{1+2\rho+\alpha}$ Show that the bounds given in the Theorem 3.1 are sharp

The following covering result follows form the left -hand inequality in Theorem 3.1.

4. Convex Combination And Extreme Points:

Let the function $f_{n,j}(z)$ be defined, for j=1, 2 ...m, by

$$f_{n,j}(z) = z - \sum_{k=2}^{\infty} |a_{k,j}| z^k + (-1)^n \sum_{k=1}^{\infty} |b_{k,j}| \bar{z}^k.$$
 (16)

Theorem 4.1: Let the function $f_{n,j}(z)$ defined by (16) be in the class $\overline{G_S}(\lambda,\alpha,p)$ for every j=1, 2...m. Then the functions $t_i(z)$ defined by

$$t_j(z) = \sum_{j=1}^{m} c_j f_{n,j}(z), o \le c_j < 1,$$
(17)

are also in the class $\overline{G_S}(\lambda, \alpha, p)$, where $\sum_{i=1}^{n} c_i = 1$.

Proof: A cording to the definition of t_i , we can write

$$t_{j}(z) = z - \sum_{k=2}^{\infty} \left(\sum_{j=1}^{m} c_{j} |a_{k,j}| \right) z^{k} + (-1)^{n} \sum_{k=1}^{\infty} \left(\sum_{j=1}^{m} |b_{k,j}| \right) \bar{z}^{k}.$$

Further, since $f_{n,j}(z)$ are in $\overline{G_S}(\lambda, \alpha, p)$ for every j=1, 2...m, then

$$\sum_{k=1}^{\infty} \left\{ \left[\left(k(1+\rho) - (\alpha+\rho) \right) \left(\sum_{j=1}^{m} c_{j} |a_{k,j}| \right) + \left(k(1+\rho) + (\alpha+\rho) \right) \left(\sum_{j=1}^{m} c_{j} |b_{k,j}| \right) \right] B_{k}(\lambda) \right\}$$

$$= \sum_{j=1}^{m} c_{j} \left(\sum_{k=1}^{\infty} \left[k(1+\rho) - (\alpha+\rho) |a_{k,j}| + \left(k(1+\rho) + (\alpha+\rho) \right) |b_{k,j}| \right] B_{k}(\lambda) \right)$$

 $\leq \sum c_j \ 2(1-\alpha) \leq (1-\alpha)$. Hence theorem 4.1 follows.

Corollary 4.2: The class $\overline{G_S}(\lambda, \alpha, p)$ is closed under convex liner combinations.

Proof: Let the functions $f_{n,j}(z) = (j=1, 2, ..., m)$ defined by (16) be in the class $\overline{G_S}(\lambda, \alpha, p)$. Then the function $\Psi(z)$ defined by

$$\Psi(z) = \mu f_{n,j}(z) + (1 - \mu) f_{n,j}(z)$$
 , $o \le \mu < 1$

is in the class $\overline{G_S}(\lambda, \alpha, p)$.

Next we determine the extreme point of closed convex hulls of $\overline{G_S}(\lambda, \alpha, p)$, denoted by cloco $\overline{G_S}(\lambda, \alpha, p)$. Theorem 4.3:Let f_n be given by (7) .Then $f_n \in \overline{G_S}(\lambda, \alpha, p)$ if and only if

$$f_n(z) = \sum_{k=1}^{\infty} (X_n h_k(z) + Y_n g_{n,k}(z)),$$

where

$$h_1(z) = z, h_k(z) = z - \left(\frac{1 - \alpha}{k(1 + \rho) - (\alpha + \rho)B_k(\lambda)}\right)z^k, z = 2,3, \dots,$$

$$g_{n,k}(z) = z - (-1)^n \left(\frac{1 - \alpha}{k(1 + \rho) + (\alpha + \rho)B_k(\lambda)}\right)\bar{z}^k$$

and $\sum (X_K + Y_K) = 1, X_K \ge 0, Y_K \ge 0$. In particular, the extreme points of $\overline{G_S}(\lambda, \alpha, p)$ are

 $\{h_k\}$ and $\{g_{nk}\}$.

Proof: f_n of form (4.3),have

$$f_n(z) = \sum_{k=1}^{\infty} \left(X_n h_k(z) + Y_n g_{n,k}(z) \right)$$

$$f_n(z) = \sum_{k=1}^{n-1} (X_n + Y_n) z - \sum_{k=1}^{\infty} \frac{1 - \alpha}{k(1 + \rho) - (\alpha + \rho)B_k(\lambda)} X_n z^k + (-1)^n \sum_{k=1}^{\infty} \frac{1 - \alpha}{k(1 + \rho) + (\alpha + \rho)B_k(\lambda)} Y_n \bar{z}^k.$$

$$\sum_{k=1}^{\infty} \frac{k(1+\rho) - (\rho + \alpha)B_k(\lambda)}{1 - \alpha} |a_k| + \sum_{k=1}^{\infty} \frac{k(1+\rho) + (\rho + \alpha)B_k(\lambda)}{1 - \alpha} |b_k|$$
(18)

$$= \sum_{k=1}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k = 1 - X_1 \le 1,$$

and so $f_n \in clco \overline{G_S}(\lambda, \alpha, p)$.

Conversely, suppose that
$$f_n \in clco \overline{G_S}(\lambda, \alpha, p)$$
. Setting
$$X_k = \frac{k(1+\rho) - (\rho + \alpha)B_k(\lambda)}{1-\alpha} |a_k|, 0 \le X_k < 1, k = 2,3,$$

$$Y_k = \frac{k(1+\rho) - (\rho + \alpha)B_k(\lambda)}{1-\alpha} |b_k|, 0 \le Y_k < 1, k = 2,3, ...,$$
(19)

and
$$X_1 = 1 - \sum_{k=1}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k$$
 then f_n can be written as
$$f_n(z) = z - \sum_{k=2}^{\infty} |a_k| z^k + (-1)^n \sum_{k=1}^{\infty} |b_k| \bar{z}^k$$

$$= z - \sum_{k=1}^{\infty} \frac{(1-\alpha)X_k}{k(1+\rho) - (\alpha+\rho)B_k(\lambda)} z^k + (-1)^n \sum_{k=1}^{\infty} \frac{(1-\alpha)Y_k}{k(1+\rho) + (\alpha+\rho)B_k(\lambda)} \bar{z}^k$$

$$= z + \sum_{k=2}^{\infty} (h(z) - z)X_k + \sum_{k=1}^{\infty} (g_{n,k}(z) - z)Y_k$$

$$= \sum_{k=2}^{\infty} h_k(z)X_k + \sum_{k=1}^{\infty} g_{n,k}(z)Y_k + z(1 - \sum_{k=1}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k$$

$$= \sum_{k=2}^{\infty} (h_k(z)X_k + g_{n,k}(z)Y_k), \text{ as required . (20)}$$

Using corollary (4.2) we have cloo $\overline{G_S}(\lambda, \alpha, p) = \overline{G_S}(\lambda, \alpha, p)$. Then the statement of Theorem (4.3) is true for $f \in \overline{G_S}(\lambda, \alpha, p)$.

5. Neighborhoods:

The δ – neighborhood $N_{\delta}(f)$ of f is the set (see (Atintas, 2000) and (Rucsheweyh, 1981)):

$$N_{\delta}(f) = \{ F: \sum_{k=2}^{\infty} k(|a_k - A_k| + |b_k - B_K| + |b_1 - B_1| \le \delta \},$$
 where the function $F(z)$ is given by (21)

F(z) =
$$z + \sum_{k=2}^{\infty} A_k z^k + \sum_{k=1}^{\infty} B_k z^k$$
 (22)
In [8], ÖZTURK and YALCIN .defined the generalized δ -neighbrohood of f to be the set:

$$N_{\delta}(f) = \left\{ F: \sum_{k=2}^{\infty} (k-\alpha)(|a_k - A_k| + |b_k - B_K| + (1-\alpha)|b_1 - B_1| \le \delta(1-\alpha) \right\}.$$

: Let $f(z) = z + \overline{b_1 z} + \sum_{k=2}^{\infty} (a_k + \overline{b_k z^k})$ be a member of $\overline{G_S}(\lambda, \alpha, p)$. If

$$\delta \leq \frac{2\rho(1-\alpha)}{\rho+1} + |b_1|, \text{ then } N \quad (f) \subset \overline{G_S}(\lambda,\alpha,p).$$

Proof: Let $f \in \overline{G_S}(\lambda, \alpha, p)$

$$F(z) = z + \overline{b_1 z} + \sum_{k=2}^{\infty} (A_k z^k + \overline{B_k z^k})$$

belong to N(f). We have

$$(1-\alpha)|B_1| + \sum_{k=1}^{\infty} (k-\alpha)(|A_k| + |B_K|)$$

$$\leq (1-\alpha)|B_1-b_1| + \sum_{k=1}^{\infty} (k-\alpha)(|A_k-a_k| + |B_K-b_k|) + (1-\alpha)|b_1| + \sum_{k=1}^{\infty} (k-\alpha)(|a_k| + |b_K|)$$

$$\leq (1-\alpha)\delta + (1-\alpha)|b_1| + \frac{1}{\rho+1} \sum_{k=1}^{\infty} \{ (k(1+\rho) - (\alpha+\rho) + (1+\rho) + (\alpha+\rho) \} B_k(\lambda) (|a_k| + |b_k|) \}$$

$$\leq (1-\alpha)\delta + (1-\alpha)|b_1| + \frac{2(1-\alpha)}{\rho+1} \leq 1-\alpha,$$

$$\mathrm{if}\delta \leq \frac{2\rho(1-\alpha)}{\rho+1} + |b_1|.$$

Thus $F \in \overline{G_S}(\lambda, \alpha, p)$.

6. Integral Operators:

Now, we examine a closure property of class $\overline{G_S}(\lambda, \alpha, p)$ under the generalized Bernurdi-Libera-Livingston

$$L_c(f) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt$$
, $c > -1$.

Theorem 6.1: Let $f \in \overline{G_S}(\lambda, \alpha, p)$. Then $L_c(f) \in \overline{G_S}(\lambda, \alpha, p)$

Proof: From the representation of $L_c(f(z))$, it follows that

$$L_{c}(f) = \frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} \left[h(z) + \overline{g(t)}\right] dt .$$

$$= \frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} \left(t - \sum_{k=2}^{\infty} a_{k} t^{k}\right) dt - \int_{0}^{\overline{z}} t^{c-1} \left(t - \sum_{k=1}^{\infty} b_{k} t^{k}\right) dt .$$

$$= z - \sum_{k=2}^{\infty} A_{k} z^{k} - \sum_{k=1}^{\infty} B_{k} z^{k}$$

$$where A_{k} = \frac{c+1}{k+1} a_{k}; B_{k} = \frac{c+1}{k+1} b_{k}.$$
Therefore,
$$\sum_{k=1}^{\infty} \left(\frac{k(1+\rho) - (\rho+\alpha)}{1-\alpha} \left(\frac{c+1}{k+1}\right) |a_{k}| + \frac{k(1+\rho) + (\rho+\alpha)}{1-\alpha} \left(\frac{c+1}{k+1}\right) |b_{k}|\right) B_{k}(\lambda)$$

$$\leq \sum_{k=1}^{\infty} \left(\frac{k(1+\rho) - (\rho+\alpha)}{1-\alpha} |a_{k}| + \frac{k(1+\rho) + (\rho+\alpha)}{1-\alpha} |b_{k}|\right) B_{k}(\lambda)$$

$$\leq 2(1-\alpha). \operatorname{Since} f \in \overline{G_{S}}(\lambda, \alpha, p), \operatorname{therefor by Theorem } (2.2), L_{c}(f) \in \overline{G_{S}}(\lambda, \alpha, p).$$

REFERENCES

Ahuja, O.P., 2005. Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math.6(4), Art., 122: 1-18.

Atintas, O., O. Özkan, H.M. Srivastava, 2000. Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Leet, 13: 63-67.

Clunie, J. and T. Sheil-Small, 1984. Harmonic univalent functions, Ann. Acad. Sci. Fen. Series, Al Math, 9(3): 3-25.

Duren, P., 2004. Harmonic Mappings in the plan (Gambridgeuniv.press, Cambridge, UK, 2004).

Jahangiri, J.M., 1999. Harmonic functions starlike in the unit disk, J. Math. Anal. Appl, 235:

Ponnusamy, S. and A. Rasila, 2007. Planer harmonic mappings, RMS Mathematics Newsletter, 17(2): 40-57.

Rosy, T., B.A. Stephen, K.B. Subramanian and J.M. Jahangir, 2001. Goodman-Ronning-type harmonic univalent functions, Kyangpook Math.J., 41(1): 45-54.

Rucsheweyh, S., 1981. Neighborhoods of univalent functions, Proc. Amer .Math .Soc., 81: 521-527.

Sheil-Small, T., 1990. Constants for planar harmonic mappings, J. London Math.Soc., 2(42): 237-248.

Silverman, H. and E.M. Silvia, 1999. subclasses of harmonic univalent functions, New Zealand J. Math, 28: 275-284.

Silverman, H., 1998. Harmonic univalent functions with negative coefficient, J. Math. Anal.Appl. 220,283-289.