
Australian Journal of Basic and Applied Sciences, 9(2) February 2015, Pages: 368-374

ISSN:1991-8178

Australian Journal of Basic and Applied Sciences

Journal home page: www.ajbasweb.com

Corresponding Author: Alycia Sebastian, Birla Institute of Technology, Muscat Branch, Computer Science & Engineering

 Department, Alycia Sebastian, P O. Box. 197, Muscat, Sultanate of Oman.

 E-mail: alycia.sebastian@gmail.com; GSM: 0096896595230

Design of a Boot Loader for Operating System

1Alycia Sebastian and 2Dr. K. Siva Sankar

1Birla Institute of Technology, Muscat Branch, Computer Science & Engineering Department, Alycia Sebastian, P O. Box. 197, Muscat,

Sultanate of Oman.
2Noorul Islam University, Department of Information Technology, Dr. K. Siva Sankar, Thuckalay, Tamil Nadu 629180, India

A R T I C L E I N F O A B S T R A C T

Article history:

Received 12 December 2014

Received in revised form 26 December
2014

Accepted 28 January 2015

 Available online 1 February 2015

Keywords:

Boot loader, BIOS, Live USB, dynamic
loader, OS

 The growth in semiconductor technology has introduced storage devices with faster

access time which leads to the design of different boot mechanisms to optimize the boot

time of the operating system. The Boot Loader is the most crucial program for the
initialization of the operating system. Whether it is PC, embedded system or smart

phone its concept is same i.e., loading of OS. The boot process may either run from

local hard disk or from external memory storage like USB memory, optical disk or
network interface card with user interaction. This paper intends to explore the boot

loading process and analyze the different ways of boot loading the system and discuss

the need to dynamically boot load the OS from external storage to optimize the booting
time of the OS. This paper shows the design of a dynamic Boot Loader to automatically

identify the Live USB to remove the dependency on BIOS and lower the boot time of

OS.

© 2015 AENSI Publisher All rights reserved.

To Cite This Article: Alycia Sebastian and Dr. K. Siva Sankar., Design of a Boot Loader for Operating System. Aust. J. Basic & Appl. Sci.,

9(2): 368-374, 2015

INTRODUCTION

 In this technology world, a system performance

is measured in terms of speed and efficiency. These

features depend upon the type of machine and the

type of operating system installed in that machine.

The system type is based on the cost and the

standards of manufacturers who build the machine.

But the performance of operating system mostly

depends upon the features provided by the loaders, as

they are considered as the init of the operating

systems.

 The Boot Loader is the first software that starts

running after BIOS. Boot loaders are responsible for

initializing hardware and loading the kernel image

into RAM. Boot loaders are highly processor and

board specific (Raghavan et al., 2006) since its

initialization is carried out by the boot loader. With

increase in the advancement in computers, to include

all its features, multi stage boot loaders are used.

Processors like ARM and x86 fetches code from

specific address after power on or reset. The boot

program is stored in that address location in ROM or

flash so that it runs every time the system is reset.

Over the years, the advancement in ICs has made the

possibility of using nonvolatile memory like NOR

and NAND flash memory to store boot loaders due to

its high density and low operating cost thereby

reducing the load time of OS. The use of flash

memory is encouraged rather than ROM because the

boot program can be updated as per required features

when in the system.

 Operating system could not run without support

of boot loader, so boot loaders for different

architectures has been designed and used. A system

is bootable from hard disk, floppy disk, optical disk

or flash memory. The beginning of the boot-up

process varies depending on the hardware platform

being used. For a partitioned disk, the boot code is in

the VBR of the active partition and for storage device

like floppy disk that is not partitioned, the boot code

is in the first sector of the disk. Boot loader transfers

code from internal or external memory into RAM.

However once the kernel is found and loaded by the

boot loader, the default boot-up process is identical

across all architectures.

 The boot loaders are tailored as per the

requirement; it may be specific features, easy

portability or faster boot. The boot loader should be

multi boot complaint i.e., it should be capable of

loading any operating system available in the system.

The multi boot loader provides user with interface to

give options for user to select which kernel to be

initialized.

 This paper discusses about the initialization of

the system known as the boot process and different

369 Alycia Sebastian and Dr. K. Siva Sankar, 2015

Australian Journal of Basic and Applied Sciences, 9(2) February 2015, Pages: 368-374

Execute from Flash. Do

POST

Relocate to RAM

Set up Console for User

interaction

Set up device drivers for

kernel image

Choose the kernel image

Set up Kernel command

line arguments

Jump to Kernel start

address

C

o

d

e

F

l

o

w

techniques adapted in the booting of the OS.

Different boot mechanisms such as flash memory,

hard disk, Ethernet or external USB disk are used.

When boot loaded from external devices, BIOS

setting is accessed to change the boot priority to the

particular device. This change in boot settings every

time you want to run from USB or optical disk

results in extra boot time. This paper shows the

design of dynamic Boot Loader to identify the Live

USB and to boot load the OS.

1. Bootup process:

Fig. 1: Boot Loader boot up sequence (Raghavan et al., 2006).

2.1 BIOS:

 After power on, Basic Input Output System

(BIOS) at address 0xFFFFFFF0 performs self-test

known as POST (Power on Self-Test) to identify and

initialize CPU, memory, hard disk and device

drivers. BIOS is a piece of code stored on a

nonvolatile ROM on the motherboard. Now BIOS

are stored in EEPROM, so that it can be rewritten

without removing the chip (Winzent, 2012). The

booting time is critical in many embedded system, so

BIOS should run fast. Therefore depending on the

type of booting, BIOS perform testing and

initialization of the hardware. If the booting was

warm boot i.e., using alt + ctrl + Del key

combinations or restart button, then full POST

process is not run to save time and avoid rewriting

the codes which are already available. After POST,

the BIOS runs the boot sequence to find the boot

sector and load the MBR from the boot sector to

memory to continue the booting process.

2.2 MBR:

 The boot sector of hard disk contains Master

Boot Record (MBR) which is of 512 bytes of which

446 bytes contains the primary boot loader program,

64 bytes is partition table which contains the

partitions available in the disk and remaining two

bytes marked as 0x55AA for error validation check

for MBR.

 The MBR is loaded at address 0000:7C000 after

validation. MBR size limits the primary partition on

the disk to four. The MBR code finds the active

partition from the partition table and loads the code

from its first sector to memory.

2.3 Boot Loader:

 With only 512 bytes in boot sector, the boot

loader program is divided into two stages. BIOS

loads the primary boot loader in memory and its only

function is to load the second stage boot loader from

the storage medium. The second stage boot loader

contains additional features like error checking, multi

boot i.e., providing user interface to select OS if

more than one OS kernel resides in the system and

diagnostic services. MBR starts the primary boot

loader in real mode and this then loads the kernel

image, decompresses in protected mode and setup

the environment for the OS to run and handover

control to the OS.

370 Alycia Sebastian and Dr. K. Siva Sankar, 2015

Australian Journal of Basic and Applied Sciences, 9(2) February 2015, Pages: 368-374

|2.4 Kernel:

 The kernel is a compressed binary image

bzImage and not an executable file (Dokeun Lee,

Youjip Won, 2012). The kernel image is a self-

extracting file. When the kernel is loaded, it

immediately initializes and configures the computer's

memory and configures the hardware attached to the

system, including all processors, I/O subsystems, and

storage devices. The boot time is mainly determined

by the time taken for loading the kernel image from

external memory and its decompression. Significant

time is taken for loading and decompression of

kernel image.

 The binary file head.S is to activate the virtual

address by MMU and the misc.o code extracts the

compressed kernel image which is the piggy.o. The

loading and decompression of kernel image takes up

the significant amount of booting time. Many

techniques to reduce the boot time of the system have

been designed by eliminating the decompression part

by using directly uncompressed kernel data in flash

memory.

2. Literature Review:

 There are various implementations of the boot

process. The Boot Loaders can be a basic boot

loader, complex or a multi-boot. Because of limited

capabilities in MBR and to add more features, the

boot loader is stored in internal or external flash

memory or optical disk. The main concern is to limit

the boot time of an operating system. Much ongoing

research is focused on taking advantage of the

growth in nonvolatile memory and designating it as

the primary boot device. This experiment shows

positive results on the basis of boot time.

3.1 Booting From Local Memory:

 An efficient boot loader is the most crucial

component in any system to improve the

performance of the system by effectively reducing

the start-up time. The local memory can be ROM or

a flash memory. In embedded system for immediate

boot up, the boot code is stored in internal flash

memory.

 Optimizing the boot time has become a critical

point in the initialization of the system. Non Volatile

memory is gaining popularity due to its capacity to

retain information after power off and power

efficiency. The two important technologies PCM

(Phase Change Memory) and memristors have made

it possible to build cheaper NVRAMs with faster

access time (Katelin Bailey et al., 2013).

 With development in semiconductor technology,

NVRAM are finding significant advantage over

legacy DRAM. In paper (Wonsik Lee, Youjip Won ,

2012) the authors has proposed to use a nonvolatile

memory NVRAM in place of DRAM as main

memory and storing one kernel image for booting.

This eliminates the time needed for loading and

decompression of kernel image. Here global objects

are initialized for every booting to refrain from using

previous values because of nonvolatile

characteristics.

 NVRAM is byte addressable like RAM. In terms

of power consumption and performance NVRAM is

attaining demand than DRAM but it is still in

evolution stage and not completely adapted because

of its limitations with the existing architecture.

NVRAM is yet to be used for DRAM because of its

performance limitations.

 This paper (Minnich, R.G, 2004) discusses a

new design of their own bootstrap using trusted OS

after reload. This innovation reduces the risk of

locating, verifying and loading a new OS image

because here OS does the booting process. This

tricky boot is implemented by opening and validating

a new image and moving it to the kernel space, now

prepare for hardware reboot and load the new kernel

to the existing running kernel, and entirely move to

the new kernel. This rebuilds the concept of tailoring

the boot strap according to the requirements of the

application. Even though boot mechanisms have all

such advantages users still have to rely on the boot

times. Some systems took more boot time to load the

required functions than traditional booting process.

 Resistive Memory technologies like RRAM-

Resistive Random Access Memory are most likely to

replace DRAM as the main memory in the coming

years. It’s a type of non-volatile memory and faster

when compared with the traditional flash memory.

In many companies like Hp and Crossbar Intensive

research is going on to overcome the limitations of

RRAM compatibility with present CMOS technology

(10) and to develop a single chip that can store up to

20 terabyte of data and improves data transfer by 20

times (11). It is expected soon to build a high

performance, high capacity and reliable memory to

replace the DRAM.

 Security has become an important concern in

modern systems. The need to build a secure

architecture has significantly increased over the

years. The security for the system starts from the

boot process, so a secure booting is needed. A secure

Bootstrap process known as AEGIS guarantees a

secure booting by validating the integrity of boot

code (William Arbaugh et al., 1997). At each step,

the integrity of each component is verified by doing

hash function and comparing with the digital

signature stored with each component before passing

control over to the higher layer. The secure

architecture is designed on the assumption that

ROM, motherboard and BIOS are not compromised.

 BIOS can be protected from unauthorized users

by protecting with password. But BIOS password

can be erased by physical removal of CMOS battery

unless it is stored elsewhere. In a system where it

contains sensitive data, BIOS password can be

encrypted and stored in Trusted Platform Module

(TPM) NVRAM (Kuan-Jen Lin,Chin-Yi Wang, 2012

Junkai Gu, Weiyong Ji, 2009). The TPM is required

371 Alycia Sebastian and Dr. K. Siva Sankar, 2015

Australian Journal of Basic and Applied Sciences, 9(2) February 2015, Pages: 368-374

to establish the identity of the MBR, then boot loader

and so on forming a secure chain booting. Another

most common attack on system is boot sector virus

or MBR virus which replaces boot code with its own

code thereby compromising the security of the

system. To protect against virus attack boot programs

can be stored in separate ROM chip (Umakant

Mishra, 2012) and protected using encryption

techniques.

3.2 Booting From External Memory:

 A modest growth in the flash memory developed

from EEPROM is the most commonly used storage

medium. NAND Flash memory are commonly used

in main memory, USB and SD card and NOR flash

memory is finding itself an alternative for ROM.

 Many techniques have been devised using

nonvolatile memory either as external or internal

memory to achieve optimal boot time by storing boot

loader and running kernel image from the flash

memory. A new method known as Hybrid-Execute-

In-Place Architecture have been implemented (Tony

Benavides et al., 2007) to reduce the Boot Time to

some extend by storing and executing the code and

data in a NOR flash memory designated as an

external memory and only the required code is

brought to RAM for execution. Such a design

provided more efficiency in boot loaders. Even

though NOR flash memory produces faster random

reads but it is slower in block writes (Ken Curewitz,

2011). The rise of VLSI technology made the

development of embedded loaders into a single chip.

 Due to the rapid development in USB memory

and its suitability to store large amount of portable

data has resulted in rise in using USB as the boot

device to create a portable environment. The user

can use live USB in any system to create his own

personalized secure environment. The author Anil

Kumar Karna has proposed that an External USB

hard disk can be used as an installation resource for

various operating systems and also as a bootable

media. It is the best substitute for laptop to carry

various operating systems along with other personal

data. The external USB hard disk is loaded through

BIOS for both installing and booting an operating

system (Anil Kumar Karna, 2010).

 Protecting the system from unauthorized users is

another concern that needs to be addressed. Security

of a system should starts from the boot up process.

Securing the boot up will provide a safe and reliable

environment for the users. A new portable security

system designed by incorporating syslinux boot

loader and customized puppy loader into plug and

play USB 2.0 and integrating with fingerprint

authentication to provide security (GuodongLi ,

HuChen, 2010). The USB is hardware encrypted and

authorization information is stored in USB rather

than computer memory. It is a combination of both

hardware and software.

 UEFI (Unified Extensible Firmware Interface)

was developed by Intel to replace BIOS to provide a

standard booting procedure. A secure architecture is

designed using USB as the TPM and booting media

(Abhishek Singh Kushwaha, 2013). In this method

the ESP (EFI system partition) is implemented inside

the USB to store the boot loader and make it as the

primary boot mechanism.

 USB is fast evolving as the popular plug and

play storage device with its ability to store up to one

terabyte data (9) and its nonvolatile characteristics.

Since USB doesn’t have any moving parts, it’s more

reliable and durable. But the flash memory in USB

faces limited read and write cycles of up to 10,000 to

100,000 for multi and single cell respectively (Zhou

Di-bo, Pan De-lu, 2009, Anand Lal Shimpi, 2008).

With technology improvement, some companies are

providing warranty for USB for 5 years. Along with

encryption, USB provides a safe, secure and portable

environment.

 The boot loaders stored in flash or ROM is

slower, so a new design using Scratch-Pad Memory

(SPM) is implemented to improve booting speed by

loading from Scratch-Pad Memory (SPM), which is

small, isolated and located on a single chip. The

second stage boot loader is stored in SPM in this

design and loaded using a SPMOS loader. This made

the booting speed to some extent. They implemented

this technique in a Novel loading process. In this

technique boot loader initializes the hardware and the

complicated functions are performed by the SPM

(Nan Zhang et al., 2008). But this chip based loaders

faced serious disadvantages. If we need to modify

this loader it needs a flash or a new chip. So

researchers focused on a programmable loader.

3.4 Booting Through Network:

 Network booting is becoming popular in large

organization where the booting of the system is

carried out through network rather than from the

local drive. This type of booting is advantageous in

terms of maintenance overhead and cost saving and

also the user can be given the new version with

minimal effort. From various experiments conducted

on network booting with hard disk booting, hard disk

booting is recommended (John M. Ostrowick, 2004)

for better performance. Since all the users in network

booting have to rely on a single boot server which

causes network congestion leading to more boot time

than hard disk booting.

 For network booting, DHCP (Dynamic Host

Configuration Protocol) and TFTP (Trivial File

Transfer Protocol) servers are required (Sumanth

Vidyadhara, Arun Patil, 2006). DHCP responds to

request by providing TFTP server location and the

filename to be downloaded to start the booting

process.

 The authors have proposed to use Ethernet boot

loader to boot the ARM processor from external

flash. In this the boot loader in MBR is altered to

372 Alycia Sebastian and Dr. K. Siva Sankar, 2015

Australian Journal of Basic and Applied Sciences, 9(2) February 2015, Pages: 368-374

include the external device address to automatically

transfer the control to continue with boot loading.

The system must have an Ethernet chip to be

controlled over LAN. The boot loader program is

stored in the external memory (Sayali A. Kulkarni et

al., 2006).

 The Network booting is achieved (FEI Luo et

al., 2013) by designing an intelligent booting system

with distributed modules which automatically

performs the virtual partition on the client system

and performs loading and passing of the boot

parameters for boot process.

4. Dynamic Boot Loader:

 Boot loaders are simple code that loads the OS.

Every loader has its own specifications. It may be

small, large or may be multi-boot. But even with its

characteristics they have to rely on BIOS as their root

because of its capability to load every loader of all

operating systems. No loaders are BIOS independent.

Moreover the operating systems in-cooperating such

loader takes a huge disk space when installed. And if

to be a portable one the disk space consumed will be

more.

 In many boot loading techniques discussed

above, the secondary boot program is from external

device. Normally the first priority is for floppy disk,

then hard disk and so on. The boot order can be

changed using CMOS settings. When you have to

boot load from USB, every time you start the system,

BIOS boot order need to be changed to USB by the

user as the boot option to continue booting. The end

user has to have knowledge about BIOS settings to

change the boot priority to USB.

 The main booting process time depends on the

operating system being used. For example, puppy

Linux average boot time is 26 seconds and Ubuntu

has the fastest boot time of 10 seconds (Jack Wallen,

2011). With external booting, time is spent in

changing the boot sequence which depends on the

knowledge of the user in computer settings which

will considerably affects the boot time of the OS.

Not all end users have this knowledge of changing

BIOS settings. So, it should be possible to boot

automatically from the USB without any setting

change. There is a need to develop a dynamic loader

which can automatically detect the boot media so as

to remove the dependency on BIOS which will

sufficiently reduce the boot time of the system.

4.1 System Design:

 The dynamic boot loader is designed to provide

maximum flexibility which when boot loaded

ignores the BIOS boot priority settings and displays

all installed operating systems both in USB drive and

hard disk and Live-USB is boot priority first.

 Dynamic Boot Loader is implemented using

VC++, WMI (Windows Management

Instrumentation) code creator and Shell

Programming.

 Windows Management Instrumentation (WMI)

is a core Windows management technology that is

used to get information about the internal state of

computer systems, much like the disk drive

information, network configurations, operating

system detail etc. This system objects are modeled

using classes such as Win32_LogicalDisk,

Win32_DiskDrive, Win32_NetworkAdapter,

Win32_NetworkAdapterConfiguration and

Win32_OperatingSystem (12).

Table 1: Description of WMI Classes.

S.NO CLASS DESCRIPTION

1 Win32_LogicalDisk represents the logical disks installed on a computer

2 Win32_DiskDrive
represents a physical disk drive as seen by a computer

running the Win32 operating system

3 Win32_NetworkAdapter
represents a network adapter of a computer

running a Windows operating system

4 Win32_NetworkAdapter Configuration
represents the attributes and

behaviors of a network adapters

5 Win32_OperatingSystem
Returns an instance for the currently active operating

system and list of operating system installed.

 These classes help to identify the disk drives in

the system. This information helps to boot OS from

Live USB. The equation to identify the Live-USB

drive is

Live-USB = LogicalDisk(Type 5) +

LogicalDisk(Type 2) -1

 where LogicalDisk(Type 5), LogicalDisk(Type 2)

 € N

0 < LogicalDisk(Type 5) <3

0 < LogicalDisk(Type 2) <= 127

1 < LiveUSB < 133

LogicalDisk(Type 5) – Number of hard disk present

in the system

LogicalDisk(Type 2) – Number of USB disk present

in the system

 The dynamic boot loader includes the above

WMI classes to gain information about the USB

device dynamically when used in a system.

 A three stage boot loader is designed. Stage 1

resides in the MBR and stage 1.5 is installed between

MBR and first partition. Stage 1.5 interprets the

different types of file systems. Everything is

considered as file. So the physical location of the

Kernel image is not required. Only the device

number and the partition number are required to

373 Alycia Sebastian and Dr. K. Siva Sankar, 2015

Australian Journal of Basic and Applied Sciences, 9(2) February 2015, Pages: 368-374

identify the boot sector. For example (hd0, 0) means

the first hard disk and first partition.

 Stage 2 loads the configuration file which

displays the different kernel images installed in the

system. The menu screen is displayed which allows

the user to select the OS as per their need. For the

dynamic boot loader, the configuration file is written

in such a way that the Linux in USB will be the

default OS to be loaded in to memory if no

interaction.

 The below code shows the configuration file to

boot load the Linux OS from USB.

default=0

Timeout=3

title Linux Operating System

root (hd1,0)

kernel vmlinuz append root=/dev/ram0

initrd /initrd.gz

To load Windows

title Windows

rootnoverify (hd0,0)

chainloader +1

 This configuration files allows the Linux to load

from Live USB after a timeout of 3 seconds. This

setting gives the user the ability to load Linux OS

from USB as well as windows from hard disk. The

user only has to select which OS from the menu

instead of changing the BIOS settings for external

booting.

 A 128MB Flash memory is selected for storing

light weight Linux OS. Taking into consideration the

limitation in read/write cycles of flash memory, the

OS is especially designed to have no writes to the

Flash drive during a session, enormously extending

its life span.

4.2 Performance Analysis:

 In normal boot process, BIOS transfers control

to the device as per the order in the boot menu and

then the boot loader starts its process of loading OS.

In the existing boot loader, the boot time from

external memory depends on the user interaction

time i.e., time taken to change the BIOS settings to

USB. The dynamic boot loader is designed with a

menu interface, listing all the available kernel entries

for easier selection thereby optimizing the booting

time. If any new OS is installed and changes are

made in the configuration file, the boot loader

automatically updates and displays the new OS in the

menu because the boot loader is dynamically

configurable. As explained before, disk drive and

partitions are considered as files.

5. Conclusion:

 Operating system relies on the support of the

boot loader to run. With the technology

improvement, boot loaders are now commonly stored

in external Flash memory. With the available boot

loaders, the booting process from external device is

dependent on BIOS. It is not anticipated that all users

who use a portable Live USB will have the

knowledge of BIOS settings. The dynamic boot

loader is designed independent of BIOS, so it

automatically identifies the boot mechanism and

starts the booting process. The dynamic boot loader

will effectively improve the boot time of the system.

REFERENCES:

Abhishek Singh Kushwaha, 2013. “A Trusted

Bootstrapping Scheme Using USB Key Based on

UEFI”, International Journal of Computer and

Communication Engineering, 2(5).

Anand Lal Shimpi, 2008. “ Intel X-25 M SSD:

Intel Delivers One of the World’s Fastest Drivers”.

Anil Kumar Karna, 2010. “Multipurpose USB

Hard Disk: Your Mini Laptop”, Second International

Conference on Information Technology and

Computer Science, 357-360.

Bruce Liao, 2013. “Customizing Boot Media for

Linux Direct Boot, Intel Corporation”.

Dokeun Lee, 2012. Youjip Won,”Bootless Boot:

Reducing Device Boot Latency with Byte

Addressable NVRAM”.

Luo, F.E.I., 2013. “A Novel Intelligent Network

Booting System”, Advanced Materials Research,

658: 497-501.

GuodongLi, HuChen, 2010. “ A New High-

Level Security Portable System Based on USB Key

with Fingerprint”, International Conference On

Computer Design And Applications (ICCDA 2010),

159-162.

https://www.ibm.com/developerworks/library/l-

linuxboot.

http://en.wikipedia.org/wiki/USB_flash_drive#B

ooting_operating_systems

http://www.crossbar-

inc.com/technology/resistive-ram-overview.html

http://venturebeat.com/2013/08/05/crossbar-

says-it-will-explode-the-60b-flash-memory-market-

with-resistive-ram-which-stores-a-terabyte-on-a-

chip/

http://msdn.microsoft.com/en-

us/library/aa392727(v=vs.85).aspx#_hmm_drivers

John, M., Ostrowick, 2004.”Network Booting

versus hard disks: Costs and Implications”,

Conference for IT in Tertiary Education.

Junkai Gu, Weiyong Ji, 2009. “A secure

bootstrap based on trusted computing, International

Conference on New Trends in Information and

Service Science”, 502-504. ((Jack Wallen , “The

Five fastest- booting Linux distributions”, 2011.

Katelin Bailey, 2013. “Operating System

Implications of Fast, Cheap, Non-Volatile Memory”,

Proceedings of the 13th USENIX conference on hot

topics in operating systems.

Ken Curewitz, 2011. Booting from

NOR/NAND/Serial Flash/e·MMC™, Micron

Technology.

https://www.ibm.com/developerworks/library/l-linuxboot
https://www.ibm.com/developerworks/library/l-linuxboot
http://en.wikipedia.org/wiki/USB_flash_drive#Booting_operating_systems
http://en.wikipedia.org/wiki/USB_flash_drive#Booting_operating_systems
http://www.crossbar-inc.com/technology/resistive-ram-overview.html
http://www.crossbar-inc.com/technology/resistive-ram-overview.html
http://venturebeat.com/2013/08/05/crossbar-says-it-will-explode-the-60b-flash-memory-market-with-resistive-ram-which-stores-a-terabyte-on-a-chip/
http://venturebeat.com/2013/08/05/crossbar-says-it-will-explode-the-60b-flash-memory-market-with-resistive-ram-which-stores-a-terabyte-on-a-chip/
http://venturebeat.com/2013/08/05/crossbar-says-it-will-explode-the-60b-flash-memory-market-with-resistive-ram-which-stores-a-terabyte-on-a-chip/
http://venturebeat.com/2013/08/05/crossbar-says-it-will-explode-the-60b-flash-memory-market-with-resistive-ram-which-stores-a-terabyte-on-a-chip/
http://msdn.microsoft.com/en-us/library/aa392727(v=vs.85).aspx#_hmm_drivers
http://msdn.microsoft.com/en-us/library/aa392727(v=vs.85).aspx#_hmm_drivers

374 Alycia Sebastian and Dr. K. Siva Sankar, 2015

Australian Journal of Basic and Applied Sciences, 9(2) February 2015, Pages: 368-374

Kuan-Jen Lin, Chin-Yi Wang, 2012. “Using

TPM to Improve Boot Security at BIOS Layer” ,

IEEE International Conference on Consumer

Electronics (ICCE), 376-377.

Minnich, R.G., 2004. “Give your bootstrap the

boot: using the operating system to boot the

operating system, International Conference on

Cluster Computing”, 439-448.

Nan Zhang, 2008. “SPM-based Boot loader”,

The 2008 International Conference on Embedded

Software and Systems Symposia (ICESS2008), 164-

168.

Raghavan, Amol Lad, Sriram Neelakandan,

2006. “Embedded Linux System Design and

Development”.

Sayali, A., Kulkarni, 2006. “Ethernet Boot

loader for ARM Processor”, International Journal of

Scientific & Engineering Research, 4-11.

Sumanth Vidyadhara, Arun Patil, 2006. “Best

Practices in Boot Loader Design, Emdedded Systems

Conference-San Jose.

Tony Benavides et.al, 2007. ”The

Implementation of a Hybrid-Execute-In-Place

Architecture to Reduce the Embedded System

Memory Footprint and Minimize Boot Time”, IEEE

International Conference on Information Reuse and

Integration, 473-479.

Umakant Mishra, 2012,“Detecting Boot Sector

Viruses- Applying TRIZ to Improve Anti-Virus

Programs”.

WinZentTechnologies, 2012.

http://www.winzenttech.com/files/Download/WinZe

nt/WhitePaper/BIOS/ for/Embedded.pdf.

Wonsik Lee, Youjip Won, 2012. “Booting Linux

Faster” , Proceedings of 3
rd

 IEEE International

Conference on Network Infrastructure and Digital

Content, 665-668.

William Arbaugh, 1997. “A Secure and Reliable

Bootstrap Architecture”, Proceedings of the 1997

IEEE Symposium on Security and Privacy, 65.

Zhou Di-bo, Pan De-lu, 2009. “A method for

developing plug-and-play Web GIS , International

Conference on Environmental Science and

Information Application Technology”, IEEE, 377-

380.

http://www.winzenttech.com/

