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 Background: Deterministic Fracture Mechanics analysis does not address the 

uncertainties involved in material properties, loads, location and size of the flaws etc. 
However, in real-life situations such uncertainties can affect significantly the 

conclusions drawn out of a deterministic analysis. The principles of Probabilistic 

Fracture Mechanics (PFM) are used to ascertain the effects of such uncertainties. PFM 
is becoming increasingly popular for realistic evaluation of fracture response and 

predicting the reliability of cracked structures. Objective: A probabilistic failure 

assessment methodology has been proposed in this study to compute the reliability-
based safety factor for the prediction of safe operating pressure for the pressure vessels. 

Modified two parameter fracture criterion has been used to predict the failure of 

cracked pressure vessels. In this study, the scatter in the crack geometry, fracture 
parameter, material properties and geometric parameters of the pressure vessel are 

considered. Monte- Carlo simulation method is used to perform the PFM analysis. 

Results: Based on the study carried out using PFM, the upper and lower limits of 
failure pressure of pressure vessel at various confidence levels are proposed. Using 

Stress-Strength interference theory, reliability based safety factor has also been 

proposed. Conclusion: The safe operating pressure for pressure vessels containing 
axial through crack is computed for the specified reliability levels. The proposed work 

will help the design engineer to decide the operating pressure of the cracked structure 

for the specified safety and reliability. 
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INTRODUCTION 

 

 The mechanical integrity of pressure vessel is of great importance for both economical and safety reasons. 

In practice, this integrity is assured by careful attention to all aspects of design, manufacturing, installation and 

operation of the pressure vessel. Cracks are inherent in many components owing to the process by which they 

are manufactured or fabricated. The maximum pressure withstanding capacity of a cracked pressure vessel is 

determined by applying the principles of fracture mechanics. The crack under severe load can become unstable 

and thereby causing the failure of pressure vessel at cracked sections. Therefore the cracks are an important 

consideration for safety analysis (Rohit Rastogi et al., 2002). However many of the input parameters are 

statistically distributed. The traditional approach of safety assessment and design lies in a deterministic model. 

The probabilistic approach is obviously the best choice in practical applications when sufficient information on 

the distribution of the random variables is known (Lin et al., 2004). 

 Probabilistic Fracture Mechanics (PFM) is a rapidly developing field with numerous applications in science 

and engineering which blends fracture mechanics and probability theory (Rahman and Kim, 2001). PFM 

provides a more rational way of describing the actual behavior and reliability of structures than the traditional 

deterministic models (Rahman and Kim, 2001). Now-a-days many researchers are exploring applicability of the 

PFM approach and few of them are listed here. Rahman (1997) developed a PFM model for analyzing 

circumferential through-walled-cracked pipes subject to bending loads. New equations were developed to 

represent the functions. Both analytical and simulation methods were formulated to determine the probabilistic 

characteristics of J integral. Jian Ping Zhao et al. (1997) introduced a new concept of probabilistic failure 

assessment diagram for defect assessment. Genki Yagawa et al. (1997) established standard PFM procedures 

for evaluating failure probabilities of nuclear pressure vessel and pipes. Sensitivity analyses are performed to 
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quantify the effects of uncertainty of flow stress, fracture toughness, fatigue crack growth rate and Copper 

content on failure probabilities.  

 Lei and Xiamen (1997) presented a probabilistic analysis of fatigue crack growth, fatigue life and reliability 

of elastic structural components on the basis of fracture mechanics and the theory of random process. Jin Xing 

(1997) developed a PFM assessment method based on the R6 procedure for the integrity of the structures. Sharif 

Rahman (2001) conducted studies on probabilistic analysis based on J integral estimation model that provides 

accurate estimates of failure probability and also shown that the uncertainty in the crack with a large coefficient 

of variation (COV) has a significant effect on the probability of failure.  Rahman and Kim (2001) developed a 

probabilistic methodology for Elasto-Plastic fracture mechanics analysis of non-linear cracked structures, which 

is capable of predicting accurate deterministic and probabilistic characteristics of J integral. Xhou Xun and Yu 

Xiao-li (2006) made a reliability evaluation for diesel engine crank shaft based on 2D stress strength 

interference model, in which multi axial loading fatigue criteria has been employed. Rohit Rastogiet al. (2002) 

presented the determination of failure probabilities of a straight pipe with a through wall crack, in the 

circumferential direction subjected to in plane bending moment, using the R6 method. The probability of failure 

is studied by constructing Failure Assessment Diagram (FAD) using all the three options of R6 method for the 

variation in the applied loads.  

 Tronskar et al. (2003) studied the influence on the failure probability of modified R6 FAD and the 

influence of constraint correction on the combined fatigue and fracture failure probability for the vessels 

subjected to wave loading. The uncertainties in various internal operating loadings and external forces, 

including earthquake and wind, flaw sizes, material fracture toughness and flow stress are considered. Linet al. 

(2004) proposed a probabilistic assessment methodology for in-service nuclear piping containing defects and 

also developed software for failure assessment based on R6 method. Albert Bagaviev and Artur Ulbrich (2004) 

outlined the theoretical background of life assessment with the help of PFM and have demonstrated its 

application for typically heavy loaded components of large steam turbines. Prem Navinand 

Ramachandramoorthy (2005) carried out a probabilistic study on through wall circumferentially cracked pipe, 

to obtain a reliableestimate of maximum moment capacity.  Also, a reduction factor has been proposed for net 

section plastic collapse moment to predict the maximum moment capacity. Cristina Gentiliniet al. (2005) 

presented a simple and reliable method for the probabilistic characterization of the linear elastic response of 

cracked truss and frame structures with uncertain damage.  

 Past literatures are focused the importance of PFM in the evaluation of the reliability of cracked structures. 

The failure pressure estimation of cylindrical pressure vessel having axial through crack using PFM approach is 

scarcely reported by the researchers. The objective of this paper is to predict reliability based safety factor for 

various cylindrical pressure vessels containing axial through crack subjected to internal pressure. PFM analysis 

is carried out using the experimental literature test data from the references (Anderson and Sullivan, 1966; Peter 

and Kuhn, 1957; Calfo, 1968). The uncertainty with respect to material properties viz. ultimate tensile strength 

and yield strength, geometric parameters viz. thickness and diameter and the crack geometry viz. crack length 

and crack depth and fracture parameter (KF) has been considered. It is observed from the literature that in most 

of the PFM study, failure of the cracked structure is assessed by J1c and K1c based failure criterion (Krishnaveni 

and Christopher, 2011) and R6 method. In this work, the modified two parameter fracture criterion (Christopher 

et al., 2005) is used to perform the probabilistic fracture mechanics analysis. The operating pressure for various 

cylindrical pressure vessels is obtained using Stress-Strength interference theory for the specified reliability.  

 

Nomenclatures: 

Symbol - Item description 

2c - Crack length (mm) 

a - Crack depth (mm) 

c - Half the crack length (mm) 

k - Level of confidence (%) 

K - Stress intensity factor 

L - Strength random variable (MPa) 

M ,φ  - Correction factor  

N - Safety factor 

r - Inner radius of cylinder (mm) 

R - Reliability of the component (%) 

S - Stress random variable (MPa) 

t - Thickness of the cylinder (mm) 

V - Coefficient of variation of random variable (%) 

X - Random vector 

y - Margin of safety 

Y - Random variable 
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Z - Standard normal random variable 

Do - Outer diameter of cylinder (mm) 

E(pbf) - Expected mean value of random variable  

fxi - Density function of random variable  

Kmax - Stress intensity factor at failure (MPa√m) 

pb - Failure pressure of unflawed cylindrical vessel (MPa) 

pf - Probability of failure (%) 

pbf - Failure pressure of flawed cylindrical vessel (MPa) 

Var(pbf ) - Variance of random variable  

VL - Coefficient of variation of predicted operating pressure (%) 

VS - Coefficient of variation of predicted failure pressure (%) 

Z0 - Lower limit of integral Equation(5) 

σ - Standard deviation 

σf - Net section failure stress (MPa) 

σu - Hoop stress at the burst level of the unflawed cylindrical shell (MPa) 

σult - Ultimate tensile strength (MPa) 

σys - Yield strength or 0.2 % proof stress (MPa) 

μ - Mean of random variable 

μS - Mean of   predicted failure pressure (MPa) 

μL - Mean of   predicted  operating pressure (MPa) 

Ф - Cumulative distribution function 

 

Probabilistic Failure Assessment Methodology: 

 In this study, a probabilistic failure assessment methodology (Krishnaveni et al., 2014) has been proposed 

to compute the reliability based safety factor for the prediction of safe operating pressure of the pressure vessels 

containing axial through cracks. The flow chart (See Figure 1) depicts the procedure of proposed probabilistic 

failure assessment methodology. This methodology consists of three phases viz. goodness of fit test, 

probabilistic fracture analysis and computation of safety and reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Proposed Probabilistic Failure Assessment Methodology. 

 

Modified Two Parameter Fracture Criterion: 

 The significant parameters affecting the size of a critical crack in a structure are the applied stress levels, 

the fracture toughness of the material, the location of the crack and its orientation. Because the stress intensity 

factor (K)is a function of load, geometry and crack size. It will be more useful to have a relationship between 

the stress intensity factor at failure (Kmax) and the net section failure stress (σf) from the fracture data of cracked 

specimens for the estimation/prediction of the fracture strength/failure pressure to any cracked configuration. 

The relationship between Kmax and σf can be of the form shown in Equation (1) See Refs. Christopher et al. 

(2005a) and Potti et al. (2000) for more details.  
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where, σu is the nominal stress required to produce a fully plastic region (or hinge) on the net section. For 

cylindrical pressure vessels, σu is the hoop stress at the burst pressure level of the unflawed thin cylindrical 

shell.  KF, mandpare the three fracture parameters to be determined from the fracture data. Figure 1 shows a 

cylindrical vessel containing an axial through crack. Stress intensity factor expressions for these cracked 

configurations are available based on finite element solutions (Newman, 1976; Newman and Raju, 1979). Using 

the value of average net section failure stress (σf) in the stress intensity factor expression, the stress intensity 

factor at failure (Kmax) for the cracked configuration can be obtained. For the cracked configurations in Figure 2, 

expressions for Kmax and σf are shown in Equation (2) and Equation (3). 

 

 
Fig. 2: Closed end cylindrical pressure vessel with an axial through crack under internal pressure. 
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where M and φ  are correction factors relevant to the geometry chosen, r is the radius of the cylindrical vessel, t 

is the thickness, pb is the general failure or bursting pressure of an unflawed cylindrical vessel,  pbfisthe failure 



281                                                                    A. Krishnaveni et al, 2015 

Australian Journal of Basic and Applied Sciences, 9(2) February 2015, Pages: 277-291 

pressure of a cylindrical vessel with an axial surface crack. A comparative study Christopher et al. (2002) on 

failure pressure estimation of unflawed cylindrical vessels indicates the validity of the Faupel’s formula for 

steel vessels shown in Equation (14).   
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where σys is the 0.2% proof stress or the yield stress of the material. The non-linear equation for determining the 

net section failure stress (σf) for a specified crack size is obtained using Equation (1) and Equation (2) and 

shown in Equation (15). 
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 Using the Newton–Raphson iterative method, the non-linear Equation (23) is solved for σfand failure 

pressure of cylindrical vessel having an axial through-thickness crack is obtained from Equation (3). In this 

present work, modified two parameter fracture criterion is used to predict the probabilistic failure pressure of 

the cracked pressure vessel.  

 

Statistical Parameters of Random Input Variables: 

 The pressure vessel containing axial through crack subjected to internal pressure as shown in Figure 2 is 

considered for the study. The literature test data for the pressure vessel (Anderson and Sullivan 1966; Peter and 

Kuhn 1957; Calfo, 1968) viz. ELI Titanium alloy, Aluminum alloy and AISI stainless steel cylinders as shown 

in Tables (1-5) have been used to perform probabilistic fracture analysis with different materials under 

cryogenic temperature. In this analysis uncertainty with respect to crack geometry, strength properties, fracture 

parameter and geometric parameters are taken into account. 

 The failure pressure estimates values for various Cylindrical Pressure Vessels (CPV)  are presented in        

Tables (1-5) which are considered as mean and their coefficient of variations are taken from the literature 

(Sang-Min Lee et al., 2006). In the fracture analysis, KF is one of the important and changeable fracture 

parameters. The variation in KF is quantified by constructing FAD using Equation (1). In order to accommodate 

all the literature test data,    Failure Assessment Line (FAL) are constructed on either side of already drawn 

FAD. The KF value available in Tables (1-5) is assumed as mean of KF. Figure 3 shows that the FAL 

corresponds to mean, upper and lower KF values for 5Al-2.5Sn-Ti cylinders at 20 K along with literature test 

data. The higher and lower KF values are equated to upper and lower limit of 3σ limits. The standard deviation 

and COV for KF is computed and is represented in Table 6. The uncertainty (i.e. COV) in KF is obtained as 

14%. The random variables are assumed to follow normal and log-normal distributions.  The fracture 

parameters m and q in the MTPFC (Equation (1)) are assumed to be deterministic. The statistical properties of 

all random input variables are summarized in Table 6.  

 
Table 1: Literature Test data of ELI Titanium Alloy 5Al-2.5Sn-Ti Cylinders at 20K (Do=152.4mm, t=0.51 mm, σys=1525 MPa, σult=1675 

MPa) at 20°K,  KF=228.2 MPam, m=1.0. 

Cylinder 

No. 

Crack length (2c) mm Failure Pressure, pbf (MPa) Relative error (%) 

Test (Anderson and Sullivan, 
1966) 

Deterministic 
Analysis 

(Christopher et al., 

2002 b) 

1 2.4 7.88 7.64 3.0 

2 3.9 7.4 6.82 7.9 

3 4.8 7.13 6.44 -5.0 

4 7.0 5.58 5.63 -0.9 

5 7.1 5.25 5.61 -6.8 

6 12.2 3.49 4.23 -3.0 

7 13.3 3.89 4.01 -21.1 

8 19.4 2.83 3.00 1.9 

9 20.4 2.92 2.87 14.5 

10 23.9 2.90 2.48 -6.0 

11 25.0 2.37 2.37 -0.1 

12 39.6 1.73 1.47 23.8 

13 40.6 1.87 1.43 15.2 
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Table 2: Literature Test data of Aluminium Alloy 2024-T3Al Cylinders (Do=182.9 mm, σys=250   MPa, σult=450 MPa) t=0.30 mm (KF=124 

MPam, m=1.0). 

Cylinder No. Crack length (2c) 
mm 

Failure Pressure, pbf (MPa) Relative error (%) 

Test (Peter and Kuhn, 1957) Deterministic Analysis 

(Christopher et al., 2002 

b) 

1 6.1 0.92 1.010 -10.0 

2 6.1 0.95 1.010 -6.5 

3 12.7 0.70 0.763 -9.0 

4 12.7 0.61 0.763 -25.1 

5 24.4 0.46 0.488 -7.1 

6 24.4 0.47 0.488 -3.8 

7 24.4 0.48 0.488 -1.6 

8 47.5 0.25 0.258 -3.2 

9 97.0 0.11 0.126 -14.8 

10 24.9 0.53 0.479 9.5 

11 50.3 0.29 0.243 16.2 

12 102.1 0.13 0.121 6.9 

13 24.4 0.52 0.488 6.2 

14 48.5 0.23 0.252 -9.8 

15 97.3 0.12 0.126 -5.0 

 

Table 3: Literature Test Data of Aluminium Alloy 2024-T6Al Cylinders (Do = 142.2 mm, σys = 560 MPa, σult = 680 MPa, t= 1.52 mm; at 

20K (KF = 68.9 MPam, m = 0.601, p = 20.4). 

Cylinder No. Crack length (2c) 

mm 

Failure Pressure, pbf (MPa) Relative error (%) 

Literature test (Anderson and Sullivan, 

1966) 

Deterministic 

Analysis 
(Christopher et al., 

2002 b) 

1 2.6 12.15 11.72 3.6 

2 6.4 9.37 8.65 7.7 

3 12.7 5.85 6.02 -2.9 

4 19.1 4.73 4.48 5.3 

5 25.4 3.10 3.48 -12.1 

6 31.8 2.93 2.79 4.9 

7 44.5 1.95 1.93 1.0 

8 50.8 1.76 1.65 7.1 

 

Table 4: Literature Test Data of ELI Titanium Alloy 5Al-2.5Sn-Ti Cylinders at 78K (Do= 52.4 mm, t=0.51 mm, σys=1200 MPa, σult=1400 

MPa) at 78 K: KF=274.8 MPam, m=0.763,p=29.5. 

Cylinder No. Crack length (2c) mm Failure Pressure, pbf (MPa) Relative 

error (%) Literature test (Anderson and 

Sullivan, 1966) 

Deterministic Analysis 

(Christopher et al., 2002 

b) 

1 3.2 8.75 8.11 7.3 

2 6.1 7.58 6.80 10.3 

3 5.8 7.20 6.92 3.9 

4 11.2 5.31 5.18 2.5 

5 11.5 4.83 5.09 -5.4 

6 18.6 3.90 3.63 6.8 

7 19.4 3.43 3.51 -2.3 

8 24.0 3.30 2.91 12.0 

9 25.2 3.04 2.78 8.5 

10 37.6 2.03 1.85 9.1 

11 37.1 1.65 1.87 -13.5 

 

Table 5: Literature Test Data of AISI 301 Stainless Steel cylinders, 152 mm Diameter Tanks (σys=1830 MPa, σult=2220 MPa, t=0.6 

mm)(Non-stress relieved) at 20 K: KF=201.2 MPam,  m=0.614, p=20.9. 

Cylinder No. Crack length (2c) mm Failure Pressure, pbf (MPa) Relative 
Error (%) Test (Calfo, 1968) Deterministic Analysis 

(Christopher et al., 2002 b) 

1 4.3 10.32 9.95 3.6 

2 4.8 9.79 9.52 2.8 

3 10.6 6.33 6.06 4.3 

4 10.8 6.52 6.35 2.6 

5 17.9 3.90 4.02 -3.0 

6 24.4 3.03 2.89 4.7 

7 37.5 1.97 1.80 8.5 

8 37.6 1.65 1.80 -9.4 
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Table 6: Statistical Properties of Random Input Variables for the Flawed CPV. 

Flawed cylindrical pressure vessels 

 

Diameter (D) 

mm 

 

Thickness (t) 

mm 

 

Crack length (2c) 

mm 

 

Ultimate 

strength (σult) 

MPa 

Yield strength 

(σys) MPa 

 

Fracture 

parameter (KF) 

MPam 

Mean (µ) 

5Al-2.5Sn-Ti cylinders  At 20 K 
2024-T3Al cylinders 

2024-T6Al cylinders 

5Al-2.5Sn-Ti cylinders  At 78 K 
AISI 301 stainless steel 

 

152.4 
182.9 

142.2 

152.4 
152 

 

0.51 
0.3 

1.52 

0.51 
0.6 

 

2.0 – 50b 
5.0 – 120b 

2.0 – 50b 

2.0 – 40b 
2.0 – 50b 

 

1675 
450 

680 

1400 
2220 

 

1525 
250 

560 

1200 
1830 

 

228.2 
124 

68.9 

274.8 
201.2 

COV a 

Probability distribution 

2% 

Normal 
 

2% 

Normal 
 

10% 

Log 
normal 

7% 

Normal 
 

7% 

Normal 
 

14% 

Normal 

Reference (Sang-Min Lee et al.,  2006) _c 
aCOV =standard deviation /mean; bassumed; cstatistically obtained 

 

 
 

Fig. 3: FAD for Mean, Upper and Lower KF values for 5Al-2.5Sn-Ti cylinders at 20 K. 

 

Probabilistic Failure Pressure Prediction Using Monte -Carlo Simulation (MCS): 

 The probabilistic failure analysis is carried out using the proposed methodology explained in Figure 1. The 

failure pressure is predicted for five different materials under cryogenic temperature using MCS. For 

performing the MCS the mean, COV and probability distribution of random variables are required which are 

taken from Table 6. In this study, 1000 simulation trials are used to perform the analysis. 1000 data for each 

random variables (σys, σult, KF, Do, a, t and 2c) are generated by a code written using MATLAB software and the 

a sample of 10 simulated data for ELI Titanium alloy 5Al-2.5Sn-Ti at 20K is shown in Table 7. 

 
Table 7: Simulated Sample Data of ELI Titanium Alloy (5Al-2.5Sn-Ti) at 20K using MCS Method.  

Sample No. Diameter, 
Do (mm) 

 

Thickness, 
t  (mm) 

 

Ultimate 
Strength, 

σult (MPa) 

Yield 
Strength, 

σys (MPa) 

Fracture 
Parameter, 

KF  (MPam) 

Crack 
Length, 

2c (mm) 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 

146.8 
154.6 

152.9 

156.2 
156.9 

151.2 

146.2 
156.3 

154.3 

155.9 

0.511 
0.501 

0.482 

0.509 
0.503 

0.522 

0.515 
0.506 

0.508 

0.524 

1758.8 
1559.4 

1632.8 

1697.7 
1714.2 

1585.4 

1563.6 
1551.8 

1654.2 

1455.8 

1367.8 
1533.6 

1618.3 

1337.6 
1522.9 

1445.8 

1582.4 
1543.3 

1454.8 

1357.8 

227.9 
214.4 

165.9 

232.8 
244.6 

282.3 

186.2 
235.3 

188.7 

231.6 

4.8 
5.0 

5.6 

4.8 
5.0 

5.0 

4.8 
5.6 

4.2 

5.2 
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 For performing the Monte Carlo simulation the mean, COV and type of probability distribution are 

required.  All these values are taken from Table 6. As mentioned in (Genki Yagawaet al., 1997)the simulation 

trial should be greater than 700 to obtain satisfactory result. In this study, 1000 simulation trials are carried out. 

The Monte Carlo based probabilistic fracture analysis requires sampling of parameters using random numbers. 

The following procedure is adopted for generating random variables of 1000 trials. Terminologies used in the 

simulation procedure are given below. 

µ= vector of dimension n containing mean values of input parameters 

X= vector of dimension n containing uniform random variables in the range [0, 1] 

Z= vector of dimension n obtained as standard Gaussian vector corresponding to random vector, X 

Y= vector of dimension n containing parameter’s value, to be used for Monte Carlo analysis for a given Monte 

Carlo trial, the vector Yis determined as: 

i. Generate vector X using a uniform random number generator. One random  number for each parameter. 

ii. Generate vector Zby mapping all elements of X.       

  X1Z    

  

 Where Ф   is the cumulative distribution function of a standard Gaussian random variable. Y is obtained 

from the following relation
 

ZXY    
 In case of lognormal distribution, to get the actual parameter, antilog of vector Yshould be taken. 

 Using the above procedure, 1000 trials data for each random variables (σys, σult,KF, Do, a, t and 2c) are 

generated by a code written using MATLAB software and the sample of 10 simulated data is given in Table 7. 

Using the simulated data shown in Table 3, the failure stress (σf) of the cracked pressure vessel is estimated 

through Equation (15) by a code written in MATLAB software. Since the Equation (15) is a non-linear one, the 

Newton-Raphson iterative method is implemented for finding failure stress (σf).  

 The failure pressure (pbf) is computed with σf value using Equation (11) as shown in Table 8.  The statistical 

properties like mean, COV and standard deviation of failure pressure (pbf) are computed using 1000 simulated 

data in Minitab software. The range of probabilistic failure pressure at various confidence levels like 1σ, 2σ and 

3σ are computed using the Equation (16) for different crack lengths and presented in Tables (9-13). Confidence 

bounds give an indication of how much the predicted response is expected to fluctuate. Confidence interval is 

based on normal approximation for a given level of confidence (k) is given as 

                              (16) 

 

 

where E(pbf) is the expected mean and Var(pbf) is the variance of the predicted failure pressure. 

 
Table 8: Predicted Failure Pressure of ELI Titanium Alloy (5Al-2.5Sn-Ti) Cylinders at 20K Corresponding To Simulated Sample Data.  

Sample 
No. 

Crack Length, 
2c (mm) 

Probabilistic failure 
Pressure, pbf (MPa) 

1 

2 

3 
4 

5 
6 

7 

8 
9 

10 

4.8 

5.0 

5.6 
4.8 

5.0 
5.0 

4.8 

5.6 
4.2 

5.2 

7.18 

7.18 

5.10 
6.69 

6.79 
7.47 

6.36 

7.15 
6.43 

6.29 

 

Table 9: Predicted Failure Pressure Range for 5Al-2.5Sn-Ti Cylinders at 20K at Various Confidence Levels. 

Crack 

Length 

(2c) mm 

Predicted failure pressure,   Pbf (MPa) Probabilistic failure pressure, (pbf)range at various confidence levels 

(MPa) 

Mean  (μL) COVL 

(%) 

Standard 

deviation (σL) 

84.13 % 

(1σ) 

97.72 % 

(2σ) 

99.86 % 

(3σ) 

2 

5 

10 
15 

20 

25 
30 

35 

40 
45 

50 

8.46 

6.72 

4.97 
3.79 

2.99 

2.42 
2.01 

1.72 

1.48 
1.30 

1.15 

7.37 

8.80 

11.31 
13.28 

14.33 

15.52 
16.30 

17.04 

17.31 
17.84 

18.42 

0.62 

0.59 

0.56 
0.50 

0.43 

0.38 
0.33 

0.29 

0.26 
0.23 

0.21 

7.83 - 9.08 

6.13 – 7.32 

4.41 – 5.53 
3.28 – 4.29 

2.56 - 3.41 

2.05 – 2.80 
1.68 – 2.34 

1.43 – 2.01 

1.22 – 1.73 
1.07 – 1.53 

0.94 – 1.36 

7.15 – 9.69 

5.54 – 7.91 

3.85 – 6.07 
2.78 – 4.79 

2.13 – 3.84 

1.67 – 3.17 
1.35 – 2.66 

1.13 – 2.31 

0.97 – 1.99 
0.83 – 1.76 

0.73 – 1.58 

6.59 – 10.32 

4.96 – 8.47 

3.28 – 6.63 
2.28 – 5.29 

1.70 – 4.27 

1.29 – 3.55 
1.03 – 2.99 

0.84 – 2.60 

0.71 – 2.24 
0.60 – 1.99 

0.52 – 1.79 














bf
pVark

bf
pEintervalConfidence
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Table 10: Predicted Failure Pressure Range for2024-T3Al Cylinders at Various Confidence Levels. 

Crack 

Length 

(2c) mm 

Predicted failure pressure,   Pbf (MPa) Probabilistic failure pressure (pbf)range at various confidence levels 

(MPa) 

Mean  (μ) COV 

(%) 

Standard 

deviation (σ) 

84.13 % 

(1σ) 

97.72 % 

(2σ) 

99.86 % 

(3σ) 

5 
10 

15 

20 
30 

40 

50 
60 

70 

80 
90 

100 

110 
120 

0.91 
0.81 

0.66 

0.54 
0.39 

0.3 

0.24 
0.20 

0.17 

0.15 
0.14 

0.12 

0.113 
0.107 

6.5 
8.2 

10.0 

11.9 
14 

15.4 

16.1 
16.7 

16.3 

16.1 
15.7 

15.6 

16.1 
17.0 

0.06 
0.067 

0.06 

0.065 
0.056 

0.046 

0.039 
0.036 

0.026 

0.023 
0.02 

0.019 

0.02 
0.019 

0.85-0.97 
0.74-0.88 

0.59-0.73 

0.48-0.61 
0.34-0.45 

0.26-0.35 

0.22-0.28 
0.16-0.23 

0.14-0.19 

0.12-0.17 
0.12-0.16 

0.10-0.13 

0.09-0.13 
0.08-0.12 

0.79- 1.03 
0.68-0.94 

0.53-0.79 

0.42-0.68 
0.29-0.51 

0.21-0.40 

0.16-0.32 
0.12-0.27 

0.11-0.22 

0.10-0.19 
0.10-0.18 

0.08-0.15 

0.07-0.15 
0.06-0.14 

0.73- 1.09 
0.61-1.01 

0.48-0.86 

0.35-0.74 
0.23-0.56 

0.16-0.44 

0.12-0.36 
0.09-0.31 

0.09-0.24 

0.08-0.21 
0.08-0.20 

0.06-0.17 

0.05-0.17 
0.05-0.16 

 

Table 11: Predicted Probabilistic Failure Pressure Range for 2024-T6Al Cylinders at Various Confidence Levels. 

Crack 

Length 

(2c) mm 

Predicted failure pressure,   Pbf (MPa) Probabilistic failure pressure (pbf)range at various 

confidence levels (MPa) 

Mean  (μ) COV 

(%) 

Standard 

deviation (σ) 

84.13 % 

(1σ) 

97.72 % 

(2σ) 

99.86 % 

(3σ) 

2 
5 

10 

15 
20 

25 

30 
35 

40 

45 
50 

11.81 
9.100 

6.750 

5.290 
4.280 

3.530 

2.972 
2.547 

2.200 

1.940 
1.720 

7.80 
9.85 

11.90 

13.30 
14.20 

15.50 

15.80 
17.00 

16.80 

17.20 
17.60 

0.920 
0.890 

0.800 

0.700 
0.600 

0.549 

0.469 
0.430 

0.367 

0.330 
0.304 

10.90-12.73 
8.21-9.99 

5.95-7.55 

4.59-5.90 
3.67-4.89 

2.98-4.08 

2.52-3.42 
2.11-2.97 

1.83-2.57 

1.60-2.27 
1.42-2.02 

9.90-13.7 
7.32-10.8 

5.14-8.36 

3.88-6.70 
3.07-5. 50 

2.43-4.63 

2.03-3.91 
1.68-3.41 

1.46-2.94 

1.27-2.61 
1.11-2.33 

9.05-14.6 
6.43-11.7 

4.34-9.16 

3.18-7.40 
2.43-6.11 

1.82-5.18 

1.56-4.38 
1.25-3.84 

1.11-3.31 

0.92-2.94 
0.81-2.63 

 

Table 12: Predicted Probabilistic Failure Pressure Range for 2024-T3Al Cylinders at Various Confidence Levels. 

Crack 
Length 

(2c) mm 

Predicted failure pressure,   Pbf (MPa) Probabilistic failure pressure (pbf)range at various confidence levels 
(MPa) 

Mean  (μ) COV 

(%) 

Standard 

deviation (σ) 

84.13 % 

(1σ) 

97.72 % 

(2σ) 

99.86 % 

(3σ) 

2 
5 

10 

15 
20 

25 

30 
35 

40 

9.35 
7.64 

5.72 

4.41 
3.5 

2.86 

2.38 
2.04 

1.76 

6.5 
8.2 

10.7 

12.7 
14.46 

14.92 

16.44 
16.62 

17.91 

0.612 
0.628 

0.61 

0.56 
0.50 

0.43 

0.38 
0.33 

0.32 

8.73-9.96 
7.01-8.277 

5.11-6.33 

3.85-4.97 
3.01-4.02 

2.42-3.27 

2.00-2.71 
1.70-2.37 

1.46-2.05 

8.12-10.57 
6.38-8.90 

4.49-6.95 

3.29-5.53 
2.50-4.53 

1.99-3.74 

1.62-3.15 
1.35-2.71 

1.62-2.35 

7.5-11.18 
5.76-9.53 

3.88-7.56 

2.73-6.09 
2.00-5.09 

1.57-4.18 

1.23-3.53 
1.03-3.04 

0.86-2.70 

 
Table 13: Predicted Probabilistic Failure Pressure Range for AISI 301 Stainless Steel Cylinders at Various Confidence Levels. 

Crack 

Length 
(2c) mm 

Predicted failure pressure,   Pbf (MPa) Probabilistic failure pressure (pbf)range at various confidence levels 

(MPa) 

Mean  (μ) COV 
(%) 

Standard 
deviation (σ) 

84.13 % 
(1σ) 

97.72 % 
(2σ) 

99.86 % 
(3σ) 

2 

5 
10 

15 

20 

25 

30 

35 
40 

45 

50 

14.4 

10.3 
6.90 

4.97 

3.79 

3.03 

2.43 

2.05 
1.75 

1.50 

1.34 

8.9 

11.3 
13.6 

16.0 

16.27 

16.85 

17.6 

18.0 
18.4 

18.7 

18.6 

1.28 

1.16 
0.93 

0.79 

0.61 

0.52 

0.42 

0.37 
0.32 

0.28 

0.24 

13.14-15.68 

9.14-11.41 
5.96-7.84 

4.17-5.77 

3.17-4.41 

2.51-3.54 

2.00-2.86 

1.68-2.42 
1.42-2.07 

1.22-1.78 

1.09-1.59 

11.86-16.96 

7.97-12.64 
5.04-8.78 

3.39-6.57 

2.56-5.03 

2.00-4.05 

1.57-3.29 

1.30-2.79 
1.10-2.39 

0.94-2.06 

0.86-1.84 

10.58-18.2 

6.82-13.7 
4.09-9.72 

2.57-7.37 

1.96-5.64 

1.49-4.56 

1.17-3.72 

0.93-3.16 
0.78-2.71 

0.65-2.34 

0.62-2.06 

 

Computation of Safety Factor and Reliability: 

Stress - Strength Interference Theory: 

 The reliability of existing structure or design of new structure or system with certain desired reliability can 

be determined using stress strength interference theory. With this knowledge, it is possible to increase the 
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control on the safety factors that have an important effect on the product quality, and relax over stringent 

control on other factors that are not critical to the product quality (Zhou Xun and Yu Xiao-li, 2006). The 

computation of the reliability of the component requires the knowledge of the random nature of strength (S) and 

the stress (L). If the probability density function of S and L are known then, the reliability of the component can 

be evaluated by constructing integral equations as shown in Equation (17). In certain cases, S and L follow 

normal, lognormal, exponential or Weibull distributions, and the integral equations can be reduced to simple 

form. Otherwise the reliability of the component can be found only by evaluating the integral numerically. The 

reliability (R) of a component is given by 

   0LSPLSPR               (17) 

 
  dLdsLS,

S.L
f  

The probability of failure (Pf) can be expressed as shown in Equation (18)  
 LSPR

f
P  11

  (18) 

 If S and L are random variables, the safety margin y is also a random variable and given as in Equation (19). 
LSy      (19) 

then the reliability of the component is represented as in Equation (20)  

 0ypR      (20)

 When strength and stress have normal density functions, y is also normally distributed and the reliability 

(R) is represented17 in the Equation (21). 

dz

2

L
σ

2

S
σ

L
μ

S
μ

2

2z
exp

2π

1
R 



































         (21) 

where z is the standard normal random variable, µS is the mean value of the strength, µL is the mean value of the 

stress, and σS and σL represents the standard deviations of strength and stress, respectively. The negative sign 

portion of the lower limit of the integral in Equation (21) is denoted by Z0. Therefore  

 
2

L
σ

2

S
σ

L
μ

S
μ

0
Z




     

(22) 

 The factor of safety N is defined as 

Lμ

Sμ
N 

   and the coefficients of variation of the strength and stress is 

denoted by VS and VL respectively, then

Sμ

Sσ

SV 
   and  

Lμ

Lσ

LV 
 

 The Equation (22) is rewritten in terms of safety factor (Kapur and Lamberson, 1977) N as presented in 

Equation (23) and Equation (24).in terms of N, VS and VL 

2

L
μ

L
σ

2

L
μ

S
σ

1N

0
Z

































           (23) 

  

                       (24) 

 

 

 In this section, a safety factor is computed using stress-strength interference theory by considering the 

experimental failure pressure as strength (S) variable and the predicted failure pressures as stress (L) variable. If 

the S and L are independent, then the interference area between the PDF of S and L gives a measure of the 

probability of failure (Rao 1996). The mean and standard deviation of strength and stress random variables are 

taken from the Tables (9-13) which is obtained from probabilistic failure analysis. 

 

Safety Factor Computation: 

 For instance, the pressure vessel made of 5Al-2.5Sn-Ti alloy at 20K containing an axial through crack of 

length 2c=3.9 mm is considered for safety factor computation. The mean and standard deviation of stress and 

strength variables are taken from Table 14. The safety factor is computed using Equation (24) for the specified 

reliability. Similarly, the safety factor is computed for other materials and is shown in Table 15.  

 

 

2

L
V

2
N

2

S
V

1N

0
Z





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Operating Pressure Computation: 

 The safe operating pressure of the vessel is determined using Equation (25) as given below. 

Operating pressure σop = µL/N         (25) 

 

where µL is the predicted failure pressure mean and N is safety factor for the specified reliability. The operating 

pressure is computed for five different cylindrical pressure vessels and is summarized in Table 15. 

 
Table 14: Predicted Safety Factor for Flawed Pressure Vessels Containing Axial Crack. 

Material 
 

Crack length 
(2c) mm 

Failure Pressure, Pbf (MPa) 

Test Predicted 

Mean   

(μS) 

Standard 

deviation (Lin  

et al 2004) (σS) 

Mean   

(μL) 

Standard 

deviation (σL) 

5Al-2.5Sn-Ti at 20K 3.9 7.40 0.740 7.305 0.602 

2024-T3Al 6.1 0.92 0.092 0.913 0.067 

2024-T6Al 2.6 12.15 1.215 11.379 1.046 

5Al-2.5Sn-Ti at 78K 3.2 8.75 0.875 8.625 0.626 

AISI 301 stainless steel 4.3 10.32 1.032 10.992 1.221 

 
Table 15: Predicted Safety Factor and Operating Pressure of Cylinders at a Particular Crack Length for the Specified Reliability. 

Cylinders Crack 

length 
(2c) mm 

Safety factor (N) Operating pressure (MPa) 

90% 95% 99% 99.99% 90% 95% 99% 99.99% 

5Al-2.5Sn-Ti at 20K 2.4 1.185 1.246 1.372 1.704 6.17 5.86 5.32 4.29 

2024-T3Al 7.1 1.177 1.236 1.359 1.681 0.78 0.74 0.67 0.54 

2024-T6Al 2.6 1.188 1.250 1.379 1.714 9.58 9.10 8.25 6.64 

5Al-2.5Sn-Ti at 78K 3.2 1.177 1.236 1.363 1.681 7.33 6.98 6.33 5.13 

AISI 301 stainless steel 4.3 1.211 1.271 1.419 1.781 9.08 8.65 7.75 6.17 

 

RESULTS AND DISCUSSION 

 

 In this chapter, the PFM analysis is carried out for the pressure vessels containing crack and the following 

observations made during the analysis are summarized below. 

i. In this study, the failure pressure of the cylindrical pressure vessel having axial through crack is predicted 

using probabilistic fracture mechanics approach. With the use of statistical properties of predicted failure 

pressure, the probabilistic failure pressure range has been determined and is presented in Tables (9-13). 

ii. The predicted failure pressure range at 3σ level and deterministic failure pressure along with test data 

against various crack length is drawn as shown in Figure 4 for 5Al-2.5Sn-Ti Cylinders at 20K. Out of thirteen 

test data considered shown in Tables (1-5), seven of them fall below the deterministic prediction (53.8%) and 

three of them in line with prediction (23%), then the remaining three values fall above the deterministic 

prediction (23%). Whereas in the case of probabilistic failure prediction, all the simulated test data fall within 

upper and lower limits of failure pressure shown in Figure 4 and thereby eliminating the negative error.  

 

 
 

Fig. 4: Comparison of Deterministic and Probabilistic Failure Pressure Limits at 3σ Along With Literature 

Experimental Test Data for 5Al-2.5Sn-Ti Cylinders at 20K 
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Fig. 5: Simulated test data of ELI Titanium alloy 5Al-2.5Sn-Ti at 20 K along with Probabilistic Failure Pressure 

Limits at 3σ Confidence Level. 

 
 The predicted probabilistic failure pressure range at 3σ is shown in Figure 5 for 5Al-2.5Sn-Ti alloy along 

with deterministic failure pressure for various crack length. From the Figure 5 it is clear that 1000 simulated test 

data generated for all the materials fall within the predicted probabilistic failure pressure range at 3σ for various 

crack length. Thus ensuring that probabilistic approach predicts correctly under all circumstances than the 

deterministic approach. 

iii. From Figure 6, it is clear that distribution of predicted failure pressure through proposed methodology has 

good agreement with the distribution of literature test failure pressure 

 
 

Fig. 6: Stress-Strength interference graph of 5Al-2.5Sn-Ti cylinders at 20K. 

 

iv. From the results of probabilistic analysis, reliability-based safety factor is suggested for the specified 

reliability  using stress-strength interference theory . The safe operating pressure is obtained by shifting the 

mean of the distribution of predicted failure pressure for the specified reliability. The stress – strength 

interference graph for 5AL-2.5 Sn-Ti cylinders at 20 K for the reliability of 90% and 99.99% respectively is 

shown in Figures 7 and 8. It is observed from Figures 7 and 8 that interference area is more for 90% reliability 

and less for reliability 99.99%. Based on this approach, a design engineer can design the system for the 

specified reliability and safety. 
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Fig. 7: Stress- Strength Interference Graph of 5Al-2.5Sn-Ti Cylinders at 20 K for 90 % Reliability. 

 

 
Fig. 8: Stress- Strength Interference Graph of 5Al-2.5 Sn-Ti Cylinders at 20 K for 99.99 % Reliability. 

 

v. Figure 9 shows the effect of crack length on safety factor for 5Al-2.5Sn-T6 titanium alloy cylinder at 20K. 

It is inferred from Figure 9  that as the crack length increases, the safety factor is also increases for the specified 

reliability.  

 
 

Fig. 9: Effect of Crack Length on Safety Factor for 5Al-2.5Sn-Ti Cylinders at 20 K for The Specified 

Reliability Level. 
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Conclusion: 

 In this study, PFM analysis of pressure vessels containing axial through crack under cryogenic 

temperatures  is performed using the proposed probabilistic failure assessment methodology. The Monte Carlo 

simulation technique is adopted for performing probabilistic fracture analysis using MATLAB software. As a 

result, reliability-based operating pressure is suggested for five different cylinders having axial through crack 

subjected to internal pressure. The proposed work will help the design engineer to decide the operating pressure 

of the cracked structure for the specified safety and reliability. In future, this procedure can be extended to the 

pressure vessel containing circumferential through crack, combination of axial and circumferential and  pressure 

vessels made of composite materials.  
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