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Ranked set sampling (RSS) approach is considered a cost efficient alternative to simple
random sampling (SRS) when observations are costly or time-consuming but the
ranking of the observations without actual measurement can be done relatively easily.
Many authors suggested different modifications for RSS to come up with new
sampling techniques. Median ranked set sampling (MRSS), extreme ranked set
sampling (ERSS) and percentile ranked set sampling (PRSS) are some modifications
for RSS. In the current paper, the estimation of R = P[Y < X] when Y and X are two
independent Burr type XII distributions with the same known shape parameter c is
considered. Maximum likelihood method is proposed to estimate R based on MRSS,
ERSS and PRSS data. These estimators are compared with known estimators based on

set sampling, extreme ranked set
sampling and percentile ranked set
sampling.

SRS and RSS data in terms of their mean square errors (MSEs) and efficiencies.
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INTRODUCTION

Stress-strength reliability is one of the main tools of reliability analysis of structures. A stress-strength
system fails as soon as the applied stress Y is at least as large as its strength X.Due to the practical point of view
of reliability stress strength model, the estimation problem of P(Y < X) has attracted the attention of many
authors. This model first considered by Birnbaum (1956) and developed by Birnbaum and McCarty (1958). The
latter paper for the first time included P(Y < X) in its title, but the formal term stress-strength appeared in the
title of Church and Harris (1970). The theoretical and practical results on the theory and applications of the
stress-strength relationships in industrial and economic systems during the last decades are collected and
digested in Kotz et al. (2003).

RSS is a sampling technique that was proposed by Mclintrye (1952) for estimating the mean of pasture and
forage yields. In situations when the variable of interest is costly or time-consuming, but the ranking of items
according to the variable is relatively easy without actual measurement, the use of RSS is highly powerful and
much superior to the standard SRS for estimating some of the population parameters. The RSS procedure can be
summarized as follows. Randomly select n? units from the target population and rank the units within each set
with respect to a variable of interest by visual inspection or by any cheap method. Then select for actual
measurement the smallest ranked unit from the first set. From the second set, select for the second actual
measurement the second smallest unit. The process is continued in this way until the largest ranked unit is
selected from the last set.The cycle may be repeated r times to obtain a sample of size nr units from the RSS
data.

Takahashi and Wakimoto(1968) established a very important mathematical theory of RSS. They showed
that the mean of the RSS is an unbiased estimator of the population mean and has a smaller variance than the
mean of a SRS. Dell and Clutter (1972) showed that the mean of the RSS is an unbiased estimator of the
population mean whether the ranking is perfect or not.Muttlak(1997) proposed the median ranked set sampling
as a modification to RSS. The MRSS procedure can be summarized as follows.Select n random samples of size
n units from the target population.Rank the units within each sample with respect to a variable of interest.If the
sample size n is odd, from each sample select for measurement the (n + 1/2)%" smallest ranked unit (i.e., the

median of the sample). If the sample size n is even, select for the measurement from the first % samplesthe
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(n/Z)th smallest ranked unit and from the second n/2samples the (n/2 + 1)t smallest ranked unit.The cycle
may be repeated r times to get nr units. These nr units form the MRSS data

Samawi et al. (1996) used the extreme ranked set sampling to estimate the population mean. They showed
that the ERSS estimator is more efficient than the SRS estimator. In the ERSS procedure,select n random
samples of size n unitsfrom the populationunder consideration and rank the units within each sample with
respect to a variable of interest. If the sample size n is odd, select from n — 1/2 samples the smallest unit, from
the othern —1/2 the largest unit and fromthe remaining sample, the median of the sample for actual
measurement. If the sample size is even, select from n/2 samples the smallest unit and from the other n/2
samples the largest unit for actual measurement.The cycle may be repeated r times to get nr units from ERSS
data.

Muttlak (2003) introduced the PRSS approach as a modification to RSS. In the PRSS procedure, select n
random samples of size n units from the population and rank the units within each sample with respect to a
variable of interest. If the sample size is even, select for measurement from the first n/2 samples the
0(n + 1)*" smallest ranked unit and from the second n/2 samples the t(n + 1)**smallest ranked unit, where
t=1-0 and 0 < 0 < 0.5. If the sample size is odd, select from the first n — 1/2 samples the 0(n + 1)t*
smallest ranked unit and from the othern — 1,/2 samples the t(n + 1)** smallest ranked unit and select from the
remaining sample the median for the sample for actual measurement. The cycle may be repeated r times if
needed to get nr units from PRSS.

Recently, interest has been shown in estimating R using RSS by several investigators.Sengupta and
Mukhuti (2008) considered an unbiased estimation of Rusing RSS for exponential populations.Muttlak et al.
(2010) proposed three estimators of Rusing RSS when Xand Y areindependent one-parameter exponential
populations. Hussian (2014) discussed the estimation problem of stress strength model for generalized inverted
exponential distribution based on RSS and SRS. Maximum likelihood method is used to estimate R using both
approaches. Hassan et al. (2014) discussed the estimation of R when Y and X are two independent Burr type XII
distributions with common known shape parameter c. These estimators compared in terms of their biases, mean
square errors and efficiencies with known estimators based on SRS data.

Burr (1942) introduced twelve different forms of cumulative distribution functions which might be useful
for fitting data, among those distributions Burr type XIllI;it has been widely used in reliability analysis. The two
parameters Burr-XII distribution denoted by Burr (c, b) has the following probability density function (PDF)

f(x;¢,b) =bex 11+ x¢)~®+D, x > 0,c > 0,b > 0.(1)
Thecorresponding cumulative distribution function (CDF) is given as
F(x;e,b)=1—(1+4+x)"",x>0,c>0,b>0. 2)

Here,c and b are shape parameters.

The main aim of this study is to focus on the estimation problem ofR = P(Y < X),where X~Burr (c, b)and
Y ~Burr (¢, a)and they are independently distributedbased on different sampling schemes. Maximum likelihood
estimators (MLEs)of R using SRS and RSS will be considered. MLEs based on MRSS, ERSS and
PRSStechniques will be derived. Simulation study is performed to compare different estimators.

Estimation of R = P(Y < X)Based on SRS and RSS data:
This section concern with the MLE and UMVUE of R based on SRS data and the MLE of R based on RSS.
Therefore, firstly MLEs of theunknown parameters must be derived.
Let X~Burr (c,b)and Y~Burr (c,a)are two independent Burr type XIlI random variables,then
according to Panahi and Aasdi (2010), it can be easily seen that:
1

R=P(Y <X)= fooc fox bcxc_l(l + xc)—(b+1)acyc—1(1 +yc)—(a+1)dydx — rvvlll p zs . (3)

Now to compute the MLE of R based on SRS, first MLEs of b and a are obtained.Let Xy, ..., X,, be a SRS

from Burr (¢, b)and Y3, ..., Y, be a SRS from Burr (c, a),therefore the log-likelihood function denoted by [ for
the observed sample is given by:

p q p
l=plnb+qina+ (p+ q)lnc+(c —1) Inx; + ) Iny;[—(b+ 1) Z In(1+x{)
i=1 j=1 i=1

q
—(a+1) ) ln(1+yF).
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Differentiating the log-likelihood and equating by zero with respect to b anda. Hence, MLEs of b and a,
when c isknown take the following forms:

andaMLE = — 1 (4)

29 in (1+yj)'

BMLE =
Zleln(1+xf) ¥

whereby;,z and @,z are MLEs forb and a. Once the MLEs ofb and a are obtained from Equation (4),
then,the MLE of R using SRS is given by

Ruie = - ,  Wherepy,r = liMi- (5)

1+PmLE aMLE

To get UMVUE of R, let (X7_, In(1 +x{),%7_, In(1 +yf)) is a jointly sufficient statistic for (b, a),
thereforeaccording to Panahi and Asadi (2010),theUMVUEof Rbased on SRS will be as follows:

~ _ C o (@=DIp-1D!  (T2\!.
Rymvue = Zfzol(—l)l #(_2) ifT, <Ty, (6)

(@+i-Di(p—i—-! \Ty
or
) -1 . (@-Dp-Dr (T,
Ruwos = 1315 ' 155000 () T > T "

where,T; = YF_ In(1 +x{)and T, = }{1:1 In(1+ yf).

According to Hassan et al. (2014) the MLE ofR is obtained as follows:
Let{Xi(i)s, i=12,.n;s =12, ...,r}be a ranked set sample with sample sizep = nr, where nand r are the
set size and the number of cycles from Burr (c, b). Then the PDFof X;;, isgiven by:

filxiys) = ﬁ [Fri)] [t = F(ris)]"™ F (rios), ®)

n! _ —[b(n—i+1)+1] -b;_
fi(xi(i)s) = mbcxfmls(l + xf(i)s) (1 —_ (1 + xic(i)s) )l 1, xi(l‘)s > 0

By similar way, let {Y,j=1,..,m;s=1,..,r}jdenote the ranked set sample of
sizeq = mrfromBurr (¢, a). ThenthePDF ofY; ;y,is given by:

! i—1 -
F005) = 756 FOro)l 1= Fyoa)l™ F(is). ©)
m! - ~[a(m—j+D+1] —ay;_
50100) = T oram = @Yo (L ) A= () YT v > 0

The likelihood function Lyss of observed data will be as follows:

Lpss = ﬁ lﬁ fi(%icoys) ﬁﬂ €7 U)S)‘-
s=1 |i=1 j=1

The log-likelihood function of Lgssdenoted by Izsswill be as follows:
T n m
lpss =In Dy +plnb + qlna+ (c — 1) Inx; ;s + Z ny; s

s=1 \i=1 j=1

- { [b(n—i+ 1)+ 1in(1 + x{;,) + z[a(m —j+ D+ 10in(1+y5)s)
=1\ =

N i j=1

=

=1
+ { (—Din(1-A+xH)™") + Z(j = Din(1 =1+ y{H0™)
s=1 \i=1 j=1
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whereD; is a constant. The first partial derivatives of log-likelihood function with respect to b and a are given
by:

al , ) In(1+x()
RS = Zf— Ds=12i=1 [(n — i+ DIn(1 +x{,,) -G —1) (7(;)] =0, (10)

b (14x45) —1
In( 14y

ZmsS =y W |n— 4 DIn(L+ y,) — G — 1) 2l | (11)
¢ ¢ (1+yjc(/)s) -

Clearly, it is not easy to obtain a closed form solution to system ofEquations (10) and (11). Therefore, an
iterative technique must be applied to solve these equations numerically to obtain an estimates of b and a.
MLEs of b and a denoted by b and @ are the solution of Equations (10) and (11). Then R,z Will beobtained by
substitutingh and @ inEquation (3).

Estimation ofR = P(Y < X)Based on MRSSData:

Muttlak(1997)investigatedMRSS as a sampling technique to estimate the population mean. MRSS
procedure depends on two cases, the first case for odd set size and the second case for even set size. This
procedure can be summarizedas follows:

Case (1):for odd set size,the median value is selected from each of the n ordered sets. If the
set{X )5 Xa(g)s - » Xn(g)s JiS Quantified, then this will be a MRSS for odd set size,whereg = n + 1/2ands =
1,2,..,r

Case(2): for even set sizethe (u)™* smallest element is chosen from the first u ordered sets, while the
(u + 1)*"smallest unit is chosen from each of the remaining u sets. MRSS foreven set size will be the set
{X1ysr o Xuys: Xur1@ue1ys -+ Xn1)s} Whereu = n/2ands = 1,2,..,7

In the following subsections maximum likelihood method of estimation will be considered to estimate R for
Burr XII distribution based on MRSS technique for odd and even set sizes. To derive the MLE of R, firstly the
MLEs of unknown parameters b and a must be obtained.

MLEof R = P(Y < X)with Odd Set Size Based on MRSS data:
Let xq(g)s, -+ Xn(g)s 1S @ MRSS from Burr (¢, b) with sample size p = nr, where n is the set size, r is the

number of cycles. Then using Equation (8) the PDF of X; ) will be as follows:

b -b19-1
fy(xi(g)s) Wbcxt(g)s[l + xt(g)s] (o [1 - (1 + xl(g)s) ] » Xi(g)s > 0. 12)

Similarly, Let y; )5, o) Y (n)s 1S @ MRSS from Burr (c, a) with sample size g = mr, where m is the set
size, r is the number of cycles. Then, using Equation (9) the PDF of ¥ ) swill be as follows:

]—(ah+1)[1 _

! _ —a k-1
firas) = =z Ay s [+ ¥iays (T +¥ms) 1 ¥aws >0 (13)
[(h—1)1]

The likelihood function for the observed sample based on MRSS in case of odd set size denoted by Lyrss1
is given as follows:

MRSS1 = H§=1[H?=1 fg (xi(g)s) H]m=1 fr (Yj (h)s)]-

The log-likelihood function for the observed sample based on MRSS procedure in case of odd set size
denoted by lyrssqWill be given as follows:

rss1 = In D, +plnb + qlna + (¢ — 1) Z Z Inx;g)s + Z Iny; (h)s‘ Z (bg+ 1)
S§=

-b
X E Inéfl + x;(,),) + (ah + 1) E In(1+ yjc(h)s) + E (g-1 E In [1 -(1+ xf(g)s) ]
i=1 j=1 s=1 =1
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+(h—1) Z In[1-(1+ %C(h)s)_a]"
j=1

whereD, is a constant.The first partial derivatives of log-likelihood function with respect to b and a are given
by:

lnEEE}1+xf(g)s)

=0, (14)
(1+xf(g)s)b1‘1-

aly P
1‘/;1255 1 E DD Y [g ln(l + xic(g)s) -9-1

ol I
It/gfs 1_ aq_* - Z}'nzl hln(l + yjc(h)s) —(h-1) —](Z)* =0. (15)
' (1+yjc(h)s 1_1_

It is clear that the MLEs of b and a denoted by b; and aj cannot be obtained in a closed form. Thus, an
iterative technique must be applied to solve these equations numerically to obtain an estimates of b and a. The
MLE of R denoted by Rjypssibased on MRSS approach with odd set size is obtained by substituting

PuRss1 = 2—1 in Equation (3).

MLE of R = P(Y < X) with Even Set Size Based on MRSS Data:

For even set sizes, the (u)* smallest element is chosen from the first u ordered sets, while the
(u + 1)"smallest unit is chosen from each of the remaining u sets. Let the set{ Kiws i =12, u;s =
L2,.. . rpufXiu+1s,i=u+1,...,n;s=12,..,7}, be a MRSS drawn from BurrgAwith even set sizes where
u = n/2.Then X;,)s and X;,41ys are the(u)*"and the (u + 1)** smallest units from the i*" set of the s** cycle.
By direct substitution into Equation (8) the PDFs of (u)t"and (u + 1)*"order statistics when n is even are
given as follows:

n! _ —(b(u+1)+1) —pu-1
fu(Xiqs) = mbcxf@js[l + %] [1 — (1 + x{us) ] ) Xiwys > 0,
and
n! 1 c —(bu+1) c —b%
fu+1(xi(u+1)s) = mbei(u+1)s[1 + xi(u+1)s] [1 — (1 + xi(u+1)s) ] , xi(u_+1)s > 0.

Similarly, let the set{{lg(,,)s,j =12,.,55 =12, 7} U{ljgsne) = v+ 1,..,ms =12, ...,r}}, be
the MRSS from Burr (c, a), where v = m/2. Then y; ,)sand ¥;,11)sare the (v)*" and the (v + 1)*" smallest

units from the j* set of the s* cycle.By direct substitution into Equation (9) the PDFs of (v)“and
(v + 1) order statistics whenn is even are given as follows:

m! _ —(a(w+1)+1) —aqv—1
— 1
Fbiws) = Gy Vet + Y] [1-(+ywd) T Yiws > 0,
and
m. 1 —(av+1) —aqv
for1(Vwsns) = ma%c(vﬂ)s[l + Y w+)s] [1=(1+y ) | Y w+1)s > 0.

The likelihood function for the observed sample with even set size based on MRSS,denoted by Lygss2, iS
given as follows:

r u n v m
L7\4RSSZ = 1_[ Hfu(xi(u)s) 1_[ fu+1 (xi(u+1)s) l_lfv(y] (v)s) 1_[ fv+1 (y] (17+1)s)
i=1 j=1

s=1 i=u+1 j=v+1

Then, the log-likelihood function of Lygss,denoted by Lygss,Will be as follows:

T u n v
lyrss2 = In D3 +plnb + qlna + (¢ — 1) z [z Inx; s + Z Inx;q,+1)s + Z lnyj(v)s
s=1 Li=1 j=1

i=u+1
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+ Z ny; w41y Z{(b(u +1)+ 1)2 ln 1+ xl(u)s] + (bu+1) Z ln[l + xl(uﬂ)s]

j=v+1 i=u+1

+a(v+1) + 1)2 ln 1+ y](v)s] +(av+1) Z ln[l + yj(yﬂ)s]}

j=v+1
- -b
+Z{(u - 1)Zln[1 -1 +xl(u)s) ] +u Z ln[l -(1 +xf(u+1)s) ]
i=u+1l
+(v—-1) Z ln[l — (1 + yj”(v)s)_a] +v Z ln[l — (1 + }Ij”(v+1)s)_a]}
=1 j=v+1

whereD; is a constant. The first partial derivatives of log-likelihood function Iy, Withrespect to b and a
are given by:

n
aly
Tinnssz _ P g | Z [l + ] +u Y m[1+ xf(u+1>s]l
— i=u+1
€ e In(14+x5, +1)s
PR [(u SR IL GRS u+1(—”il)l =0 a8
(1+xl(u)s -1 (1+xl(“+1)3) -1
al; . . N
1\:;};8‘52 _ % _ Z w+1) Z lTL[l + y].c(v)s] +v Z ln[l + yjc(v+1)s]
2 = j=1 j=v+1

+Z [(v _ 1) 2}7 ) ln(1+y](u)25) +v ;‘n=v+1 ln(1+yj(v+(11)§$) l =0. (17)
(147fs) 1 (1+5fwsns) 1

MLEs of b and a denoted by b; and ajare obtained by iteratively solving Equations (16) and (17). Thus,
the MLE of R denoted by Rjzss- IS obtained by substituting b5 and a5 in Equation (3).

Estimation of R = P(Y < X)Based on ERSSData:

Samawi et al. (1996) introduced another modification of RSS called ERSS. This approach to data collection
depends on two cases, the first case when the set size is odd and the second case when the set size is even. ERSS
procedure can be designed as follows:

Case (1): for odd set size n, the largest and smallest units are selected from the first random sample to the
(n— 1) random sample. From the n'* random sample select the median of the set. If the set
{X1)s» » Xn—100)s: Xn(g)s} 1S Quantified, then this will be ERSS for odd set size, where g =n +1/2 and
s=12,..,r

Case (2):foreven set size n, the largest and smallest units are alternately taken from the first to the nt*
random sample. If the set{X; 1y, .-, Xn_1(n)s» Xn(n)s} 1S Quantified, then this will be ERSS for even set size,
wheres =1,2,...,r

In the following subsections, MLE of R = P(Y < X) is derived under ERSS technique for both odd and
even set sizes.

MLE of R = P(Y < X) with Odd Set Size Based on ERSS Data:

Let{X;)si=1,..,g—-1Ls=12,..,1}, Ximsi=g ..,n—1s=12,..,r} are the smallest and
largest order statistics from Burr (c, b), where n is the set size, r is the number of cycles. The PDFs of X; 4, and
X;(m)s using Equation (8), will be as follows

fi(x:1)s) = nbe xic(z%s(l + x1)5)
and

— _pn—1
ﬁl(xi(n)s) = nbc xic(:l%s(l + xic(n)s) @ [1 - (1 + xic(n)s) b] »Xin)s = 0. (19)

—(bn+1)
» Xi(D)s >0, (18)
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Similarly, let {¥; 1y, j = 1,..,h = 1,5 = 1,2, .., 7}, Y, m)ss ] = h,. —1;5 =1,2,...,r} are the smallest
and largest order statistics from Burr (c,a), Where m is the set size, r is the number of cycles. Using Equation
(9) thePDFs of ¥ (1), and ¥; ¢,y respectively will be as follows:

fi(ys) = mac yiay(1+ 300(1)5)_(%“)'3’1‘(1)5 >0, (20)
and

— — -1
fin Wiamys) = mac Yo (1 + ¥iomys) (aH)[l — (14 ¥om)s) a]m »Yiam)s > 0. (21)

Let{X(y)s»s = 1,2, ..., 7} is the g*" order statistics from Burr (c,b) , and let {¥; ()5, s = 1,2, ..., 7} is the h*"
order statistics from Burr (c,a). Then, the PDFs of g** and h‘" order statistics are obtained in (12) and (13)
respectively.

The likelihood function of observed sample based on ERSS in case of odd set size, denoted by Lzgssq, 1S
given as follows:;

r [g—1 n—1 h—1 m—1
LE'*R.S‘Sl = 1_1[ 1_1[f1 (xi(l)s) E[frl(xi(n)s) ]l_l[fl(:)’j(l)s) 1_h[ fm (yj(m)s)‘ [fg (xn(g)s)fh (ym(h)s)]-
Ss= L= = = j=

The log-likelihood function denoted by l;rss; iS given as follows:

r [g-1 n-1 h—1
ltrss1 = In Dy +plnb 4+ qlna + (c — 1) Z Z Inx;1)s + Z Inx;mys + Z lny](l)s
i=g j=
m-1 r g-1 n—-1
+ Z N Y m)s Z (bn+1) Z Infil + x{(3),) + (b + 1) Z In(1 + x,,) + (am + 1)
j=h s=1 i=g

s=1

h—1 m—1 r n—1
x Z (1 +y5y,) + (@ +1) Z (1 + Y [+ [0 = D) il = (1 +x5,.) ")
j=1 j=h i=g

+(m—-1) Z ln[l - (1 + yj”(m)s)_a] + Z[(c — 1)(lnxn(g)s + lnym(h)s)
j=h

s=1

—(bg + DIn(1 + xn(g)s) (ah + DIn(1 + y5p)s) + (g — DInifl — (1 + xn(g)s)_b]

+(h = Dinf1 = (14 75000 1)

whereD, is a constant. The first partial derivatives of log-likelihood function with respect to b and a are
given by:

n—-1
OlErss1
TS Z Infl + x{(yy,) + Z In(1+ xl(n)s) +gin(1+ xn(g)s)
=9
r n-1 ln'W(H""’l(n)s) ln(l+xn(9)5)
+Zs=1 Zi:g n-— ) bEr + (g - 1) b =0, (22)
(1+xr (n) s) 1- (1+x L 1
n(g)s
alERS“ = Iniil In(1 hin(1
Y ni ( + y](l)s) + Il( + y}(m)s) + n( + ym(h)s)
3 L +Y i s) In(1+4y5, (s
+ 30y | Emtm — )7&} +(h— 1)(7({;2*) =0. (23)
(1+y j(m)s) -1 (1+yrfn(h)s) ! -1
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MLEs of b and a denoted by b;* and ai™ are obtained by solving numerically Equations (22) and (23) using
iterative technique. ThenRzzssq Will be obtained by substituting b;™ and a;* in Equation (3).

MLE of R = P(Y < X) with Even Set Size Based on ERSS Data:

To obtain MLEs of R based on ERSS in case of even set size, let X;(;),,i =1,2,...,u;s =1,2,..,r and
Ximysi=u+1,..,ns=12,..,r are the smallest and largest order statistics from Burr (c, b)with PDFs(18)
and (19).

Similarly, let Y.()5,j = 1,2,...,v;5 = 1,2,...,7 and Y5, j = v+ 1,...,m;s = 1,2, ..., 7 are the smallest
and largest order statistics from Burr (¢, a) with PDFs(20) and (21) respectively.

The likelihood function of observed sample using ERSS in case of even set size denoted by Lixss, IS given

as follows:
wrssz = [t [T fi (xicys) Timwsa fo (Riooys) T =1 A1 (0 coos) T v fon (3 amys) |-

Then the log-likelihood function of L5, denoted by lzzss,Will be as follows:

T u
lgrssy =InDs + plnb + glna + (¢ — 1) Z lz Inx;1)s + Z Inx;nys + Z ny; ys

i=u+1
+ Z lny] (m)s“ Z

(bn+1) z (1 + %) + b+ D Z (L + %)

i=u+1
Z(n—l)

i=u+1

j=v+1

+(am+ 1) Z In(1+yfq),) +(@+1) Z (1 + yoms) | + Z

j=1 j=v+1 s=1

x In [1 -(1+ xf(n)s)_b] + Z (m— DInifit — (1 + yf(m)s)_a] )
j=v+1

whereDsis a constant. The first partial derivatives of log-likelihood function with respect to b and a are
given by:

n

n
olz; (14
ZRZSZ - b** B Z Z (1 + x{,) + z (1 4+ x,) — (n—1) Z n( xL;n)s) _ o,
2 s=1 i=u+1 o (1 +xic(n)s) 2 _q

o in(14¢
‘”E;’% - aig*_ >r_ [mzj 1In(1 +y](1)s) + Xt n(1+ y](m)s) —(m-13" VH% =0.
(1+yj(m)5) -1
(25)
As it seems the likelihood equations have no closed form solutions in b and a. Therefore, numerical
technique method is used to get the solution. MLEs of b and a will be denoted by b5* and a5",then Rgrss, Will
be obtained by substituting b3 and a;*in Equation (3).

Estimation of R = P(Y < X)Based on PRSS Data:

In this section, MLE of R = P(Y < X)is derived under PRSS technique. Muttlak (2003) introduced PRSS
procedure depending on two cases, the first case when the set size is odd and the second case when the set size
is even. The two cases are separately considered in the following subsections.

MLE of R = P(Y < X) with Odd SetSize Based on PRSS Data:

The main aim in this subsection is to obtain MLE of R for Burr XII distribution based onPRSSin case of
odd set size. To derive the MLE of R, firstly the MLE of unknown parameters b and a will be obtained.

Let n; and n, be the nearest integer values of O(n + 1) and t(n + 1) respectively, where 0 < 0 < 0.5 and
t=1-0.
Then for odd set size, the PRSS is the set:{X;, )5, i=1,..,g —Lis =1,.., 71} U {Xips i = g, n — 1;s =
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1,..,r3u {Xn(g)s,s =1,2, ...,r},Whereg =n+1/2Let Xl(nl)S! ---:Xg—l(nl)S!Xg(nz)s: ---!Xn—l(nz)s:Xn(g)s is a
PRSS from Burr (¢, b) with sample size p = nr, where n is the set size and r is the number of cycles. Then
using Equation (8) the PDFs of X;,,)s and X;,,)s will be as follows:

) [b(n—nq1+1)+1]

! ~bin,—
- bexf, (A= (T4 xmps) DN Xiggys > 0,(26)

ﬁll(xi(nl)s) = (n—n)!(n—1)! 1(711)5
and

(1+x

i(n1)s

) [b(n—ny+1)+1]

! —b _
- bex (A= (1 +x0ps) "L Xiyys > 0.27)

fnz(xi(nz)s) = (n—n2)!(nz—1)! l(nz)S(l + x;

i(ny)s
While the PDF of X; 4, was defined in Equation (12).
Similarly, let m; and m, be the nearest integer values of O(m + 1) and t(m + 1) respectively. Then for
odd set size, the PRSS is the set {¥; (i 3s,j = 1,..,h = L;s = 1,..,7} U {¥mpsj = h,..om—L;s = 1,...,7} U
{Ym(h)s,s =1,2, ...,T},Where h=m+ 1/2Let Yl(ml)S' vy Yh—l(ml)Sl Yh(mz)s‘ vy Ym—l(mz)s' Ym(h)s is a PRSS

from Burr (¢, a) with sample size ¢ = mr, where m is the set size and r is the number of cycles. Then using
Equation (9) the PDFs of Y and Y; )5 Will be as follows:

j(m1)s

_ m 1 —[a(m-mq1+1)+1]
fo YV mays) = macyf(ml)s(l + Yjanp)s)

1- (1 + y]'c(ml)S)_a)ml_l' Yim)s >
0,(28)
and

fin (yi(mz)S) =

m! )—[a(m—mz+1)+1]

A= (1 +¥nps) D™ L Yamyys >
0.(29)

c—1 c
(m—my)!(mpy—1)! acy; (mz)S(1 + Yjano)s

The PDF of ¥ ), was defined in Equation (13).

The likelihood function of theobserved PRSS in case of oddset size denoted by Lpggs;is given by:

r g-1 n—1 h—1 m-—1
LPRSSl = 1_1[[fg (Xn(g)S)fh (Ym(h)S)] 1_1[ fn1 (xi(m)s) l_gl fnz (xi(nz)s) 1_1[ fml (y] (ml)s) 1_h[ fmz (yj (mz)S)‘ .
Ss= = = = ]:

The log-likelihood function of Lpgss;denoted by Iprss; Will be as follows:

r [9-1 n-1

lprss1 = InDg + plnb + qlna + (c — 1) Z Z ln(xl(nl)s) + Z ln(xl(nz)s) + ln(xn(g)s)

s=11]i=1 i=g
m-—1 g-1

+ Z ln(y] (m1)S) + Z ln(y] (mz)s) + Ini (ym(h)s)] Z [(b(n - +1)+1) Z In (1 + xf(nl)s)

i=1
n—1

+b(n—n, +1)+1) z ln(l + xf(nz)s) + (bg + 1)ln(1 + xﬁ(g)s) +(am—-—m; +1)+1)

i=g
h-1 m—1

X D 01+ Ynyys) + @0 =1my + 1)+ 1) D 11+ Yue) + (@h + Din(1+ 35, ,)
=1 i=h
h-1

r 9
A M0n =D ) (1= (120 ") + = 1) Y 1t = (1 + %))
s=1 i=1 j=1

n—1 m-—1

= D) ) (1= (14 x,) ") + 0ma = 1) ) 111 = (14 nps) ™)
j=h

i=g
+(g = Din (1= (1+x5)) " )+ (= Din(1 = (1450 )]

whereDy is a constant. The first partial derivatives of b and a are given by:
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b (n—-n;+1) Z In(1+ xl(nl)s) +(n—ny+1) Z n(1+ xl(nz)s) +gn(1+ Xn(g)s

N r g-1 n—1
Olprss1 P )
s=1 i=1 i=g

-1
ln(l + xz(n1)s) +(ny — 1)” ln(l + xL(TlZ)S) +(g—1) ln(l + xn(g)S) ‘
2

b b
s=1 (1 + xl(nl)S) -1 i=g (1 + xl(nz)s) -1 (1 + xfl(g)s) "

(30)

h—-1 m-1

< T
dlprss1 q
da a4 Z (m—m; +1) Z (1 +¥ny)s) + m = mz +1) Z (L + Yjonps) +
Py

j=1 j=h

hin(1 +y7$1(h)5] +3r_, [(m1 -1) Z]h:—l M +(m, — DI -1 ln(1+y](mi)1s) " h 1)ln(1+y;nl(h)5):| —0
(1+y1(m1)5) -1 (1+y1(m2)5) -1 (1+yrcn(h)S) -1

(31)

MLEs of b and a denoted by b, and d,can be found by solving the system of Equations (30) and (31).

Although the proposed estimators cannot be expressed in closed forms, they can easily be obtained through the

use of an appropriate numerical technique. Then Rprgs; Will be obtained by substituting b; andd,in Equation

3).

MLE of R = P(Y < X) with Even Set Size Based on PRSSData:

To derive the MLE of R = P(Y < X) for Burr XII distribution based onPRSS sampling scheme in case of
even set size, firstly the MLEs of unknown parameters b and a will be obtained.

Letny,n,, 0 and t be defined, as in previous subsection, then for even set size, the PRSS is the set:
{Xl-(nl)s,i =1,..,u;s =1, ...,r} U {Xi(nz)s,i =u+1,..,ns=1, ...,r}, where u = n/2.

Let Xitny)sr =0 Xump)s» Xuti(my)ss -+ Xn(ny)siSPRSS from Burr (¢, b) with sample size p = nr, where n is
the set size, r is the number of cycleswith PDFs(26) and (27).

Similarly, let the set {¥, ()5, j = L., 58 = 1,0, 7} U {¥npsf = v+ 1,..,m;s = 1,...,r}is the PRSS
for even set size, where v = m/2.Let Yy n )5 s Yoimy)ss Yor1amy)sr =0 Yin(my)s 1S @ PRSS from Burr (¢, a) with
sample size ¢ = mr, where m is the set size ,r is the number of cycleswithPDFs (28) and (29).

The likelihood function of observedPRSS in case of even set size denoted by Lpgss,is given by:
T u
LPRSSZ = 1_[ l_lfm(xi(m)s) 1_[ fnz (xl(nz)S) ﬂfml(}/] (m1)S) 1_[ fmz(y] (mz)S) .
s=1 | i=1 i=u+1 j=v+1
The log-likelihood function of PRSS data in case of even set size denoted by Ipgss, is given by:

Z In Xitmps T Z lnxl(nz)s + Z lny](ml)s

i=u+1

lpngz = InD; + plnb + qlna + (¢ — 1) Z

+ z lle]'(mz)S +z

j=v+1 s=

(n, —1) z 1= (14 xis) "]+ (2 = 1) Z 1= (1+ x40 "]

i=u+1

+(my — 1)2 ln[l - (1 + y](ml)s) ] +(m; - 1) Z ln[l - (1 + y](mz)S) ]

j=v+1

Z l b(n—n; +1)+1] Z n(1+ xl(nl)s) +[b(n—ny + 1)+ 1] Z n(1+ xl(nz)s)
i=1 i=u+1

m

v
+la(m —my + 1) + 1] Z In (1 + ch(ml)s) +[a(m—m, +1) + 1] Z ln(l + yjc(mz)s) ,
=1 j=v+1
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whereD,is a constant. The first partial derivatives of log-likelihood function with respect to b and a are
given by:

al
Olprssz _ (ny —1)

In(1 +xl(n1)s) (1) . ln(1+xl(n2)s) \
2

b
i=1 (1 + xl(nl)s) £ - i=u+l (1 + xic(nz)s
1[(n ny + 1)2 1 ln(l + xl(nl)s) +m-n+ DI, In(1+ xl(nz)s)] =0, (32)

Z (my — 1)2 (1 + Ynys) (1 + %(mz)s) ‘

d
(L4 Yomps) * — 1 i 5t (L4 Yo ps) ™
gzl[(m —-my+1) Y, ln(l + yjc(ml)s) +(m-my+ 1YL, ln(l + yf(mz)s)] =0. (33)

lppss 2 _
da

+(m; —1)

Equations (32) and (33) do not have explicit solutions and they have to be obtained numerically.Let the
MLEs of b and a are denoted by b, and a, respectively. Once b, and a, are obtained, the MLE of R, say
Rpgss2, Can be obtained by substituting b, and @, in Equation (3).

Numerical Illustration:

In this study, a computer simulation is conducted to study the efficiency of estimatingR, using SRS, RSS,
MRSS, ERSS and PRSS techniques for Burr XII distribution. Without loss of generality the common shape
parameter ¢ will be assumed to be one in all the experiments. Two cases will be considered separately to draw
inference on R. The first case (i) for odd set size and the second case (ii) for even set size. The proposed
estimators depend on the two cases will be calculated. Comparison between the proposed estimators for R using
MRSS, ERSS and PRSS with known estimators based on SRS and RSS approaches will be carried out.
1000 random samplesfrom Burr (c, b) and Burr (c, a) distributionsare generated with sample sizes p = nr and

q = mr respectively, wheren = 3,4,5,6,7,8 and m = 3,4,5,6,7,8 and number of cyclesr = 10. The ratio p = Z
is selected as 0.1,0.5,1,2 and 6, then MSEs and efficiencies of all estimators of R based on SRS, RSS, MRSS,
ERSS and PRSS will be computed.

The simulation results are summarized in Tables(1 — 4)and represented through Figures (1 —5). The
performance of the estimated parameters is evaluated using MSEs and the efficiencies criteria.The results of
MSEs for different estimators Rz, Rumvus, Ruve, Risrss1, Rirss2s Rirss1,Rirss2, Rprss1and Rpgssoare
listedin Tables(1 — 2). Also, the results of the efficiencies for different estimators are reported in Tables
(3—-4).

Table 1: MSEs of the estimators Ry, Ryuvur, Ruie, Rirss1, Rirss1andRppss: for odd set size.

P (n,m) Ryg Rymvue Ryip Rirss1 RERss1 20% R;g(f/f)l 40%
(3,3 0.000503 0.000486 0.000263 0.000240 0.000268 0.000268 0.000268 0.000240
0.1 (5,5) 0.000274 0.000269 0.000108 0.000103 0.000108 0.000108 0.000102 0.000102
7,7 0.000195 0.000192 0.000052 0.000052 0.000056 0.000050 0.000050 0.000047
(3,3) 0.003285 0.003436 0.001806 0.001665 0.001840 0.001840 0.001840 0.001665
0.5 (5,5) 0.001917 0.001940 0.000764 0.000727 0.000767 0.000767 0.000723 0.000723
(7,7) 0.001367 0.001368 0.000373 0.000372 0.000400 0.000362 0.000362 0.000345
(3,3) 0.004047 0.004302 0.002283 0.002093 0.002297 0.002297 0.002297 0.002093
1 (5,5) 0.002427 0.002470 0.000963 0.000927 0.000965 0.000965 0.000908 0.000908
(7,7 0.001724 0.001748 0.000471 0.000460 0.000506 0.000458 0.000458 0.000438
(3,3 0.003216 0.003291 0.001823 0.001668 0.001823 0.001823 0.001823 0.001668
2 (5,5) 0.001954 0.001972 0.000763 0.000722 0.000762 0.000762 0.000717 0.000717
7,7 0.001358 0.001368 0.000427 0.000364 0.000394 0.000363 0.000363 0.000348
(3,3 0.001024 0.001010 0.000573 0.000521 0.000570 0.000570 0.000570 0.000521
6 (5,5) 0.000620 0.000607 0.000235 0.000225 0.000233 0.000233 0.000219 0.000219
7,7) 0.000432 0.000426 0.000122 0.000112 0.000122 0.000111 0.000111 0.000104

Table 2: MSEs of the estimators Ry, Rumvug » Rmie» Rirss 20 Rirss 2andRprss2 for even set size.

4 (n,m) Ryie Rymvue Ryie Ritrss2 RiRss2 20% R?‘:)gg/iz 20%
(4,4) 0.000352 0.000339 0.000153 0.000147 0.000157 0.000157 0.000133 0.000147
0.1 (6,6) 0.000229 0.000225 0.000079 0.000072 0.000094 0.000094 0.000075 0.000072
(8,8) 0.000185 0.000181 0.000044 0.000044 0.000050 0.000046 0.000044 0.000044
05 (4,4) 0.002372 0.002403 0.001073 0.001102 0.001231 0.001231 0.000944 0.001102
) (6,6) 0.001595 0.001614 0.000570 0.000515 0.000666 0.000666 0.000537 0.000515
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(8,8 0.001287 0.001295 0.000319 0.000318 0.000420 0.000329 0.000316 0.000318
(4,4) 0.002938 0.003012 0.001346 0.001285 0.001552 0.001552 0.001193 0.001285
1 (6,6) 0.002006 0.002040 0.000701 0.000650 0.000832 0.000832 0.000679 0.000650
(8,8) 0.001610 0.001631 0.000405 0.000401 0.000530 0.000413 0.000399 0.000401
44 0.002321 0.002364 0.001066 0.001013 0.001236 0.001236 0.000949 0.001013
2 (6,6) 0.001601 0.001614 0.000574 0.000515 0.000653 0.000653 0.000538 0.000515
(8,8) 0.001274 0.001286 0.000321 0.000317 0.000420 0.000325 0.000316 0.000317
44 0.000723 0.000714 0.000328 0.000310 0.000384 0.000384 0.000294 0.000310
6 (6,6) 0.000500 0.000492 0.000160 0.000157 0.000198 0.000198 0.000165 0.000157
(8,8 0.000393 0.000391 0.000098 0.000096 0.000120 0.000098 0.000096 0.000096
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Fig. 1: MSEs of the estimators Ry, Rumvue » Rmie » Rirss 1, Rikss 1and Rpgssqfor odd set size at p = 1
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Fig. 2: MSEs of the estimators Ry, Rumvue » Rmie » Rirss 20 Rirss 2andRprsso for even set size at p = 1.
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Fig. 3: MSEs of the estimators Ry, Rumvue » Rmie » Rirss 10 Rirss 1andRprssqat (n,m) = (3,3).

Depending on MSEs of different estimators, the following conclusions can be observed:

1. MSEs of all estimatorsRy,z, Rymyue » Ruie, Ritrss1 Rirssz Rikss1 Rikss2» Rprss1and Rppsso decrease as
the set size increases in all cases.

2.Based on SRS data, MSEs of R, zare greater than MSEs of Ry yzat p = 0.1 and 6, otherwise MSEs of
Ry pare smaller than MSEs of Ry in all cases.

3.MSEs 0fRy.z, Rirss1 Ritrss2) Rirss1.Rirssz, Rprss1andRprss, based on RSS, MRSS, ERSS and PRSS
data are smaller than MSEs of R,z and Ry, based on SRS data in all cases.

4. Ryrss1 and Rypss, based on MRSS have the smallest MSEs in all cases comparing with the other
estimators. However, in almost all cases, Rpgssq for 0 = 0.40 has the smallest MSEsin case of odd set size (see
for example Figure(1)) and Rpgss,for O = 0.30 has the smallest MSEs in case of even set size (see for example
Figure(2)).

5.MSEs of all estimators Ryyz, Rymvur, Ryvr, Rirss1, Rirrss2» Rirss1 Rirss2» Rprss1 @dRpgss, increase
as the value of p increases up to p = 1 then MSEs decrease as the value of p increases in all cases (see for
example Figure (3)).

Table 3: Efficiencies of the estimators Rymvue , Ruie, Rirss 1, Rirss 12ndRprssWith respect to Ry for odd set size.

p (n,m) Rymvue Ry Rirss1 Rigrss1 20% I;Sﬁ/i“ 20%

(3,3) 1.038 1.912 2.094 1.875 1.875 1.875 2.094

0.1 (5,5) 1.018 2.636 2.639 2.524 2.524 2.674 2.674
(7,7 1.015 3.743 3.726 3.491 3.878 3.878 4,074

(3,3) 0.978 1.806 1.973 1.785 1.785 1.785 1.973

0.5 (5,5) 0.948 2.506 2.637 2.498 2.498 2.651 2.651
(7,7) 0.999 3.659 3.668 3.417 3.776 3.776 3.954

(3,3) 0.967 1.772 1.934 1.762 1.762 1.762 1.934

1 (5,5) 0.980 2.519 2.617 2.515 2.515 2.673 2.673

(7,7 0.986 3.654 3.679 3.405 3.762 3.762 3.931

(3.3) 0.997 1.764 1.928 1.764 1.764 1.764 1.928

2 (5,5) 0.991 2.559 2.706 2.562 2.562 2.726 2.726

(7,7 0.993 3.869 3.731 3.439 3.763 3.763 3.953

(3,3) 1.015 1.787 1.963 1.796 1.796 1.796 1.963

6 (5,5) 1.022 2.640 2.746 2.655 2.655 2.828 2.828

(7,7) 1.014 3.780 3.844 3.530 3.884 3.884 4.036

Table 4: Efficiencies of the estimators Rymyur » Ruie » Rjrss 20 Rirss 2andRpgsso With respect to Ry for even set size
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~ ~ * *% R
p (n,m) Rymvug Rye Riyrss2 RERss2 20% ggi/ff 20%
(4,4) 1.039 2.303 2.395 2.014 2.014 2.646 2.395
0.1 (6,6) 1.017 2.871 3.169 2.411 2.411 3.040 3.169
(8,8) 1.020 4,163 4.165 3.089 3.986 4,188 4.165
(4,4 0.987 2.211 2.309 1.926 1.926 2.510 2.309
0.5 (6,6) 0.988 2.794 3.094 2.394 2.394 2.966 3.094
(8,8) 0.993 4.022 4.042 3.018 3.904 4.064 4,042
(4,4) 0.975 2.182 2.287 1.893 1.893 2.462 2.287
1 (6,6) 0.984 2.776 3.084 2.410 2.410 2.953 3.084
(8,8) 0.988 3.974 4.006 3.002 3.892 4.028 4.006
(4,4 0.982 2.177 2.292 1.878 1.878 2.445 2.292
2 (6,6) 0.992 2.785 3.107 2.448 2.448 2.971 3.107
(8,8) 0.991 3.962 4.009 3.011 3.916 4.028 4.009
(4,4) 1.013 2.201 2.328 1.884 1.884 2.640 2.328
6 (6,6) 1.017 2.829 3.173 2.520 2.520 3.027 3.173
(8,8) 1.007 3.996 4.062 3.055 3.991 4.077 4.062
4.5
4
35 -
3
25 /- ‘=.>.4
k +
1.5
1 A
0.5
O T T T T 1
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Fig. 4: The efficiencies of the estimators Rymyug » Rmue» Rirss 1, Rirss 1and RprssqWith respect to Ry for odd
setsizeatp = 1.
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Fig. 5: The efficiencies of the estimators Rywvug » Rmie» Rirss 20 Rikss 2and RprssoWith respect to Ry for
even setsizeat p = 1.

Considering the efficiencies of estimators, the following conclusions can be observed:

1. The efficiencies of Ryyyyr With respect to R,z are greater than one in case of p = 0.1 and 6, otherwise
the efficiencies of Ryyyr With respect to Ry, are less than one in all cases.

2. The estimators Rz, Rirssis Ritrsszr Rigssis Rigssar Rprss1 @NORpges, based on RSS and its
modifications are more efficient than the estimators Ry, z, Ryyvyr based on SRS data in all cases.

3. The efficiencies of all estimators Ryuyyyr, Ruie, Ritrss1» Ritrss2» Riss1 Rigsszr Rprss1 @NAR ppgspincrease
as n and m increase for the same value of p in almost all cases (see for example Figures (4-5)).

4. Ryrss1i andRypss, in case of odd and even set sizes respectively are more efficient than
Rues Rigss1y Rygss2andRyyyyr respectively in all cases. However in almost all cases, Rppss; is more
efficient than R}jzss; in case of odd set size for 0 = 0.40 (see for example Figure (4)) and Rpss, is more
efficient than Rypss, for O = 0.30 in case of even set size (see for example Figure (5)).

Conclusions:

In this article, the estimation of R = P(Y < X)when strengthX and stress Yare two independent variables of
BurrType XII distributionis studied. Maximum likelihood estimators of R are compared under different
sampling schemes. The selected sampling schemes are SRS, RSS, MRSS, ERSS and PRSS.It is observed that,
MSEs of estimators based on SRS data are greater than the corresponding MSEs based on ERSS, RSS, MRSS
and PRSS data respectively.

EstimatorsofRbased on MRSS have the smallest MSEs in all cases comparing with the estimators based on
RSS, ERSS and SRS data respectively. However, in almost all cases, estimator of R underPRSS for
0 = 0.40 has the smallest MSEsin the case of odd set size. Whilethe estimator of Runder PRSSfor
0 = 0.30 has the smallest MSEs in case of even set size.Also, it can be observed that, MSEs of all estimators
decrease as the set size increases in all cases.

It is clear from simulation study that the efficiency of all estimators increases as the set size increases in
almost all cases. The efficiencies of the estimators based on SRS data are smaller than the corresponding
estimators based on RSS, MRSS, ERSS and PRSS data.

This study revealed that the estimators based on PRSS for odd set sizes when O = 0.40are more efficient
than the other methods of sampling procedures for estimating R. Also, the estimators based on PRSS for even
set sizes when O = 0.30 are more efficient than the other methods of sampling procedures for
estimating R. Generally, the estimators of R under PRSS with odd and even set sizes have largest efficiencies
comparing with the other estimators based on MRSS, RSS and ERSS respectively.
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