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 Ranked set sampling (RSS) approach is considered a cost efficient alternative to simple 

random sampling (SRS) when observations are costly or time-consuming but the 

ranking of the observations without actual measurement can be done relatively easily. 

Many authors suggested different modifications for RSS to come up with new 
sampling techniques. Median ranked set sampling (MRSS), extreme ranked set 

sampling (ERSS) and percentile ranked set sampling (PRSS) are some modifications 

for RSS. In the current paper, the estimation of R = P[Y < 𝑋] when 𝑌 and 𝑋 are two 

independent Burr type XII distributions with the same known shape parameter 𝑐 is 
considered. Maximum likelihood method is proposed to estimate R based on MRSS, 

ERSS and PRSS data. These estimators are compared with known estimators based on 
SRS and RSS data in terms of their mean square errors (MSEs) and efficiencies. 
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INTRODUCTION 
 

Stress-strength reliability is one of the main tools of reliability analysis of structures. A stress-strength 

system fails as soon as the applied stress Y is at least as large as its strength 𝑋.Due to the practical point of view 

of reliability stress strength model, the estimation problem of𝑃(𝑌 < 𝑋) has attracted the attention of many 

authors. This model first considered by Birnbaum (1956) and developed by Birnbaum and McCarty (1958). The 

latter paper for the first time included 𝑃(𝑌 < 𝑋) in its title, but the formal term stress-strength appeared in the 

title of Church and Harris (1970).  The theoretical and practical results on the theory and applications of the 

stress-strength relationships in industrial and economic systems during the last decades are collected and 

digested in Kotz et al. (2003).  

RSS is a sampling technique that was proposed by McIntrye (1952) for estimating the mean of pasture and 

forage yields. In situations when the variable of interest is costly or time-consuming, but the ranking of items 

according to the variable is relatively easy without actual measurement, the use of RSS is highly powerful and 

much superior to the standard SRS for estimating some of the population parameters. The RSS procedure can be 

summarized as follows. Randomly select n
2
 units from the target population and rank the units within each set 

with respect to a variable of interest by visual inspection or by any cheap method. Then select for actual 

measurement the smallest ranked unit from the first set.  From the second set, select for the second actual 

measurement the second smallest unit. The process is continued in this way until the largest ranked unit is 

selected from the last set.The cycle may be repeated 𝑟 times to obtain a sample of size nr units from the RSS 

data. 

Takahashi and Wakimoto(1968) established a very important mathematical theory of RSS. They showed 

that the mean of the RSS is an unbiased estimator of the population mean and has a smaller variance than the 

mean of a SRS. Dell and Clutter (1972) showed that the mean of the RSS is an unbiased estimator of the 

population mean whether the ranking is perfect or not.Muttlak(1997) proposed the median ranked set sampling 

as a modification to RSS. The MRSS procedure can be summarized as follows.Select 𝑛 random samples of size 

𝑛 units from the target population.Rank the units within each sample with respect to a variable of interest.If the 

sample size 𝑛 is odd, from each sample select for measurement the  𝑛 + 1 2  𝑡𝑕  smallest ranked unit (i.e., the 

median of the sample). If the sample size 𝑛 is even, select for the measurement from the first 
𝑛

2
 samplesthe 
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(𝑛 2) 𝑡𝑕
 smallest ranked unit and from the second 𝑛 2 samples the  𝑛 2 + 1  𝑡𝑕  smallest ranked unit.The cycle 

may be repeated r times to get nr units. These nr units form the MRSS data 

Samawi et al. (1996) used the extreme ranked set sampling to estimate the population mean. They showed 

that the ERSS estimator is more efficient than the SRS estimator.  In the ERSS procedure,select 𝑛 random 

samples of size 𝑛 unitsfrom the populationunder consideration and rank the units within each sample with 

respect to a variable of interest. If the sample size 𝑛 is odd, select from 𝑛 − 1 2  samples the smallest unit, from 

the other𝑛 − 1 2  the largest unit and fromthe remaining sample, the median of the sample for actual 

measurement. If the sample size is even, select from 𝑛 2  samples the smallest unit and from the other 𝑛 2  

samples the largest unit for actual measurement.The cycle may be repeated 𝑟 times to get 𝑛𝑟 units from ERSS 

data.  

Muttlak (2003) introduced the PRSS approach as a modification to RSS. In the PRSS procedure, select 𝑛 

random samples of size 𝑛 units from the population and rank the units within each sample with respect to a 

variable of interest. If the sample size is even, select for measurement from the first 𝑛 2  samples the 

𝑂(𝑛 + 1)𝑡𝑕  smallest ranked unit and from the second 𝑛 2  samples the 𝑡(𝑛 + 1)𝑡𝑕smallest ranked unit, where 

𝑡 = 1 − 𝑂 and 0 < 𝑂 ≤ 0.5. If the sample size is odd, select from the first 𝑛 − 1 2  samples the 𝑂(𝑛 + 1)𝑡𝑕  

smallest ranked unit and from the other𝑛 − 1 2  samples the 𝑡(𝑛 + 1)𝑡𝑕  smallest ranked unit and select from the 

remaining sample the median for the sample for actual measurement. The cycle may be repeated 𝑟 times if 

needed to get 𝑛𝑟 units from PRSS.   

Recently, interest has been shown in estimating 𝑅  using RSS by several investigators.Sengupta and 

Mukhuti (2008) considered an unbiased estimation of 𝑅using RSS for exponential populations.Muttlak et al. 

(2010) proposed three estimators of Rusing RSS when 𝑋and 𝑌 areindependent one-parameter exponential 

populations. Hussian (2014) discussed the estimation problem of stress strength model for generalized inverted 

exponential distribution based on RSS and SRS. Maximum likelihood method is used to estimate 𝑅 using both 

approaches. Hassan et al. (2014) discussed the estimation of 𝑅 when Y and X are two independent Burr type XII 

distributions with common known shape parameter 𝑐. These estimators compared in terms of their biases, mean 

square errors and efficiencies with known estimators based on SRS data.  

Burr (1942) introduced twelve different forms of cumulative distribution functions which might be useful 

for fitting data, among those distributions Burr type XII;it has been widely used in reliability analysis. The two 

parameters Burr-XII distribution denoted by Burr (𝑐, 𝑏) has the following probability density function (PDF) 
 

𝑓 𝑥; 𝑐, 𝑏 = b𝑐𝑥𝑐−1 1 + 𝑥𝑐 −(𝑏+1), 𝑥 > 0, 𝑐 > 0, 𝑏 > 0.(1) 
 

Thecorresponding cumulative distribution function (CDF) is given as 
 

𝐹 𝑥; 𝑐, 𝑏 = 1 −  1 + 𝑥𝑐 −𝑏 , 𝑥 > 0, 𝑐 > 0, 𝑏 > 0.       (2) 
 

Here,𝑐 and 𝑏 are shape parameters.  

The main aim of this study is to focus on the estimation problem of𝑅 = 𝑃(𝑌 < 𝑋),where 𝑋~Burr  𝑐, 𝑏 and 

 𝑌~Burr  𝑐, 𝑎 and they are independently distributedbased on different sampling schemes. Maximum likelihood 

estimators (MLEs)of R using SRS and RSS will be considered. MLEs based on MRSS, ERSS and 

PRSStechniques will be derived. Simulation study is performed to compare different estimators. 

 

Estimation of 𝑹 = 𝑷 𝒀 < 𝑿 Based on SRS and RSS data: 

This section concern with the MLE and UMVUE of 𝑅 based on SRS data and the MLE of 𝑅 based on RSS. 

Therefore, firstly MLEs of theunknown parameters must be derived. 

Let 𝑋~Burr  𝑐, 𝑏 and 𝑌~Burr  𝑐, 𝑎 are two independent Burr type XII random variables,then  

according to Panahi and Aasdi (2010), it can be easily seen that:  

 

𝑅 = 𝑃 𝑌 < 𝑋 =   𝑏𝑐𝑥𝑐−1 1 + 𝑥𝑐 − 𝑏+1 𝑎𝑐𝑦𝑐−1 1 + 𝑦𝑐 − 𝑎+1 𝑑𝑦𝑑𝑥
𝑥

0
=

1

1+𝜌
    ,   𝜌 =

𝑏

𝑎
  .

∞

0
                (3) 

 

Now to compute the MLE of 𝑅 based on SRS, first MLEs of 𝑏 and 𝑎 are obtained.Let 𝑋1, … , 𝑋𝑝  be a SRS 

from Burr  𝑐, 𝑏 and 𝑌1 , … , 𝑌𝑞  be a SRS from Burr  𝑐, 𝑎 ,therefore the log-likelihood function denoted by 𝑙 for 

the observed sample is given by: 

𝑙 = 𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 +  𝑝 + 𝑞 𝑙𝑛𝑐 +  𝑐 − 1   𝑙𝑛𝑥𝑖 +  𝑙𝑛𝑦𝑗

𝑞

𝑗=1

𝑝

𝑖=1

 − (𝑏 + 1) 𝑙𝑛 1 + 𝑥𝑖
𝑐 

𝑝

𝑖=1

 

−(𝑎 + 1) 𝑙𝑛 1 + 𝑦𝑗
𝑐 .

𝑞

𝑗=1
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Differentiating the log-likelihood and equating by zero with respect to 𝑏 and𝑎. Hence, MLEs of b and a, 

when 𝑐 isknown take the following forms: 

 

𝑏 𝑀𝐿𝐸 =
𝑝

 𝑙𝑛 1+𝑥𝑖
𝑐 

𝑝
𝑖=1

𝑎𝑛𝑑𝑎 𝑀𝐿𝐸 =
𝑞

 𝑙𝑛 1+𝑦𝑗
𝑐 

𝑞
𝑗=1

,                                                                                                      (4) 

 

where𝑏 𝑀𝐿𝐸  and 𝑎 𝑀𝐿𝐸  are MLEs for𝑏 and 𝑎. Once the MLEs of𝑏 and 𝑎 are obtained from Equation (4), 

then,the MLE of R using SRS is given by 
 

𝑅 𝑀𝐿𝐸 =
1

1+𝜌 𝑀𝐿𝐸
,       where𝜌 𝑀𝐿𝐸 =

𝑏 𝑀𝐿𝐸

𝑎 𝑀𝐿𝐸
.                                                                                (5) 

 

To get UMVUE of 𝑅, let   𝑙𝑛 1 + 𝑥𝑖
𝑐 𝑝

𝑖=1 ,  𝑙𝑛 1 + 𝑦𝑗
𝑐 

𝑞
𝑗=1   is a jointly sufficient statistic for (𝑏, 𝑎), 

thereforeaccording to Panahi and Asadi (2010),theUMVUEof 𝑅based on SRS will be as follows: 
 

𝑅 𝑈𝑀𝑉𝑈𝐸 =   −1 𝑖
 𝑞−1 ! 𝑝−1 !

 𝑞+𝑖−1 ! 𝑝−𝑖−1 ! 
 
𝑇2

𝑇1
 
𝑖

𝑖𝑓𝑇2 ≤ 𝑇1 ,
𝑝−1
𝑖=0          (6) 

or 

𝑅 𝑈𝑀𝑉𝑈𝐸 = 1 −   −1 𝑖
 𝑞−1 ! 𝑝−1 !

 𝑞−𝑖−1 ! 𝑝+𝑖−1 ! 
 
𝑇1

𝑇2
 
𝑖

𝑖𝑓𝑇2 > 𝑇1 ,
𝑞−1
𝑖=0          (7) 

 

where,𝑇1 =  𝑙𝑛 1 + 𝑥𝑖
𝑐 𝑝

𝑖=1  and 𝑇2 =  𝑙𝑛 1 + 𝑦𝑗
𝑐 

𝑞
𝑗=1 . 

 

According to Hassan et al. (2014) the MLE of𝑅 is obtained as follows: 

Let 𝑋𝑖 𝑖 𝑠 , 𝑖 = 1,2, … 𝑛; 𝑠 = 1,2, … , 𝑟 be a ranked set sample with sample size𝑝 = 𝑛𝑟, where 𝑛and 𝑟 are the 

set size and the number of cycles from Burr (𝑐, 𝑏). Then the PDFof 𝑋𝑖 𝑖 𝑠 isgiven by: 
 

𝑓𝑖 𝑥𝑖(𝑖)𝑠 =
𝑛!

 𝑖−1 ! 𝑛−𝑖 !
 𝐹 𝑥𝑖(𝑖)𝑠  

𝑖−1
 1 − 𝐹 𝑥𝑖(𝑖)𝑠  

𝑛−𝑖
𝑓 𝑥𝑖(𝑖)𝑠 ,                                                               (8) 

 

𝑓𝑖 𝑥𝑖(𝑖)𝑠 =
𝑛!

 𝑖 − 1 !  𝑛 − 𝑖 !
𝑏𝑐𝑥𝑖(𝑖)𝑠

𝑐−1  1 + 𝑥𝑖(𝑖)𝑠
𝑐  

−[𝑏 𝑛−𝑖+1 +1]
(1 −  1 + 𝑥𝑖(𝑖)𝑠

𝑐  
−𝑏

)𝑖−1,            𝑥𝑖(𝑖)𝑠 > 0. 
 

 

By similar way, let {𝑌𝑗 (𝑗 )𝑠 , 𝑗 = 1, … ,𝑚; 𝑠 = 1,… , 𝑟}denote the ranked set sample of 

size𝑞 = 𝑚𝑟fromBurr (𝑐, 𝑎).ThenthePDF of𝑌𝑗 (𝑗 )𝑠is given by: 
 

𝑓𝑗 𝑦𝑗 (𝑗 )𝑠 =
𝑚!

 𝑗−1 ! 𝑚−𝑗  !
 𝐹 𝑦𝑗 (𝑗 )𝑠  

𝑗−1
 1 − 𝐹 𝑦𝑗 (𝑗 )𝑠  

𝑚−𝑗
𝑓 yj(j)s ,                                                                     (9) 

 

𝑓𝑗 𝑦𝑗 (𝑗 )𝑠 =
𝑚!

 𝑗 − 1 !  𝑚 − 𝑗 !
𝑎𝑐𝑦𝑗 (𝑗 )𝑠

𝑐−1  1 + 𝑦𝑗 (𝑗 )𝑠
𝑐  

−[𝑎 𝑚−𝑗+1 +1]
(1 −  1 + 𝑦𝑗 (𝑗 )𝑠

𝑐  
−𝑎

)𝑗−1 ,      𝑦𝑗 (𝑗 )𝑠 > 0 . 

 

The likelihood function 𝐿𝑅𝑆𝑆  of observed data will be as follows: 
 

𝐿𝑅𝑆𝑆 =    𝑓𝑖 𝑥𝑖(𝑖)𝑠 

𝑛

𝑖=1

 𝑓𝑗 𝑦𝑗 (𝑗 )𝑠 

𝑚

𝑗=1

 

𝑟

𝑠=1

.   

 

The log-likelihood function of 𝐿𝑅𝑆𝑆denoted by 𝑙𝑅𝑆𝑆will be as follows: 

 

𝑙𝑅𝑆𝑆 = ln 𝐷1 +𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 + (𝑐 − 1)   𝑙𝑛𝑥𝑖 𝑖 𝑠

𝑛

𝑖=1

+  𝑙𝑛𝑦𝑗  𝑗  𝑠

𝑚

𝑗=1

 

𝑟

𝑠=1

 

−    𝑏 𝑛 − 𝑖 + 1 + 1 𝑙𝑛 1 + 𝑥𝑖(𝑖)𝑠
𝑐  

𝑛

𝑖=1

 
𝑟

𝑠=1

 +   [𝑎 𝑚 − 𝑗 + 1 + 1]𝑙𝑛 1 + 𝑦𝑗 (𝑗 )𝑠
𝑐  

𝑚

𝑗=1

  

+   (𝑖 − 1)

𝑛

𝑖=1

𝑙𝑛 1 − (1 + 𝑥𝑖 𝑖 𝑠
𝑐 )−𝑏  

𝑟

𝑠=1

 +    𝑗 − 1 𝑙𝑛 1 − (1 + 𝑦𝑗  𝑗  𝑠
𝑐 )−𝑎 

𝑚

𝑗=1

 ,   
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where𝐷1 is a constant. The first partial derivatives of log-likelihood function with respect to 𝑏 and 𝑎 are given 

by: 

𝜕𝑙𝑅𝑆𝑆

𝜕𝑏
=

𝑝

𝑏 
−    𝑛 − 𝑖 + 1 ln 1 + 𝑥𝑖 𝑖 𝑠

𝑐  −  𝑖 − 1 
ln 1+𝑥𝑖 𝑖 𝑠

𝑐  

 1+𝑥𝑖 𝑖 𝑠
𝑐  

𝑏 
−1

 𝑛
𝑖=1 = 0,𝑟

𝑠=1                                                  (10) 

 

𝜕𝑙𝑅𝑆𝑆

𝜕𝑎
=

𝑞

𝑎 
−     𝑚 − 𝑗 + 1 ln 1 + 𝑦𝑗  𝑗  𝑠

𝑐  −  𝑗 − 1 
ln 1+𝑦𝑗  𝑗  𝑠

𝑐  

 1+𝑦𝑗  𝑗  𝑠
𝑐  

𝑎 
−1
 𝑚

𝑗=1
𝑟
𝑠=1 = 0.                                    (11) 

 

Clearly, it is not easy to obtain a closed form solution to system ofEquations (10) and (11). Therefore, an 

iterative technique must be applied to solve these equations numerically to obtain an estimates of 𝑏 and 𝑎.  

MLEs of 𝑏 and 𝑎 denoted by 𝑏  and 𝑎  are the solution of Equations (10) and (11). Then 𝑅 𝑀𝐿𝐸will beobtained by 

substituting𝑏  and 𝑎  inEquation (3). 

 

Estimation of𝑹 = 𝑷(𝒀 < 𝑿)Based on MRSSData: 

Muttlak(1997)investigatedMRSS as a sampling technique to estimate the population mean. MRSS 

procedure depends on two cases, the first case for odd set size and the second case for even set size. This 

procedure can be summarizedas follows: 

Case (1):for odd set size,the median value is selected from each of the 𝑛 ordered sets. If the 

set 𝑋1(𝑔)𝑠 , 𝑋2(𝑔)𝑠 … ,𝑋𝑛(𝑔)𝑠 is quantified, then this will be a MRSS for odd set size,where𝑔 = 𝑛 + 1 2 and𝑠 =

1,2, . . , 𝑟. 

Case(2): for even set sizethe  𝑢 𝑡𝑕  smallest element is chosen from the first 𝑢 ordered sets, while the 

 𝑢 + 1 𝑡𝑕smallest unit is chosen from each of the remaining 𝑢 sets. MRSS foreven set size will be the set 

 𝑋1(𝑢)𝑠 , … , 𝑋𝑢 𝑢 𝑠 , 𝑋𝑢+1(𝑢+1)𝑠 , … , 𝑋𝑛 𝑢+1 𝑠  where 𝑢 = 𝑛 2 and𝑠 = 1,2, . . , 𝑟. 

In the following subsections maximum likelihood method of estimation will be considered to estimate 𝑅 for 

Burr XII distribution based on MRSS technique for odd and even set sizes. To derive the MLE of 𝑅, firstly the 

MLEs of unknown parameters 𝑏 and 𝑎 must be obtained.    

 
MLEof 𝑹 = 𝑷 𝒀 < 𝑿 with Odd Set Size Based on MRSS data: 

Let 𝑥1 𝑔 𝑠 , … , 𝑥𝑛 𝑔 𝑠 is a MRSS from Burr (𝑐, 𝑏) with sample size 𝑝 = 𝑛𝑟, where 𝑛 is the set size, 𝑟 is the 

number of cycles. Then, using Equation (8) the PDF of 𝑋𝑖(𝑔)𝑠will be as follows: 

 

𝑓𝑔 𝑥𝑖 𝑔 𝑠 =
𝑛!

  𝑔−1 ! 2
𝑏𝑐𝑥𝑖(𝑔)𝑠

𝑐−1  1 + 𝑥𝑖(𝑔)𝑠
𝑐  

−(𝑏𝑔+1)
 1 −  1 + 𝑥𝑖(𝑔)𝑠

𝑐  
−𝑏
 
𝑔−1

, 𝑥𝑖 𝑔 𝑠 > 0.                                   (12) 

 

Similarly, Let 𝑦1 𝑕 𝑠 , … , 𝑦𝑚 𝑕 𝑠 is a MRSS from Burr (𝑐, 𝑎) with sample size 𝑞 = 𝑚𝑟,  where 𝑚 is the set 

size, 𝑟 is the number of cycles. Then, using Equation (9) the PDF of 𝑌𝑗 (𝑕)𝑠will be as follows: 

 

𝑓𝑕 𝑦𝑗  𝑕 𝑠 =
𝑚!

  𝑕−1 ! 2
𝑎𝑐𝑦𝑗  𝑕 𝑠

𝑐−1  1 + 𝑦𝑗  𝑕 𝑠
𝑐  

−(𝑎𝑕+1)
 1 −  1 + 𝑦𝑗  𝑕 𝑠

𝑐  
−𝑎
 
𝑕−1

, 𝑦𝑗  𝑕 𝑠 > 0.                              (13) 

 

The likelihood function for the observed sample based on MRSS in case of odd set size denoted by 𝐿𝑀𝑅𝑆𝑆1
∗  

is given as follows: 

 

𝐿𝑀𝑅𝑆𝑆1
∗ =    𝑓𝑔 𝑥𝑖 𝑔 𝑠 

𝑛
𝑖=1  𝑓𝑕 𝑦𝑗  𝑕 𝑠 

𝑚
𝑗=1  𝑟

𝑠=1 . 

 

The log-likelihood function for the observed sample based on MRSS procedure in case of odd set size 

denoted by  𝑙𝑀𝑅𝑆𝑆1
∗ will be given as follows: 

𝑙𝑀𝑅𝑆𝑆1
∗ = ln 𝐷2 +𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 +  𝑐 − 1    𝑙𝑛𝑥𝑖(𝑔)𝑠 +  𝑙𝑛𝑦𝑗 (𝑕)𝑠

𝑚

𝑗=1

𝑛

𝑖=1

 

𝑟

𝑠=1

−  (𝑏𝑔 + 1) 
𝑟

𝑠=1

 

×  ln⁡(1 + 𝑥𝑖 𝑔 𝑠
𝑐 )

𝑛

𝑖=1

+  𝑎𝑕 + 1   ln 1 + 𝑦𝑗  𝑕 𝑠
𝑐  

𝑚

𝑗=1

 +    𝑔 − 1  ln  1 −  1 + 𝑥𝑖 𝑔 𝑠
𝑐  

−𝑏
 

𝑛

𝑖=1

 
𝑟

𝑠=1
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+ 𝑕 − 1   𝑙𝑛 1 −  1 + 𝑦𝑗  𝑕 𝑠
𝑐  

−𝑎
 

𝑚

𝑗=1

 , 

 

where𝐷2 is a constant.The first partial derivatives of log-likelihood function with respect to 𝑏 and 𝑎 are given 

by: 

 

𝜕𝑙𝑀𝑅𝑆𝑆 1
∗

𝜕𝑏
=

𝑝

𝑏1
∗ −    𝑔 ln 1 + 𝑥𝑖 𝑔 𝑠

𝑐  − (𝑔 − 1)
ln⁡(1+𝑥𝑖 𝑔 𝑠

𝑐 )

 1+𝑥𝑖 𝑔 𝑠
𝑐  

𝑏1
∗

−1

 𝑛
𝑖=1 = 0,𝑟

𝑠=1                                                 (14) 

 

𝜕𝑙𝑀𝑅𝑆𝑆 1
∗

𝜕𝑎
=

𝑞

𝑎1
∗ −    𝑕 ln 1 + 𝑦𝑗  𝑕 𝑠

𝑐  − (𝑕 − 1)
ln⁡(1+𝑦𝑗  𝑕 𝑠

𝑐 )

 1+𝑦𝑗  𝑕 𝑠
𝑐  

𝑎1
∗

−1

 = 0.𝑚
𝑗=1

𝑟
𝑠=1                                                (15) 

 

It is clear that the MLEs of b and a denoted by 𝑏1
∗ and 𝑎1

∗ cannot be obtained in a closed form. Thus, an 

iterative technique must be applied to solve these equations numerically to obtain an estimates of 𝑏 and 𝑎. The 

MLE of R denoted by 𝑅𝑀𝑅𝑆𝑆1
∗ based on MRSS approach with odd set size is obtained by substituting 

𝜌𝑀𝑅𝑆𝑆1
∗ =

𝑏1
∗

𝑎1
∗  in Equation (3). 

 

MLE of 𝑹 = 𝑷(𝒀 < 𝑿) with Even Set Size Based on MRSS Data: 

For even set sizes, the  𝑢 𝑡𝑕  smallest element is chosen from the first 𝑢 ordered sets, while the 

 𝑢 + 1 𝑡𝑕smallest unit is chosen from each of the remaining 𝑢 sets. Let the set  {𝑋𝑖(𝑢)𝑠 , 𝑖 = 1,2, … , 𝑢; 𝑠 =

1,2,…,𝑟}∪{𝑋𝑖𝑢+1𝑠,𝑖=𝑢+1,…,𝑛;𝑠=1,2,…,𝑟}, be a MRSS drawn from Burr𝑐,𝑏with even set sizes where 

𝑢 = 𝑛 2 .Then 𝑋𝑖(𝑢)𝑠 and 𝑋𝑖(𝑢+1)𝑠 are the 𝑢 𝑡𝑕and the  𝑢 + 1 𝑡𝑕  smallest units from the 𝑖𝑡𝑕  set of the 𝑠𝑡𝑕  cycle. 

By direct substitution into Equation (8) the PDFs of  𝑢 𝑡𝑕and   𝑢 + 1 𝑡𝑕order statistics when 𝑛 is even are 

given as follows: 

 

𝑓𝑢 𝑥𝑖 𝑢 𝑠 =
𝑛!

 𝑢 − 1 !  𝑢 !
𝑏𝑐𝑥𝑖(𝑢)𝑠

𝑐−1  1 + 𝑥𝑖(𝑢)𝑠
𝑐  

−(𝑏(𝑢+1)+1)
 1 −  1 + 𝑥𝑖(𝑢)𝑠

𝑐  
−𝑏
 
𝑢−1

,                         𝑥𝑖 𝑢 𝑠 > 0,  

and 

𝑓𝑢+1 𝑥𝑖(𝑢+1)𝑠 =
𝑛!

 𝑢 !  𝑢 − 1 !
𝑏𝑐𝑥𝑖(𝑢+1)𝑠

𝑐−1  1 + 𝑥𝑖(𝑢+1)𝑠
𝑐  

−(𝑏𝑢+1)
 1 −  1 + 𝑥𝑖(𝑢+1)𝑠

𝑐  
−𝑏
 
𝑢

,                𝑥𝑖(𝑢+1)𝑠 > 0.   

 

Similarly, let the set  𝑌𝑗  𝑣 𝑠 , 𝑗 = 1,2, … , 𝑣; 𝑠 = 1,2, … , 𝑟 ∪ {𝑌𝑗  𝑣+1 𝑠 , 𝑗 = 𝑣 + 1,… ,𝑚; 𝑠 = 1,2, … , 𝑟} , be 

the MRSS from Burr (𝑐, 𝑎), where 𝑣 = 𝑚 2 . Then 𝑦𝑗 (𝑣)𝑠and 𝑦𝑗  𝑣+1 𝑠are the   𝑣 𝑡𝑕  and the  𝑣 + 1 𝑡𝑕  smallest 

units from the 𝑗𝑡𝑕  set of the 𝑠𝑡𝑕  cycle.By direct substitution into Equation (9) the PDFs of  𝑣 𝑡𝑕and 

 𝑣 + 1 𝑡𝑕order statistics when𝑛 is even are given as follows: 

 

𝑓𝑣 𝑦𝑗 (𝑣)𝑠 =
𝑚!

 𝑣 − 1 !  𝑣 !
𝑎𝑐𝑦𝑗  𝑣 𝑠

𝑐−1  1 + 𝑦𝑗  𝑣 𝑠
𝑐  

−(𝑎(𝑣+1)+1)
 1 −  1 + 𝑦𝑗  𝑣 𝑠

𝑐  
−𝑎
 
𝑣−1

,                           𝑦𝑗 (𝑣)𝑠 > 0,  

and 

𝑓𝑣+1 𝑦𝑗  𝑣+1 𝑠 =
𝑚!

 𝑣 !  𝑣 − 1 !
𝑎𝑐𝑦𝑗  𝑣+1 𝑠

𝑐−1  1 + 𝑦𝑗  𝑣+1 𝑠
𝑐  

−(𝑎𝑣+1)
 1 −  1 + 𝑦𝑗  𝑣+1 𝑠

𝑐  
−𝑎
 
𝑣

,              𝑦𝑗  𝑣+1 𝑠 > 0. 

 

The likelihood function for the observed sample with even set size based on MRSS,denoted by 𝐿𝑀𝑅𝑆𝑆2
∗ , is 

given as follows: 
 

𝐿𝑀𝑅𝑆𝑆2
∗ =    𝑓𝑢 𝑥𝑖 𝑢 𝑠 

𝑢

𝑖=1

 𝑓𝑢+1 𝑥𝑖(𝑢+1)𝑠 

𝑛

𝑖=𝑢+1

 𝑓𝑣 𝑦𝑗 (𝑣)𝑠 

𝑣

𝑗=1

 𝑓𝑣+1 𝑦𝑗  𝑣+1 𝑠 

𝑚

𝑗=𝑣+1

 

𝑟

𝑠=1

 . 

 

Then, the log-likelihood function of 𝐿𝑀𝑅𝑆𝑆2
∗ denoted by 𝑙𝑀𝑅𝑆𝑆2

∗ will be as follows: 
 

𝑙𝑀𝑅𝑆𝑆2
∗ = ln 𝐷3 +𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 + (𝑐 − 1)   𝑙𝑛𝑥𝑖 𝑢 𝑠

𝑢

𝑖=1

 +  𝑙𝑛𝑥𝑖 𝑢+1 𝑠

𝑛

𝑖=𝑢+1

+  𝑙𝑛𝑦𝑗  𝑣 𝑠

𝑣

𝑗=1

𝑟

𝑠=1
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      +  𝑙𝑛𝑦𝑗  𝑣+1 𝑠

𝑚

𝑗=𝑣+1

 − { 𝑏 𝑢 + 1 + 1  𝑙𝑛 1 + 𝑥𝑖 𝑢 𝑠
𝑐  

𝑢

𝑖=1

+ (𝑏𝑢 + 1)  𝑙𝑛 1 + 𝑥𝑖 𝑢+1 𝑠
𝑐  

𝑛

𝑖=𝑢+1

𝑟

𝑠=1

 

 

+ 𝑎 𝑣 + 1 + 1  𝑙𝑛 1 + 𝑦𝑗  𝑣 𝑠
𝑐  

𝑣

𝑗=1

+  𝑎𝑣 + 1  𝑙𝑛 1 + 𝑦𝑗  𝑣+1 𝑠
𝑐  

𝑚

𝑗=𝑣+1

} 

+ {

𝑟

𝑠=1

 𝑢 − 1  𝑙𝑛  1 −  1 + 𝑥𝑖 𝑢 𝑠
𝑐  

−𝑏
 + 𝑢  𝑙𝑛  1 −  1 + 𝑥𝑖 𝑢+1 𝑠

𝑐  
−𝑏
 

𝑛

𝑖=𝑢+1

𝑢

𝑖=1

 

 

+ 𝑣 − 1  𝑙𝑛 1 −  1 + 𝑦𝑗  𝑣 𝑠
𝑐  

−𝑎
 + 𝑣  𝑙𝑛 1 −  1 + 𝑦𝑗  𝑣+1 𝑠

𝑐  
−𝑎
 

𝑚

𝑗=𝑣+1

}

𝑣

𝑗=1

 

 

where𝐷3 is a constant. The first partial derivatives of log-likelihood function 𝑙𝑀𝑅𝑆𝑆2
∗ withrespect to 𝑏 and 𝑎 

are given by: 

 

𝜕𝑙𝑀𝑅𝑆𝑆2
∗

𝜕𝑏
=

𝑝

𝑏2
∗ −   𝑢 + 1  𝑙𝑛 1 + 𝑥𝑖 𝑢 𝑠

𝑐  + 𝑢  𝑙𝑛 1 + 𝑥𝑖 𝑢+1 𝑠
𝑐  

𝑛

𝑖=𝑢+1

𝑢

𝑖=1

 

𝑟

𝑠=1

 

 

+  (𝑢 − 1) 
𝑙𝑛  1+𝑥𝑖 𝑢 𝑠

𝑐  

 1+𝑥𝑖 𝑢 𝑠
𝑐  

𝑏2
∗

−1

𝑢
𝑖=1

 𝑟
𝑠=1 +  𝑢  

𝑙𝑛  1+𝑥𝑖 𝑢+1 𝑠
𝑐  

 1+𝑥𝑖 𝑢+1 𝑠
𝑐  

𝑏2
∗

−1

𝑛
𝑖=𝑢+1  = 0,          (16) 

 

𝜕𝑙𝑀𝑅𝑆𝑆2
∗

𝜕𝑎
=

𝑞

𝑎2
∗ −   𝑣 + 1  𝑙𝑛 1 + 𝑦𝑗  𝑣 𝑠

𝑐  + 𝑣  𝑙𝑛 1 + 𝑦𝑗  𝑣+1 𝑠
𝑐  

𝑚

𝑗=𝑣+1

𝑣

𝑗=1

 

𝑟

𝑠=1

 

      +  (𝑣 − 1) 
𝑙𝑛  1+𝑦𝑗  𝑣 𝑠

𝑐  

 1+𝑦𝑗  𝑣 𝑠
𝑐  

𝑎2
∗

−1

𝑣
𝑗=1

 𝑟
𝑠=1  +  𝑣  

𝑙𝑛  1+𝑦𝑗  𝑣+1 𝑠
𝑐  

 1+𝑦𝑗  𝑣+1 𝑠
𝑐  

𝑎2
∗

−1

𝑚
𝑗=𝑣+1  = 0.        (17)         

 

 MLEs of b and a denoted by 𝑏2
∗ and 𝑎2

∗are obtained by iteratively solving Equations (16) and (17).  Thus, 

the MLE of 𝑅 denoted by 𝑅𝑀𝑅𝑆𝑆2
∗  is obtained by substituting  𝑏2

∗ and 𝑎2
∗   in Equation (3). 

 

Estimation of  𝑹 = 𝑷 𝒀 < 𝑋 Based on ERSSData: 
Samawi et al. (1996) introduced another modification of RSS called ERSS. This approach to data collection 

depends on two cases, the first case when the set size is odd and the second case when the set size is even. ERSS 

procedure can be designed as follows: 

Case (1):  for odd set size 𝑛, the largest and smallest units are selected from the first random sample to the 

(𝑛 − 1)𝑠𝑡  random sample. From the 𝑛𝑡𝑕  random sample select the median of the set. If the set 

 𝑋1 1 𝑠 , … , 𝑋𝑛−1 𝑛 𝑠 , 𝑋𝑛 𝑔 𝑠  is quantified, then this will be ERSS for odd set size, where 𝑔 = 𝑛 + 1 2  and 

𝑠 = 1,2, … , 𝑟. 
Case (2):foreven set size 𝑛, the largest and smallest units are alternately taken from the first to the 𝑛𝑡𝑕  

random sample. If the set 𝑋1 1 𝑠 , … , 𝑋𝑛−1 𝑛 𝑠 , 𝑋𝑛 𝑛 𝑠  is quantified, then this will be ERSS for even set size, 

where 𝑠 = 1,2, … , 𝑟. 
In the following subsections, MLE of  𝑅 = 𝑃(𝑌 < 𝑋) is derived under ERSS technique for both odd and 

even set sizes. 

 

MLE of 𝑹 = 𝑷(𝒀 < 𝑋) with Odd Set Size Based on ERSS Data: 

Let {𝑋𝑖 1 𝑠 , 𝑖 = 1, … , 𝑔 − 1; 𝑠 = 1,2, … , 𝑟}, {𝑋𝑖 𝑛 𝑠 , 𝑖 = 𝑔,… , 𝑛 − 1; 𝑠 = 1,2, … , 𝑟} are the smallest and 

largest order statistics from Burr  𝑐, 𝑏 , where 𝑛 is the set size, 𝑟 is the number of cycles. The PDFs of 𝑋𝑖 1 𝑠 and 

𝑋𝑖 𝑛 𝑠 using Equation (8), will be as follows 
 

𝑓1 𝑥𝑖 1 𝑠 = 𝑛𝑏𝑐 𝑥𝑖 1 𝑠
𝑐−1  1 + 𝑥𝑖 1 𝑠

𝑐  
−(𝑏𝑛+1)

, 𝑥𝑖 1 𝑠 > 0,                                                                                      (18) 

and 

𝑓𝑛 𝑥𝑖 𝑛 𝑠 = 𝑛𝑏𝑐 𝑥𝑖 𝑛 𝑠
𝑐−1  1 + 𝑥𝑖 𝑛 𝑠

𝑐  
−(𝑏+1)

 1 −  1 + 𝑥𝑖 𝑛 𝑠
𝑐  

−𝑏
 
𝑛−1

, 𝑥𝑖 𝑛 𝑠 > 0.                                               (19) 
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Similarly, let {𝑌𝑗  1 𝑠 , 𝑗 = 1, … , 𝑕 − 1; 𝑠 = 1,2, … , 𝑟}, {𝑌𝑗  𝑚 𝑠 , 𝑗 = 𝑕, … ,𝑚 − 1; 𝑠 = 1,2, … , 𝑟} are the smallest 

and largest order statistics from Burr  𝑐, 𝑎 , where 𝑚 is the set size, 𝑟 is the number of cycles. Using Equation 

(9) thePDFs of 𝑌𝑗  1 𝑠 and 𝑌𝑗  𝑚 𝑠  respectively will be as follows: 
 

𝑓1 𝑦𝑗  1 𝑠 = 𝑚𝑎𝑐 𝑦𝑗  1 𝑠
𝑐−1  1 + 𝑦𝑗  1 𝑠

𝑐  
−(𝑎𝑚+1)

, 𝑦𝑗  1 𝑠 > 0,                                                                                     (20) 

and 

𝑓𝑚  𝑦𝑗  𝑚 𝑠 = 𝑚𝑎𝑐 𝑦𝑗  𝑚 𝑠
𝑐−1  1 + 𝑦𝑗  𝑚 𝑠

𝑐  
−(𝑎+1)

 1 −  1 + 𝑦𝑗  𝑚 𝑠
𝑐  

−𝑎
 
𝑚−1

, 𝑦𝑗  𝑚 𝑠 > 0.                                         (21) 
 

Let{𝑋𝑖 𝑔 𝑠 , 𝑠 = 1,2, … , 𝑟} is the 𝑔𝑡𝑕  order statistics from Burr  𝑐, 𝑏  , and let {𝑌𝑗  𝑕 𝑠 , 𝑠 = 1,2, … , 𝑟} is the 𝑕𝑡𝑕  

order statistics from Burr (𝑐, 𝑎). Then, the PDFs of 𝑔𝑡𝑕  and 𝑕𝑡𝑕  order statistics are obtained in (12) and (13) 

respectively. 

The likelihood function of observed sample based on ERSS in case of odd set size, denoted by 𝐿𝐸𝑅𝑆𝑆1
∗∗ , is 

given as follows: 
 

𝐿𝐸𝑅𝑆𝑆1
∗∗ =    𝑓1 𝑥𝑖 1 𝑠 

𝑔−1

𝑖=1

 
𝑟

𝑠=1

 𝑓𝑛 𝑥𝑖 𝑛 𝑠 

𝑛−1

𝑖=𝑔

 𝑓1 𝑦𝑗  1 𝑠 

𝑕−1

𝑗=1

  𝑓𝑚 𝑦𝑗  𝑚 𝑠 

𝑚−1

𝑗=𝑕

  𝑓𝑔 𝑥𝑛(𝑔)𝑠 𝑓𝑕 𝑦𝑚 𝑕 𝑠  .  

 

The log-likelihood function denoted by 𝑙𝐸𝑅𝑆𝑆1
∗∗  is given as follows: 

 

𝑙𝐸𝑅𝑆𝑆1
∗∗ = ln 𝐷4 +𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 + (𝑐 − 1)   𝑙𝑛𝑥𝑖 1 𝑠

𝑔−1

𝑖=1

+  𝑙𝑛𝑥𝑖 𝑛 𝑠

𝑛−1

𝑖=𝑔

+  𝑙𝑛𝑦𝑗  1 𝑠

𝑕−1

𝑗=1

 
𝑟

𝑠=1

 

+   𝑙𝑛

𝑚−1

𝑗=𝑕

𝑦𝑗  𝑚 𝑠 −   𝑏𝑛 + 1  ln⁡(1 + 𝑥𝑖 1 𝑠
𝑐 )

𝑔−1

𝑖=1

 
𝑟

𝑠=1

+  𝑏 + 1  ln 1 + 𝑥𝑖 𝑛 𝑠
𝑐  

𝑛−1

𝑖=𝑔

+ (𝑎𝑚 + 1) 

 

 ×  𝑙𝑛 1 + 𝑦𝑗  1 𝑠
𝑐  

𝑕−1

𝑗=1

+ (𝑎 + 1)   𝑙𝑛 1 + 𝑦𝑗  𝑚 𝑠
𝑐  

𝑚−1

𝑗=𝑕

 +    𝑛 − 1  ln⁡[1 −  1 + 𝑥𝑖 𝑛 𝑠
𝑐  

−b
]

n−1

i=g

 
𝑟

𝑠=1

 

 + m − 1   ln 1 −  1 + 𝑦𝑗  𝑚 𝑠
𝑐  

−𝑎
 

m−1

j=h

 +    𝑐 − 1  𝑙𝑛𝑥𝑛 𝑔 𝑠 + 𝑙𝑛𝑦𝑚 𝑕 𝑠  
𝑟

𝑠=1

 

 

− 𝑏𝑔 + 1 ln 1 + 𝑥𝑛 𝑔 𝑠
𝑐  −  𝑎𝑕 + 1 𝑙𝑛 1 + 𝑦𝑚 𝑕 𝑠

𝑐  +  𝑔 − 1 ln⁡[1 −  1 + 𝑥𝑛 𝑔 𝑠
𝑐  

−b
] 

 

 

+ h − 1 ln   1 −  1 + 𝑦𝑚 𝑕 𝑠
𝑐  

−𝑎
  , 

 
where𝐷4 is a constant. The first partial derivatives of log-likelihood function with respect to 𝑏 and 𝑎 are 

given by: 
 
 

𝜕𝑙𝐸𝑅𝑆𝑆1
∗∗

𝜕𝑏
=

𝑝

𝑏1
∗∗ −   𝑛 ln⁡(1 + 𝑥𝑖 1 𝑠

𝑐 )

𝑔−1

𝑖=1

+  ln 1 + 𝑥𝑖 𝑛 𝑠
𝑐  

𝑛−1

𝑖=𝑔

+ 𝑔𝑙𝑛 1 + 𝑥𝑛 𝑔 𝑠
𝑐    

𝑟

𝑠=1

 

 

+   (𝑛 − 1)
ln⁡(1+𝑥𝑖 𝑛 𝑠

𝑐 )

(1+𝑥𝑖 𝑛 𝑠
𝑐 )𝑏1

∗∗
−1

+  𝑔 − 1 
ln 1+𝑥𝑛 𝑔 𝑠

𝑐  

 1+𝑥𝑛 𝑔 𝑠
𝑐  

𝑏1
∗∗

−1

𝑛−1
𝑖=𝑔  =𝑟

𝑠=1 0,                                             (22) 

 

𝜕𝑙𝐸𝑅𝑆𝑆1
∗∗

𝜕𝑎
=

𝑞

𝑎1
∗∗ −   𝑚 ln⁡(1 + 𝑦𝑗  1 𝑠

𝑐 )

𝑕−1

𝑗=1

+  ln 1 + 𝑦𝑗  𝑚 𝑠
𝑐  + 𝑕𝑙𝑛 1 + 𝑦𝑚 𝑕 𝑠

𝑐  

𝑚−1

𝑗=𝑕

  
𝑟

𝑠=1

 

 

+   (𝑚 − 1)
ln⁡(1+𝑦𝑗  𝑚  𝑠

𝑐 )

(1+𝑦𝑗  𝑚  𝑠
𝑐 )𝑎1

∗∗
−1

+  𝑕 − 1 
ln 1+𝑦𝑚 𝑕 𝑠

𝑐  

 1+𝑦𝑚 𝑕 𝑠
𝑐  

𝑎1
∗∗

−1

𝑚−1
𝑗=𝑕  𝑟

𝑠=1 = 0.                                        (23) 
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MLEs of 𝑏 and 𝑎 denoted by 𝑏1
∗∗ and 𝑎1

∗∗ are obtained by solving numerically Equations (22) and (23) using 

iterative technique. Then𝑅𝐸𝑅𝑆𝑆1
∗  will be obtained by substituting  𝑏1

∗∗ and 𝑎1
∗∗ in Equation (3). 

 

MLE of 𝑹 = 𝑷(𝒀 < 𝑋) with Even Set Size Based on ERSS Data: 

To obtain MLEs of 𝑅 based on ERSS in case of even set size, let 𝑋𝑖 1 𝑠 , 𝑖 = 1,2, … , 𝑢; 𝑠 = 1,2, … , 𝑟 and 

𝑋𝑖 𝑛 𝑠 , 𝑖 = 𝑢 + 1,… , 𝑛; 𝑠 = 1,2, … , 𝑟 are the smallest and largest order statistics from Burr (𝑐, 𝑏)with PDFs(18) 

and (19). 

Similarly, let 𝑌𝑗  1 𝑠 , 𝑗 = 1,2, … , 𝑣; 𝑠 = 1,2, … , 𝑟 and 𝑌𝑗  𝑚 𝑠 , 𝑗 = 𝑣 + 1,… ,𝑚; 𝑠 = 1,2, … , 𝑟 are the smallest 

and largest order statistics from Burr (𝑐, 𝑎) with PDFs(20) and (21) respectively. 

 

The likelihood function of observed sample using ERSS in case of even set size denoted by 𝐿𝐸𝑅𝑆𝑆2
∗∗  is given 

as follows: 

𝐿𝐸𝑅𝑆𝑆2
∗∗ =    𝑓1 𝑥𝑖 1 𝑠 

𝑢
𝑖=1

 𝑟
𝑠=1  𝑓𝑛 𝑥𝑖 𝑛 𝑠 

𝑛
𝑖=𝑢+1  𝑓1 𝑦𝑗  1 𝑠 

𝑣
𝑗=1

  𝑓𝑚 𝑦𝑗  𝑚 𝑠 
𝑚
𝑗=𝑣+1  . 

 

Then the log-likelihood function of 𝐿𝐸𝑅𝑆𝑆2
∗∗  denoted by 𝑙𝐸𝑅𝑆𝑆2

∗∗ will be as follows: 
 

 

𝑙𝐸𝑅𝑆𝑆2
∗∗ = ln𝐷5 +𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 + (𝑐 − 1)   𝑙𝑛𝑥𝑖 1 𝑠 +  𝑙𝑛𝑥𝑖 𝑛 𝑠

𝑛

𝑖=𝑢+1

+  𝑙𝑛𝑦𝑗  1 𝑠

𝑣

𝑗=1

𝑢

𝑖=1

 
𝑟

𝑠=1

 

              +  𝑙𝑛𝑦𝑗 (𝑚)𝑠

𝑚

𝑗=𝑣+1

 −   𝑏𝑛 + 1  𝑙𝑛 1 + 𝑥𝑖 1 𝑠
𝑐  + (𝑏 + 1)  𝑙𝑛 1 + 𝑥𝑖 𝑛 𝑠

𝑐  

𝑛

𝑖=𝑢+1

𝑢

𝑖=1

 
𝑟

𝑠=1

 

             + 𝑎𝑚 + 1  𝑙𝑛 1 + 𝑦𝑗  1 𝑠
𝑐  

𝑣

𝑗=1

+  𝑎 + 1   𝑙𝑛 1 + 𝑦𝑗  𝑚 𝑠
𝑐  

𝑚

𝑗=𝑣+1

 +     𝑛 − 1 

𝑛

𝑖=𝑢+1

 
𝑟

𝑠=1

 

            × ln  1 −  1 + 𝑥𝑖 𝑛 𝑠
𝑐  

−𝑏
 +    𝑚 − 1 ln⁡[1 −  1 + 𝑦𝑗  𝑚 𝑠

𝑐  
−𝑎

]

𝑚

𝑗=𝑣+1

 , 

 

where𝐷5is a constant. The first partial derivatives of log-likelihood function with respect to b and a are 

given by: 

 

𝜕𝑙𝐸𝑅𝑆𝑆2
∗∗

𝜕𝑏
=

𝑝

𝑏2
∗∗ −  𝑛 𝑙𝑛 1 + 𝑥𝑖 1 𝑠

𝑐  +  𝑙𝑛 1 + 𝑥𝑖 𝑛 𝑠
𝑐  

𝑛

𝑖=𝑢+1

− (𝑛 − 1)  
𝑙𝑛 1 + 𝑥𝑖 𝑛 𝑠

𝑐  

 1 + 𝑥𝑖 𝑛 𝑠
𝑐  

𝑏2
∗∗

− 1

𝑛

𝑖=𝑢+1

𝑢

𝑖=1

 = 0,

𝑟

𝑠=1

 

 (24) 

 
 

𝜕𝑙𝐸𝑅𝑆𝑆 2
∗∗

𝜕𝑎
=

𝑞

𝑎2
∗∗ −   𝑚 𝑙𝑛 1 + 𝑦𝑗  1 𝑠

𝑐  𝑣
𝑗=1 +  𝑙𝑛 1 + 𝑦𝑗  𝑚 𝑠

𝑐  𝑚
𝑗=𝑣+1 −  𝑚 − 1  

𝑙𝑛 1+𝑦𝑗  𝑚  𝑠
𝑐  

 1+𝑦𝑗  𝑚  𝑠
𝑐  

𝑎2
∗∗

−1

𝑚
𝑗=𝑣+1  = 0.  𝑟

𝑠=1  

(25) 

As it seems the likelihood equations have no closed form solutions in 𝑏 and 𝑎. Therefore, numerical 

technique method is used to get the solution.  MLEs of 𝑏 and 𝑎 will be denoted by 𝑏2
∗∗ and 𝑎2

∗∗,then 𝑅𝐸𝑅𝑆𝑆2
∗∗   will 

be obtained by substituting  𝑏2
∗∗ and  𝑎2

∗∗in Equation (3). 

 
 

Estimation of 𝑹 = 𝑷(𝒀 < 𝑋)Based on PRSS Data: 

In this section, MLE of  𝑅 = 𝑃 𝑌 < 𝑋 is derived under PRSS technique. Muttlak (2003) introduced PRSS 

procedure depending on two cases, the first case when the set size is odd and the second case when the set size 

is even. The two cases are separately considered in the following subsections. 

 

MLE of 𝑹 = 𝑷(𝒀 < 𝑋) with Odd SetSize Based on PRSS Data: 

The main aim in this subsection is to obtain MLE of 𝑅 for Burr XII distribution based onPRSSin case of 

odd set size. To derive the MLE of R, firstly the MLE of unknown parameters 𝑏 and 𝑎 will be obtained. 

Let 𝑛1 and 𝑛2 be the nearest integer values of 𝑂(𝑛 + 1) and 𝑡(𝑛 + 1) respectively, where 0 < 𝑂 ≤ 0.5  and 

𝑡 = 1 − 𝑂.  

Then for odd set size, the PRSS is the set: 𝑋𝑖 𝑛1 𝑠
, 𝑖 = 1, … , 𝑔 − 1; 𝑠 = 1,… , 𝑟 ∪  𝑋𝑖 𝑛2 𝑠

, 𝑖 = 𝑔,… , 𝑛 − 1; 𝑠 =
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1,… , 𝑟 ∪  𝑋𝑛 𝑔 𝑠 , 𝑠 = 1,2, … , 𝑟 ,where𝑔 = 𝑛 + 1 2 .Let 𝑋1 𝑛1 𝑠
, … , 𝑋𝑔−1 𝑛1 𝑠

, 𝑋𝑔 𝑛2 𝑠
, … , 𝑋𝑛−1 𝑛2 𝑠

, 𝑋𝑛 𝑔 𝑠 is a 

PRSS from Burr (𝑐, 𝑏) with sample size 𝑝 = 𝑛𝑟, where 𝑛 is the set size and 𝑟 is the number of cycles. Then 

using Equation (8) the PDFs of  𝑋𝑖 𝑛1 𝑠 and 𝑋𝑖 𝑛2 𝑠 will be as follows: 

 

𝑓𝑛1
 𝑥𝑖(𝑛1)𝑠 =

𝑛!

 𝑛−𝑛1 ! 𝑛1−1 !
𝑏𝑐𝑥𝑖(𝑛1)𝑠

𝑐−1  1 + 𝑥𝑖(𝑛1)𝑠
𝑐  

−[𝑏 𝑛−𝑛1+1 +1]
(1 −  1 + 𝑥𝑖(𝑛1)𝑠

𝑐  
−𝑏

)𝑛1−1,      𝑥𝑖(𝑛1)𝑠 > 0,(26) 

and 

𝑓𝑛2
 𝑥𝑖(𝑛2)𝑠 =

𝑛!

 𝑛−𝑛2 ! 𝑛2−1 !
𝑏𝑐𝑥𝑖(𝑛2)𝑠

𝑐−1  1 + 𝑥𝑖(𝑛2)𝑠
𝑐  

−[𝑏 𝑛−𝑛2+1 +1]
(1 −  1 + 𝑥𝑖(𝑛2)𝑠

𝑐  
−𝑏

)𝑛2−1.      𝑥𝑖(𝑛2 )𝑠
> 0.(27) 

 

While the PDF of 𝑋𝑖 𝑔 𝑠 was defined in Equation (12). 

Similarly, let 𝑚1 and 𝑚2 be the nearest integer values of 𝑂(𝑚 + 1) and 𝑡(𝑚 + 1) respectively. Then for 

odd set size, the PRSS is the set  𝑌𝑗  𝑚1 𝑠 , 𝑗 = 1, . . , 𝑕 − 1; 𝑠 = 1,… , 𝑟 ∪  𝑌𝑗  𝑚2 𝑠 , 𝑗 = 𝑕, . . , 𝑚 − 1; 𝑠 = 1,… , 𝑟 ∪

 𝑌𝑚 𝑕 𝑠 , 𝑠 = 1,2,… , 𝑟 ,where 𝑕 = 𝑚 + 1 2 .Let 𝑌1 𝑚1 𝑠 , … , 𝑌𝑕−1 𝑚1 𝑠 , 𝑌𝑕 𝑚2 𝑠 , … , 𝑌𝑚−1 𝑚2 𝑠 , 𝑌𝑚 𝑕 𝑠 is a PRSS 

from Burr (𝑐, 𝑎) with sample size 𝑞 = 𝑚𝑟, where 𝑚 is the set size and 𝑟 is the number of cycles. Then using 

Equation (9) the PDFs of  𝑌𝑗  𝑚1 𝑠
 and 𝑌𝑗  𝑚2 𝑠

 will be as follows: 

 

𝑓𝑚1
 𝑦𝑗 (𝑚1)𝑠 =

𝑚!

 𝑚−𝑚1 ! 𝑚1−1 !
𝑎𝑐𝑦𝑗 (𝑚1)𝑠

𝑐−1  1 + 𝑦𝑗 (𝑚1)𝑠
𝑐  

−[𝑎 𝑚−𝑚1+1 +1]
(1 −  1 + 𝑦𝑗 (𝑚1)𝑠

𝑐  
−𝑎

)𝑚1−1,   𝑦𝑗 (𝑚1)𝑠 >

0 ,(28) 

and 

𝑓𝑚2
 𝑦𝑗 (𝑚2)𝑠 =

𝑚!

 𝑚−𝑚2 ! 𝑚2−1 !
𝑎𝑐𝑦𝑗 (𝑚2)𝑠

𝑐−1  1 + 𝑦𝑗 (𝑚2)𝑠
𝑐  

−[𝑎 𝑚−𝑚2+1 +1]
(1 −  1 + 𝑦𝑗 (𝑚2)𝑠

𝑐  
−𝑎

)𝑚2−1, 𝑦𝑗 (𝑚2)𝑠 >

0.(29) 

 

The PDF of 𝑌𝑗  𝑕 𝑠 was defined in Equation (13). 

 

The likelihood function of theobserved PRSS in case of oddset size denoted by 𝐿 𝑃𝑅𝑆𝑆1is given by: 

 

𝐿 𝑃𝑅𝑆𝑆1 =   𝑓𝑔 𝑋𝑛 𝑔 𝑠 𝑓𝑕 𝑌𝑚 𝑕 𝑠    𝑓𝑛1
 𝑥𝑖(𝑛1)𝑠  𝑓𝑛2

 𝑥𝑖(𝑛2)𝑠  𝑓𝑚1
 𝑦𝑗 (𝑚1)𝑠  𝑓𝑚2

 𝑦𝑗 (𝑚2)𝑠 

𝑚−1

𝑗=𝑕

𝑕−1

𝑗=1

𝑛−1

𝑖=𝑔

𝑔−1

𝑖=1

 .

𝑟

𝑠=1

 

The log-likelihood function of 𝐿 𝑃𝑅𝑆𝑆1denoted by 𝑙 𝑃𝑅𝑆𝑆1 will be as follows: 

 

𝑙 𝑃𝑅𝑆𝑆1 = 𝑙𝑛𝐷6 + 𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 +  𝑐 − 1    𝑙𝑛 𝑥𝑖 𝑛1 𝑠 

𝑔−1

𝑖=1

+  𝑙𝑛 𝑥𝑖(𝑛2)𝑠 

𝑛−1

𝑖=𝑔

+ ln 𝑥𝑛 𝑔 𝑠  
𝑟

𝑠=1

 

            + 𝑙𝑛 𝑦𝑗 (𝑚1)𝑠 +   𝑙𝑛 𝑦𝑗 (𝑚2)𝑠 

𝑚−1

𝑗=𝑕

+ ln⁡(𝑦𝑚 𝑕 𝑠) −   𝑏 𝑛 − 𝑛1 + 1 + 1  𝑙𝑛

𝑔−1

𝑖=1

 
𝑟

𝑠=1

 1 + 𝑥𝑖 𝑛1 𝑠
𝑐  

𝑕−1

𝑗=1

 

            + 𝑏 𝑛 − 𝑛2 + 1 + 1  ln 1 + 𝑥𝑖 𝑛2 𝑠
𝑐  +  𝑏𝑔 + 1 𝑙𝑛 1 + 𝑥𝑛 𝑔 𝑠

𝑐  +  𝑎 𝑚 −𝑚1 + 1 + 1 

𝑛−1

𝑖=𝑔

 

            ×  𝑙𝑛 1 + 𝑦𝑗 (𝑚1)𝑠
𝑐  

𝑕−1

𝑗=1

+  𝑎 𝑚 −𝑚2 + 1 + 1   𝑙𝑛 1 + 𝑦𝑗 (𝑚2)𝑠
𝑐  +  𝑎𝑕 + 1 𝑙𝑛 1 + 𝑦𝑚 𝑕 𝑠

𝑐  

𝑚−1

𝑗=𝑕

  

          +   𝑛1 − 1  
𝑟

𝑠=1

 𝑙𝑛

𝑔−1

𝑖=1

 1 −  1 + 𝑥𝑖 𝑛1 𝑠
𝑐  

−𝑏
  + (𝑚1 − 1) 𝑙𝑛 1 −  1 + 𝑦𝑗 (𝑚1)𝑠

𝑐  
−𝑎
 

𝑕−1

𝑗=1

 

 

       + 𝑛2 − 1  𝑙𝑛

𝑛−1

𝑖=𝑔

 1 −  1 + 𝑥𝑖 𝑛2 𝑠
𝑐  

−𝑏
 + (𝑚2 − 1)  𝑙𝑛 1 −  1 + 𝑦𝑗 (𝑚2)𝑠

𝑐  
−𝑎
 

𝑚−1

𝑗=𝑕

 

 

       + 𝑔 − 1 𝑙𝑛  1 −  1 + 𝑥𝑛 𝑔 𝑠
𝑐  

−𝑏
 +   𝑕 − 1 𝑙𝑛 1 −  1 + 𝑦𝑚(𝑕)𝑠

𝑐  
−𝑎
  , 

 

where𝐷6 is a constant. The first partial derivatives of b and a are given by: 
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𝜕𝑙 𝑃𝑅𝑆𝑆1

𝜕𝑏
=

𝑝

𝑏 1
−   𝑛 − 𝑛1 + 1  ln 1 + 𝑥𝑖 𝑛1 𝑠

𝑐  

𝑔−1

𝑖=1

+  𝑛 − 𝑛2 + 1   𝑙𝑛 1 + 𝑥𝑖 𝑛2 𝑠
𝑐  +

𝑛−1

𝑖=𝑔

𝑔𝑙𝑛 1 + 𝑥𝑛 𝑔 𝑠
𝑐    

𝑟

𝑠=1

 

 

+   𝑛1 − 1  
𝑙𝑛 1 + 𝑥𝑖 𝑛1 𝑠

𝑐  

 1 + 𝑥𝑖 𝑛1 𝑠
𝑐  

𝑏 1
− 1

+  𝑛2 − 1  
𝑙𝑛 1 + 𝑥𝑖 𝑛2 𝑠

𝑐  

 1 + 𝑥𝑖 𝑛2 𝑠
𝑐  

𝑏 1
− 1

+

𝑛−1

𝑖=𝑔

 𝑔 − 1  
𝑙𝑛 1 + 𝑥𝑛 𝑔 𝑠

𝑐  

 1 + 𝑥𝑛 𝑔 𝑠
𝑐  

𝑏 1
− 1

 = 0

𝑔−1

𝑖=1

 
𝑟

𝑠=1

, 

 (30) 
 

𝜕𝑙 𝑃𝑅𝑆𝑆1

𝜕𝑎
=

𝑞

𝑎 1
−   𝑚 −𝑚1 + 1  ln 1 + 𝑦𝑗  𝑚1 𝑠

𝑐  

𝑕−1

𝑗=1

+  𝑚 −𝑚2 + 1  𝑙𝑛 1 + 𝑦𝑗  𝑚2 𝑠
𝑐  +

𝑚−1

 𝑗=𝑕

 
𝑟

𝑠=1

 

 𝑕𝑙𝑛 1 + 𝑦𝑚 𝑕 𝑠
𝑐  +    𝑚1 − 1  

ln 1+𝑦𝑗  𝑚1 𝑠
𝑐  

 1+𝑦𝑗  𝑚1 𝑠
𝑐  

𝑎 1
−1

+  𝑚2 − 1  
𝑙𝑛 1+𝑦𝑗  𝑚2 𝑠

𝑐  

 1+𝑦𝑗  𝑚2 𝑠
𝑐  

𝑎 1
−1

𝑚−1
𝑗=𝑕

𝑕−1
𝑗=1 +  (𝑕−1)𝑙𝑛 1+𝑦𝑚 𝑕 𝑠

𝑐  

 1+𝑦𝑚 𝑕 𝑠
𝑐  

𝑎 1
−1

  𝑟
𝑠=1 = 0      

(31) 

MLEs of b and a denoted by 𝑏 1 and 𝑎 1can be found by solving the system of Equations (30) and (31). 

Although the proposed estimators cannot be expressed in closed forms, they can easily be obtained through the 

use of an appropriate numerical technique. Then 𝑅 𝑃𝑅𝑆𝑆1 will be obtained by substituting 𝑏 1 and𝑎 1in Equation 

(3). 

 

MLE of 𝑹 = 𝑷(𝒀 < 𝑋) with Even Set Size Based on PRSSData: 

To derive the MLE of 𝑅 = 𝑃(𝑌 < 𝑋) for Burr XII distribution based onPRSS sampling scheme in case of 

even set size, firstly the MLEs of unknown parameters 𝑏 and 𝑎 will be obtained. 

Let𝑛1, 𝑛2, 𝑂 and 𝑡 be defined, as in previous subsection, then for even set size, the PRSS is the set: 

 𝑋𝑖 𝑛1 𝑠 , 𝑖 = 1, … , 𝑢; 𝑠 = 1,… , 𝑟 ∪  𝑋𝑖 𝑛2 𝑠 , 𝑖 = 𝑢 + 1,… , 𝑛; 𝑠 = 1,… , 𝑟 , where 𝑢 = 𝑛 2 . 

Let 𝑋1 𝑛1 𝑠 , … , 𝑋𝑢 𝑛1 𝑠 ,  𝑋𝑢+1 𝑛2 𝑠 , … , 𝑋𝑛 𝑛2 𝑠isPRSS from Burr (𝑐, 𝑏) with sample size 𝑝 = 𝑛𝑟, where 𝑛 is 

the set size, 𝑟 is the number of cycleswith PDFs(26) and (27). 

Similarly, let the set  𝑌𝑗  𝑚1 𝑠 , 𝑗 = 1, . . , 𝑣; 𝑠 = 1,… , 𝑟 ∪  𝑌𝑗  𝑚2 𝑠 , 𝑗 = 𝑣 + 1, . . , 𝑚; 𝑠 = 1,… , 𝑟 is the PRSS 

for even set size, where 𝑣 = 𝑚 2 .Let 𝑌1 𝑚1 𝑠 , … , 𝑌𝑣 𝑚1 𝑠 , 𝑌𝑣+1 𝑚2 𝑠 , … , 𝑌𝑚 𝑚2 𝑠 is a PRSS from Burr (𝑐, 𝑎) with 

sample size 𝑞 = 𝑚𝑟, where 𝑚 is the set size ,𝑟 is the number of cycleswithPDFs (28) and (29). 

 

The likelihood function of observedPRSS in case of even set size denoted by 𝐿 𝑃𝑅𝑆𝑆2is given by: 

 

𝐿 𝑃𝑅𝑆𝑆2 =    𝑓𝑛1
 𝑥𝑖(𝑛1)𝑠  𝑓𝑛2

 𝑥𝑖(𝑛2)𝑠  𝑓𝑚1
 𝑦𝑗 (𝑚1)𝑠  𝑓𝑚2

 𝑦𝑗 (𝑚2)𝑠 

𝑚

𝑗=𝑣+1

𝑣

𝑗=1

𝑛

𝑖=𝑢+1

𝑢

𝑖=1

 .

𝑟

𝑠=1

 

 

The log-likelihood function of PRSS data in case of even set size denoted by 𝑙 𝑃𝑅𝑆𝑆2 is given by: 

 

𝑙 𝑃𝑅𝑆𝑆2 = 𝑙𝑛𝐷7 + 𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 +  𝑐 − 1    𝑙𝑛

𝑢

𝑖=1

 
𝑟

𝑠=1

𝑥𝑖 𝑛1 𝑠 +  𝑙𝑛𝑥𝑖(𝑛2)𝑠

𝑛

𝑖=𝑢+1

+  𝑙𝑛

𝑣

𝑗=1

𝑦𝑗 (𝑚1)𝑠 

 

+   𝑙𝑛

𝑚

𝑗=𝑣+1

𝑦𝑗 (𝑚2)𝑠 +    𝑛1 − 1  𝑙𝑛  1 −  1 + 𝑥𝑖 𝑛1 𝑠
𝑐  

−𝑏
 +  𝑛2 − 1  𝑙𝑛  1 −  1 + 𝑥𝑖 𝑛2 𝑠

𝑐  
−𝑏
 

𝑛

𝑖=𝑢+1

𝑢

𝑖=1

 
𝑟

𝑠=1

 

 

+ 𝑚1 − 1  𝑙𝑛 1 −  1 + 𝑦𝑗  𝑚1 𝑠
𝑐  

−𝑎
 

𝑣

𝑗=1

+  𝑚2 − 1   𝑙𝑛 1 −  1 + 𝑦𝑗 (𝑚2)𝑠
𝑐  

−𝑎
 

𝑚

𝑗=𝑣+1

  

 

−   𝑏 𝑛 − 𝑛1 + 1 + 1  𝑙𝑛 1 + 𝑥𝑖 𝑛1 𝑠
𝑐  

𝑢

𝑖=1

 
𝑟

𝑠=1

+  𝑏 𝑛 − 𝑛2 + 1 + 1  𝑙𝑛 1 + 𝑥𝑖 𝑛2 𝑠
𝑐  

𝑛

𝑖=𝑢+1

 

 

+ 𝑎 𝑚 −𝑚1 + 1 + 1  𝑙𝑛

𝑣

𝑗=1

 1 + 𝑦𝑗  𝑚1 𝑠
𝑐  +  𝑎 𝑚 − 𝑚2 + 1 + 1   ln 1 + 𝑦𝑗  𝑚2 𝑠

𝑐  

𝑚

𝑗=𝑣+1

 , 
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where𝐷7is a constant. The first partial derivatives of log-likelihood function with respect to 𝑏 and 𝑎 are 

given by: 
 

𝜕𝑙 𝑃𝑅𝑆𝑆2

𝜕𝑏
=

𝑝

𝑏 2
+   (𝑛1 − 1) 

𝑙𝑛 1 + 𝑥𝑖 𝑛1 𝑠
𝑐  

 1 + 𝑥𝑖 𝑛1 𝑠
𝑐  

𝑏 2
− 1

+ (𝑛2 − 1)   
𝑙𝑛 1 + 𝑥𝑖 𝑛2 𝑠

𝑐  

 1 + 𝑥𝑖 𝑛2 𝑠
𝑐  

𝑏 2
− 1

 

𝑛

𝑖=𝑢+1

𝑢

𝑖=1

 
𝑟

𝑠=1

 

−   𝑛 − 𝑛1 + 1  𝑙𝑛 1 + 𝑥𝑖 𝑛1 𝑠
𝑐  𝑢

𝑖=1  +  𝑛 − 𝑛2 + 1  𝑙𝑛 1 + 𝑥𝑖 𝑛2 𝑠
𝑐  𝑛

𝑖=𝑢+1  𝑟
𝑠=1 = 0,                 (32) 

𝜕𝑙 𝑃𝑅𝑆𝑆2

𝜕𝑎
=

𝑞

𝑎 2
+   (𝑚1 − 1) 

𝑙𝑛 1 + 𝑦𝑗  𝑚1 𝑠
𝑐  

 1 + 𝑦𝑗  𝑚1 𝑠
𝑐  

𝑎 2
− 1

+ (𝑚2 − 1)  
𝑙𝑛 1 + 𝑦𝑗  𝑚2 𝑠

𝑐  

 1 + 𝑦𝑗  𝑚2 𝑠
𝑐  

𝑎 2
− 1

𝑚

𝑗=𝑣+1

𝑣

𝑗=1

 

𝑟

𝑠=1

 

 

−   𝑚 −𝑚1 + 1  𝑙𝑛 1 + 𝑦𝑗  𝑚1 𝑠
𝑐  𝑣

𝑗=1 +  𝑚 −𝑚2 + 1  𝑙𝑛 1 + 𝑦𝑗  𝑚2 𝑠
𝑐  𝑚

𝑗=𝑣+1  𝑟
𝑠=1 = 0.  (33) 

 

Equations (32) and (33) do not have explicit solutions and they have to be obtained numerically.Let the 

MLEs of 𝑏 and 𝑎 are denoted by 𝑏 2 and 𝑎 2 respectively. Once 𝑏 2 and 𝑎 2 are obtained, the MLE of 𝑅, say 

𝑅 𝑃𝑅𝑆𝑆2, can be obtained by substituting 𝑏 2 and 𝑎 2  in Equation (3). 

 

Numerical Illustration: 

In this study, a computer simulation is conducted to study the efficiency of estimating𝑅, using SRS, RSS, 

MRSS, ERSS and PRSS techniques for Burr XII distribution. Without loss of generality the common shape 

parameter 𝑐 will be assumed to be one in all the experiments. Two cases will be considered separately to draw 

inference on 𝑅. The first case (i) for odd set size and the second case (ii) for even set size. The proposed 

estimators depend on the two cases will be calculated. Comparison between the proposed estimators for 𝑅 using 

MRSS, ERSS and PRSS with known estimators based on SRS and RSS approaches will be carried out.  

1000 random samplesfrom Burr (𝑐, 𝑏) and Burr (𝑐, 𝑎) distributionsare generated with sample sizes 𝑝 = 𝑛𝑟 and 

𝑞 = 𝑚𝑟 respectively, where𝑛 = 3,4,5,6,7,8 and 𝑚 = 3,4,5,6,7,8 and number of cycles 𝑟 = 10.  The ratio 𝜌 =
𝑏

𝑎
 

is selected as 0.1, 0.5,1,2 and 6, then MSEs and efficiencies of all estimators of 𝑅 based on SRS, RSS, MRSS, 

ERSS and PRSS will be computed. 

The simulation results are summarized in Tables 1 − 4 and represented through Figures (1 − 5). The 

performance of the estimated parameters is evaluated using MSEs and the efficiencies criteria.The results of 

MSEs for different estimators 𝑅 𝑀𝐿𝐸 , 𝑅 𝑈𝑀𝑉𝑈𝐸 , 𝑅 𝑀𝐿𝐸 , 𝑅𝑀𝑅𝑆𝑆1
∗ , 𝑅𝑀𝑅𝑆𝑆2

∗ , 𝑅𝐸𝑅𝑆𝑆1
∗∗ ,𝑅𝐸𝑅𝑆𝑆2

∗∗ , 𝑅 𝑃𝑅𝑆𝑆1and 𝑅 𝑃𝑅𝑆𝑆2are 

listedin Tables 1 − 2 . Also, the results of the efficiencies for different estimators are reported in Tables 

(3 − 4). 
 

Table 1: MSEs of the estimators 𝑅 𝑀𝐿𝐸 , 𝑅 𝑈𝑀𝑉𝑈𝐸 , 𝑅 𝑀𝐿𝐸 , 𝑅𝑀𝑅𝑆𝑆1
∗ , 𝑅𝐸𝑅𝑆𝑆1

∗∗ and𝑅 𝑃𝑅𝑆𝑆1for odd set size. 

𝜌 (𝑛,𝑚) 𝑅 𝑀𝐿𝐸  𝑅 𝑈𝑀𝑉𝑈𝐸  𝑅 𝑀𝐿𝐸  𝑅𝑀𝑅𝑆𝑆1
∗  𝑅𝐸𝑅𝑆𝑆1

∗∗  
𝑅 𝑃𝑅𝑆𝑆1 

20% 30% 40% 

0.1 

(3,3) 0.000503 0.000486 0.000263 0.000240 0.000268 0.000268 0.000268 0.000240 

(5,5) 0.000274 0.000269 0.000108 0.000103 0.000108 0.000108 0.000102 0.000102 

(7,7) 0.000195 0.000192 0.000052 0.000052 0.000056 0.000050 0.000050 0.000047 

0.5 

(3,3) 0.003285 0.003436 0.001806 0.001665 0.001840 0.001840 0.001840 0.001665 

(5,5) 0.001917 0.001940 0.000764 0.000727 0.000767 0.000767 0.000723 0.000723 

(7,7) 0.001367 0.001368 0.000373 0.000372 0.000400 0.000362 0.000362 0.000345 

1 

(3,3) 0.004047 0.004302 0.002283 0.002093 0.002297 0.002297 0.002297 0.002093 

(5,5) 0.002427 0.002470 0.000963 0.000927 0.000965 0.000965 0.000908 0.000908 

(7,7) 0.001724 0.001748 0.000471 0.000460 0.000506 0.000458 0.000458 0.000438 

2 

(3,3) 0.003216 0.003291 0.001823 0.001668 0.001823 0.001823 0.001823 0.001668 

(5,5) 0.001954 0.001972 0.000763 0.000722 0.000762 0.000762 0.000717 0.000717 

(7,7) 0.001358 0.001368 0.000427 0.000364 0.000394 0.000363 0.000363 0.000348 

6 

(3,3) 0.001024 0.001010 0.000573 0.000521 0.000570 0.000570 0.000570 0.000521 

(5,5) 0.000620 0.000607 0.000235 0.000225 0.000233 0.000233 0.000219 0.000219 

(7,7) 0.000432 0.000426 0.000122 0.000112 0.000122 0.000111 0.000111 0.000104 

 
 

Table 2: MSEs of the estimators R MLE , R UMVUE , R MLE , RMRSS 2
∗ , RERSS 2

∗∗ and𝑅 𝑃𝑅𝑆𝑆2for even set size. 

𝜌 (𝑛,𝑚) 𝑅 𝑀𝐿𝐸  𝑅 𝑈𝑀𝑉𝑈𝐸  𝑅 𝑀𝐿𝐸  𝑅𝑀𝑅𝑆𝑆2
∗  𝑅𝐸𝑅𝑆𝑆2

∗∗  
𝑅 𝑃𝑅𝑆𝑆2 

20% 30% 40% 

0.1 

(4,4) 0.000352 0.000339 0.000153 0.000147 0.000157 0.000157 0.000133 0.000147 

(6,6) 0.000229 0.000225 0.000079 0.000072 0.000094 0.000094 0.000075 0.000072 

(8,8) 0.000185 0.000181 0.000044 0.000044 0.000050 0.000046 0.000044 0.000044 

0.5 
(4,4) 0.002372 0.002403 0.001073 0.001102 0.001231 0.001231 0.000944 0.001102 

(6,6) 0.001595 0.001614 0.000570 0.000515 0.000666 0.000666 0.000537 0.000515 
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(8,8) 0.001287 0.001295 0.000319 0.000318 0.000420 0.000329 0.000316 0.000318 

1 

(4,4) 0.002938 0.003012 0.001346 0.001285 0.001552 0.001552 0.001193 0.001285 

(6,6) 0.002006 0.002040 0.000701 0.000650 0.000832 0.000832 0.000679 0.000650 

(8,8) 0.001610 0.001631 0.000405 0.000401 0.000530 0.000413 0.000399 0.000401 

2 

(4,4) 0.002321 0.002364 0.001066 0.001013 0.001236 0.001236 0.000949 0.001013 

(6,6) 0.001601 0.001614 0.000574 0.000515 0.000653 0.000653 0.000538 0.000515 

(8,8) 0.001274 0.001286 0.000321 0.000317 0.000420 0.000325 0.000316 0.000317 

6 

(4,4) 0.000723 0.000714 0.000328 0.000310 0.000384 0.000384 0.000294 0.000310 

(6,6) 0.000500 0.000492 0.000160 0.000157 0.000198 0.000198 0.000165 0.000157 

(8,8) 0.000393 0.000391 0.000098 0.000096 0.000120 0.000098 0.000096 0.000096 
 

 

 
 

Fig. 1: MSEs of the estimators R MLE , R UMVUE , R MLE , RMRSS 1
∗ , RERSS 1

∗∗ and 𝑅 𝑃𝑅𝑆𝑆1for odd set size at 𝜌 = 1 
 

 
 

Fig. 2: MSEs of the estimators R MLE , R UMVUE , R MLE , RMRSS 2
∗ , RERSS 2

∗∗ and𝑅 𝑃𝑅𝑆𝑆2for even set size at 𝜌 = 1. 
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Fig. 3: MSEs of the estimators R MLE , R UMVUE , R MLE , RMRSS 1
∗ , RERSS 1

∗∗ and𝑅 𝑃𝑅𝑆𝑆1at  𝑛,𝑚 =  3,3 . 
 

Depending on MSEs of different estimators, the following conclusions can be observed: 

1. MSEs of all estimators𝑅 𝑀𝐿𝐸 , 𝑅 𝑈𝑀𝑉𝑈𝐸 , 𝑅 𝑀𝐿𝐸 , 𝑅𝑀𝑅𝑆𝑆1,
∗ 𝑅𝑀𝑅𝑆𝑆2

∗ , 𝑅𝐸𝑅𝑆𝑆1
∗∗ ,𝑅𝐸𝑅𝑆𝑆2

∗∗ , 𝑅 𝑃𝑅𝑆𝑆1and 𝑅 𝑃𝑅𝑆𝑆2 decrease as 

the set size increases in all cases. 

2. Based on SRS data, MSEs of 𝑅 𝑀𝐿𝐸are greater than MSEs of 𝑅 𝑈𝑀𝑉𝑈𝐸 at 𝜌 = 0.1 and 6, otherwise MSEs of 

𝑅 𝑀𝐿𝐸are smaller than MSEs of 𝑅 𝑈𝑀𝑉𝑈𝐸  in all cases.  

3. MSEs of𝑅 𝑀𝐿𝐸 , 𝑅𝑀𝑅𝑆𝑆1,
∗ 𝑅𝑀𝑅𝑆𝑆2

∗ , 𝑅𝐸𝑅𝑆𝑆1
∗∗ ,𝑅𝐸𝑅𝑆𝑆2

∗∗ , 𝑅 𝑃𝑅𝑆𝑆1and𝑅 𝑃𝑅𝑆𝑆2  based on RSS, MRSS, ERSS and PRSS 

data are smaller than MSEs of  𝑅 𝑀𝐿𝐸  and 𝑅 𝑈𝑀𝑉𝑈𝐸  based on SRS data in all cases. 

4.    𝑅𝑀𝑅𝑆𝑆1  
∗ and 𝑅𝑀𝑅𝑆𝑆2  

∗ based on MRSS have the smallest MSEs in all cases comparing with the other 

estimators. However, in almost all cases, 𝑅 𝑃𝑅𝑆𝑆1 for 𝑂 = 0.40 has the smallest MSEsin case of odd set size (see 

for example Figure(1)) and 𝑅 𝑃𝑅𝑆𝑆2for 𝑂 = 0.30 has the smallest MSEs in case of even set size (see for example 

Figure(2)). 

5. MSEs of all estimators 𝑅 𝑀𝐿𝐸 , 𝑅 𝑈𝑀𝑉𝑈𝐸 , 𝑅 𝑀𝐿𝐸 , 𝑅𝑀𝑅𝑆𝑆1
∗ , 𝑅𝑀𝑅𝑆𝑆2

∗ , 𝑅𝐸𝑅𝑆𝑆1
∗∗ , 𝑅𝐸𝑅𝑆𝑆2

∗∗ , 𝑅 𝑃𝑅𝑆𝑆1 and𝑅 𝑃𝑅𝑆𝑆2 increase 

as the value of 𝜌 increases up to 𝜌 = 1 then MSEs decrease as the value of  𝜌 increases in all cases (see for 

example Figure (3)). 

 

Table 3: Efficiencies of the estimators R UMVUE , R MLE , RMRSS 1
∗ , RERSS 1

∗∗ and𝑅 𝑃𝑅𝑆𝑆1with respect to R MLE  for odd set size. 

𝜌 (𝑛,𝑚) 𝑅 𝑈𝑀𝑉𝑈𝐸  𝑅 𝑀𝐿𝐸  𝑅𝑀𝑅𝑆𝑆1
∗  𝑅𝐸𝑅𝑆𝑆1

∗∗  
𝑅 𝑃𝑅𝑆𝑆1 

20% 30% 40% 

0.1 

(3,3) 1.038 1.912 2.094 1.875 1.875 1.875 2.094 

(5,5) 1.018 2.636 2.639 2.524 2.524 2.674 2.674 

(7,7) 1.015 3.743 3.726 3.491 3.878 3.878 4.074 

0.5 

(3,3) 0.978 1.806 1.973 1.785 1.785 1.785 1.973 

(5,5) 0.948 2.506 2.637 2.498 2.498 2.651 2.651 

(7,7) 0.999 3.659 3.668 3.417 3.776 3.776 3.954 

1 

(3,3) 0.967 1.772 1.934 1.762 1.762 1.762 1.934 

(5,5) 0.980 2.519 2.617 2.515 2.515 2.673 2.673 

(7,7) 0.986 3.654 3.679 3.405 3.762 3.762 3.931 

2 

(3,3) 0.997 1.764 1.928 1.764 1.764 1.764 1.928 

(5,5) 0.991 2.559 2.706 2.562 2.562 2.726 2.726 

(7,7) 0.993 3.869 3.731 3.439 3.763 3.763 3.953 

6 

(3,3) 1.015 1.787 1.963 1.796 1.796 1.796 1.963 

(5,5) 1.022 2.640 2.746 2.655 2.655 2.828 2.828 

(7,7) 1.014 3.780 3.844 3.530 3.884 3.884 4.036 

 

 

 

 

Table 4: Efficiencies of the estimators R UMVUE , R MLE , RMRSS 2
∗ , RERSS 2

∗∗ and𝑅 𝑃𝑅𝑆𝑆2 with respect to R MLE  for even set size 

0
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𝜌 (𝑛,𝑚) 𝑅 𝑈𝑀𝑉𝑈𝐸  𝑅 𝑀𝐿𝐸  𝑅𝑀𝑅𝑆𝑆2
∗  𝑅𝐸𝑅𝑆𝑆2

∗∗  
𝑅 𝑃𝑅𝑆𝑆2 

20% 30% 40% 

0.1 

(4,4) 1.039 2.303 2.395 2.014 2.014 2.646 2.395 

(6,6) 1.017 2.871 3.169 2.411 2.411 3.040 3.169 

(8,8) 1.020 4.163 4.165 3.089 3.986 4.188 4.165 

0.5 

(4,4) 0.987 2.211 2.309 1.926 1.926 2.510 2.309 

(6,6) 0.988 2.794 3.094 2.394 2.394 2.966 3.094 

(8,8) 0.993 4.022 4.042 3.018 3.904 4.064 4.042 

1 

(4,4) 0.975 2.182 2.287 1.893 1.893 2.462 2.287 

(6,6) 0.984 2.776 3.084 2.410 2.410 2.953 3.084 

(8,8) 0.988 3.974 4.006 3.002 3.892 4.028 4.006 

2 

(4,4) 0.982 2.177 2.292 1.878 1.878 2.445 2.292 

(6,6) 0.992 2.785 3.107 2.448 2.448 2.971 3.107 

(8,8) 0.991 3.962 4.009 3.011 3.916 4.028 4.009 

6 

(4,4) 1.013 2.201 2.328 1.884 1.884 2.640 2.328 

(6,6) 1.017 2.829 3.173 2.520 2.520 3.027 3.173 

(8,8) 1.007 3.996 4.062 3.055 3.991 4.077 4.062 

 

 

 
 

Fig. 4: The efficiencies of the estimators R UMVUE , R MLE , RMRSS 1
∗ , RERSS 1

∗∗ and 𝑅 𝑃𝑅𝑆𝑆1with respect to R MLE for odd 

set size at 𝜌 = 1. 
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Fig. 5: The efficiencies of the estimators R UMVUE , R MLE , RMRSS 2
∗ , RERSS 2

∗∗ and 𝑅 𝑃𝑅𝑆𝑆2with respect to R MLE for 

even set size at 𝜌 = 1. 

 

Considering the efficiencies of estimators, the following conclusions can be observed: 
 

1. The efficiencies of 𝑅 𝑈𝑀𝑉𝑈𝐸  with respect to 𝑅 𝑀𝐿𝐸  are greater than one in case of 𝜌 = 0.1 and 6, otherwise 

the efficiencies of 𝑅 𝑈𝑀𝑉𝑈𝐸  with respect to 𝑅 𝑀𝐿𝐸  are less than one in all cases.  

2. The estimators 𝑅 𝑀𝐿𝐸 , 𝑅𝑀𝑅𝑆𝑆1
∗ , 𝑅𝑀𝑅𝑆𝑆2

∗ , 𝑅𝐸𝑅𝑆𝑆1
∗∗ , 𝑅𝐸𝑅𝑆𝑆2

∗∗ , 𝑅 𝑃𝑅𝑆𝑆1 and𝑅 𝑃𝑅𝑆𝑆2 based on RSS and its 

modifications are more efficient than the estimators 𝑅 𝑀𝐿𝐸 , 𝑅 𝑈𝑀𝑉𝑈𝐸  based on SRS data in all cases.   

3. The efficiencies of all estimators 𝑅 𝑈𝑀𝑉𝑈𝐸 , 𝑅 𝑀𝐿𝐸 , 𝑅𝑀𝑅𝑆𝑆1
∗ , 𝑅𝑀𝑅𝑆𝑆2

∗ , 𝑅𝐸𝑅𝑆𝑆1
∗∗ , 𝑅𝐸𝑅𝑆𝑆2

∗∗ , 𝑅 𝑃𝑅𝑆𝑆1 and𝑅 𝑃𝑅𝑆𝑆2increase 

as 𝑛 and 𝑚 increase for the same value of 𝜌 in almost all cases (see for example Figures (4-5)). 
4. 𝑅𝑀𝑅𝑆𝑆1  

∗ and𝑅𝑀𝑅𝑆𝑆2  
∗ in case of odd and even set sizes respectively are more efficient than 

𝑅 𝑀𝐿𝐸 , 𝑅𝐸𝑅𝑆𝑆1
∗∗ , 𝑅𝐸𝑅𝑆𝑆2

∗∗ and𝑅 𝑈𝑀𝑉𝑈𝐸  respectively in all cases. However in almost all cases, 𝑅 𝑃𝑅𝑆𝑆1 is more 

efficient than 𝑅𝑀𝑅𝑆𝑆1 
∗ in case of odd set size for 𝑂 = 0.40 (see for example Figure (4)) and  𝑅 𝑃𝑅𝑆𝑆2 is more 

efficient than 𝑅𝑀𝑅𝑆𝑆2  
∗ for 𝑂 = 0.30 in case of even set size (see for example Figure (5)).  

 

Conclusions: 

In this article, the estimation of 𝑅 = P(Y < 𝑋)when strength𝑋 and stress 𝑌are two independent variables of 

BurrType XII distributionis studied. Maximum likelihood estimators of 𝑅 are compared under different 

sampling schemes. The selected sampling schemes are SRS, RSS, MRSS, ERSS and PRSS.It is observed that, 

MSEs of estimators based on SRS data are greater than the corresponding MSEs based on ERSS, RSS, MRSS 

and PRSS data respectively.  

Estimatorsof𝑅based on MRSS have the smallest MSEs in all cases comparing with the estimators based on 

RSS, ERSS and SRS data respectively. However, in almost all cases, estimator of 𝑅 underPRSS for 

 𝑂 = 0.40 has the smallest MSEsin the case of odd set size. While,the estimator of 𝑅under PRSSfor 

𝑂 = 0.30 has the smallest MSEs in case of even set size.Also, it can be observed that, MSEs of all estimators 

decrease as the set size increases in all cases. 

It is clear from simulation study that the efficiency of all estimators increases as the set size increases in 

almost all cases. The efficiencies of the estimators based on SRS data are smaller than the corresponding 

estimators based on RSS, MRSS, ERSS and PRSS data.  

This study revealed that the estimators based on PRSS for odd set sizes when  𝑂 = 0.40are more efficient 

than the other methods of sampling procedures for estimating 𝑅. Also, the estimators based on PRSS for even 

set sizes when 𝑂 = 0.30  are more efficient than the other methods of sampling procedures for 

estimating 𝑅. Generally, the estimators of 𝑅 under PRSS with odd and even set sizes have largest efficiencies 

comparing with the other estimators based on MRSS, RSS and ERSS respectively. 
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