Skolem difference mean labeling of \boldsymbol{H}-graphs

K. Murugan, A. Subramanian
Department of Mathematics, The M.D.T. Hindu College, Tirunelveli- 627010, Tamilnadu, India.
E-Mail: murugan_mdt@yahoo.com, asmani1963@gmail.com

Abstract

A graph $G(V, E)$ with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from $1,2,3 \ldots p+q$ in such a way that the edge $e=u v$ is labeled with $\frac{|f(u)-f(v)|}{2}$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|f(u)-f(v)|$ is odd and the resulting edges get distinct labels from $1,2,3 \ldots q$. A graph that admits skolem difference mean labeling is called skolem difference mean graph.

Key words: skolem difference mean labeling, skolem difference mean graphs. AMS Subject Classification (2010): 05C78

1 Introduction

Throughout this paper, by a graph, we mean a finite, undirected, simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. A path on n vertices is denoted by P_{n}. The H-graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even.

A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey can be found in [2]. The concept of skolem mean labeling was introduced by T.Ramesh, A.Subramanian and V.Balaji [1].

In this paper, we define skolem difference mean labeling and show that the H graphs are skolem difference mean.

2 Main Results

Definition 2.1. A graph $G(V, E)$ with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from $1,2,3 \ldots p+q$ in such a way that the edge $e=u v$ is labeled with $\frac{|f(u)-f(v)|}{2}$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|f(u)-f(v)|$ is odd and the resulting edges get distinct labels from 1,2,3...q. A graph that admits skolem difference mean labeling is called skolem difference mean graph.

The skolem difference mean labeling of C_{4} is given in Figure 1.

Figure 1: Skolem difference mean labeling of C_{4}
Theorem 2.2. The H-graph G is a skolem difference mean graph.

Proof. Let $v_{1}, v_{2} \ldots v_{n}$ and $u_{1}, u_{2} \ldots u_{n}$ be the vertices of the graph G.
Case (i) Let n be odd. We define a labeling $f: V(G) \rightarrow\{1,2,3, \ldots 4 n-1\}$ as follows:

$$
\begin{array}{ll}
f\left(v_{2 i+1}\right)=2 i+1 ; & 0 \leq i<\frac{n+1}{2} \\
f\left(v_{2 i}\right)=4 n+1-2 i ; & 1 \leq i<\frac{n+1}{2} \\
f\left(u_{2 i+1}\right)=3 n-2 i ; & 0 \leq i<\frac{n+1}{2}
\end{array}
$$

$$
f\left(u_{2 i}\right)=n+2 i ; \quad 1 \leq i<\frac{n+1}{2}
$$

Case (ii) Let n be even. We define a labeling $f: V(G) \rightarrow\{1,2,3, \ldots 4 n-1\}$ as follows:
$f\left(v_{2 i+1}\right)=2 i+1 ; \quad 0 \leq i<\frac{n}{2}$
$f\left(v_{2 i}\right)=4 n+1-2 i ; \quad 1 \leq i \leq \frac{n}{2}$
$f\left(u_{2 i+1}\right)=n+1+2 i ; \quad 0 \leq i<\frac{n}{2}$
$f\left(u_{2 i}\right)=3 n+1-2 i ; \quad 1 \leq i \leq \frac{n}{2}$

In both the cases the induced edge labels are $1,2 \ldots 2 n-1$.Hence the theorem.

The skolem difference mean labeling of the H-graphs of P_{3} and P_{4} are given in Figure 2.

Figure 2: Skolem difference mean labeling of the H-graphs of P_{3} and P_{4}

Theorem 2.3. If a H -graph G is a skolem difference mean graph then $G \odot S_{1}$ is also a skolem difference mean graph.

Proof. Let f be a skolem difference mean labeling of G with vertices $v_{1}, v_{2} \ldots v_{n}$ and $u_{1}, u_{2} \ldots u_{n}$. Let f^{*} be the induced edge labeling of G.

Let $v_{1}{ }^{\prime}, v_{2}{ }^{\prime} \ldots v_{n}^{\prime}$ and $u_{1}{ }^{\prime}, u_{2}{ }^{\prime} \ldots u_{n}{ }^{\prime}$ be the corresponding new vertices in $G \odot S_{1}$.

Define a labeling $g:\left(G \odot S_{1}\right) \rightarrow\{1,2,3 \ldots 8 n-1\}$ as follows:

Case (i) Let n be odd.

$$
\begin{array}{ll}
g\left(v_{2 i+1}\right)=f\left(v_{2 i+1}\right) ; & 0 \leq i<\frac{n+1}{2} \\
g\left(v_{2 i}\right)=f\left(v_{2 i}\right)+4 n ; & 1 \leq i<\frac{n+1}{2} \\
g\left(u_{2 i+1}\right)=f\left(u_{2 i+1}\right)+4 n ; & 0 \leq i<\frac{n+1}{2} \\
g\left(u_{2 i}\right)=f\left(u_{2 i}\right) ; & 1 \leq i<\frac{n+1}{2} \\
g\left(v_{2 i+1}{ }^{\prime}\right)=4 n-2 i ; & 0 \leq i<\frac{n+1}{2} \\
g\left(v_{2 i}^{\prime}\right)=4 n+2 i ; & 1 \leq i<\frac{n+1}{2} \\
g\left(u_{2 i+1}{ }^{\prime}\right)=g\left(v_{n-1}{ }^{\prime}\right)+2+2 i ; & 0 \leq i<\frac{n+1}{2} \\
g\left(u_{2 i}^{\prime}\right)=g\left(v_{n}^{\prime}\right)-2 i ; & 1 \leq i<\frac{n+1}{2}
\end{array}
$$

For the vertex labeling g, the induced edge labeling g^{*} is defined by

$$
\begin{array}{ll}
g^{*}\left(v_{i} v_{i+1}\right)=f *\left(v_{i} v_{i+1}\right)+2 n ; & 1 \leq i \leq n-1 \\
g^{*}\left(u_{i} u_{i+1}\right)=f *\left(u_{i} u_{i+1}\right)+2 n ; & 1 \leq i \leq n-1 \\
g^{*}\left(v_{i} v_{i}^{\prime}\right)=f\left(v_{1}\right)+2 n-i ; & 1 \leq i \leq n \\
g^{*}\left(u_{i} u_{i}^{\prime}\right)=f\left(u_{1}\right)-2 n-i+1 ; & 1 \leq i \leq n \\
g^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}^{2}\right)=\mathbf{3} f^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}^{2}\right)
\end{array}
$$

Case (ii) Let n be even.

$$
\begin{array}{ll}
g\left(v_{2 i+1}\right)=f\left(v_{2 i+1}\right) ; & 0 \leq i<\frac{n}{2} \\
g\left(v_{2 i}\right)=f\left(v_{2 i}\right)+4 n ; & 1 \leq i \leq \frac{n}{2} \\
g\left(u_{2 i+1}\right)=f\left(u_{2 i+1}\right) ; & 0 \leq i<\frac{n}{2} \\
g\left(u_{2 i}\right)=f\left(u_{2 i}\right)^{\prime}+4 n ; & 1 \leq i \leq \frac{n}{2} \\
g\left(v_{2 i+1}^{\prime}\right)=4 n-2 i ; & 0 \leq i<\frac{n}{2} \\
g\left(v_{2 i^{\prime}}\right)^{\prime}=4 n+2 i ; & 1 \leq i \leq \frac{n}{2} \\
g\left(u_{2 i+1}^{\prime}\right)=g\left(v_{n-1}{ }^{\prime}\right)-2-2 i ; 0 \leq i<\frac{n}{2} \\
g\left(u_{2 i}^{\prime}\right)=g\left(v_{n}^{\prime}\right)+2 i ; & 1 \leq i \leq \frac{n}{2}
\end{array}
$$

For the vertex labeling g, the induced edge labeling g^{*} is defined by

$$
\begin{array}{ll}
g^{*}\left(v_{i} v_{i+1}\right)=f *\left(v_{i} v_{i+1}\right)+2 n ; & 1 \leq i \leq n-1 \\
g^{*}\left(u_{i} u_{i+1}\right)=f *\left(u_{i} u_{i+1}\right)+2 n ; & 1 \leq i \leq n-1 \\
g^{*}\left(v_{i} v_{i}{ }^{\prime}\right)=f\left(v_{1}\right)+2 n-i ; & 1 \leq i \leq n \\
g^{*}\left(u_{i} u_{i}^{\prime}\right)=f\left(u_{1}\right)-i ; & 1 \leq i \leq n \\
g^{*}\left(\frac{v_{n}}{\frac{-4}{2} \frac{u_{n}}{2}}\right)=3 f^{*}\left(\frac{v_{n}}{\frac{-1+1}{2}} \frac{u_{n}}{2}\right) &
\end{array}
$$

In both the cases it can be verified that $G \odot S_{1}$ is a skolem difference mean graph.
The skolem difference mean labelings of the two H-graphs G_{1} and G_{2} are given in Figure 3 and the skolem difference mean labelings of $G_{1} \odot S_{1}$ and $G_{2} \odot S_{1}$ are given in Figure 4.

Figure 3: Skolem difference mean labelings of the H-graphs G_{1} and G_{2}

Figure 4: Skolem difference mean labelings of $G_{1} \odot S_{1}$ and $G_{2} \odot S_{1}$

Theorem 2.4. If a H-graph G is a skolem difference mean graph then $G \odot S_{2}$ is also a skolem difference mean graph.

Proof: Let f be a skolem difference mean labeling of G with vertices $v_{1}, v_{2} \ldots v_{n}$ and $u_{1}, u_{2} \ldots u_{n}$. Let f^{*} be the induced edge labeling of f.

Let $v_{1}{ }^{\prime}, v_{2}{ }^{\prime} \ldots v_{n}{ }^{\prime} \& v_{1}{ }^{\prime}, v_{2}{ }^{\prime} \ldots v_{n}$ " and $u_{1}{ }^{\prime}, u_{2}{ }^{\prime} \ldots u_{n}{ }^{\prime} \& u_{1}{ }^{\prime \prime}, u_{2}{ }^{\prime} \ldots u_{n}$ " be the corresponding new vertices in $G \odot S_{2}$

Define a labeling $g:\left(G \odot S_{2}\right) \rightarrow\{1,2,3 \ldots 12 n-1\}$ as follows:

Case (i) Let n be odd.

$$
\begin{array}{ll}
g\left(v_{2 i+1}\right)=f\left(v_{2 i+1}\right) ; & 0 \leq i<\frac{n+1}{2} \\
g\left(v_{2 i}\right)=f\left(v_{2 i}\right)+8 n ; & 1 \leq i<\frac{n+1}{2} \\
g\left(u_{2 i+1}\right)=f\left(u_{2 i+1}\right)+8 n ; & 0 \leq i<\frac{n+1}{2} \\
g\left(u_{2 i}\right)=f\left(u_{2 i}\right) ; & 1 \leq i<\frac{n+1}{2} \\
g\left(v_{2 i+1}^{\prime}\right)=2+10 i ; & 0 \leq i<\frac{n+1}{2} \\
g\left(v_{2 i+1} \prime\right)=4+10 i ; & 0 \leq i<\frac{n+1}{2}
\end{array}
$$

$$
g\left(v_{2}^{\prime}\right)=g\left(v_{2}\right)-5
$$

$$
g\left(v_{2}^{\prime \prime}\right)=g\left(v_{2}\right)-7
$$

$$
g\left(v_{4}^{\prime}\right)=g\left(v_{2}^{\prime}\right)-11
$$

$$
g\left(v_{4}^{\prime \prime}\right)=g\left(v_{2}^{\prime \prime}\right)-11
$$

$$
g\left(v_{4+2 i}{ }^{\prime}\right)=g\left(v_{4}{ }^{\prime}\right)-10 i ; \quad 1 \leq i<\frac{n+1}{2}
$$

$$
g\left(v_{4+2 i} \prime\right)=g\left(v_{4}^{\prime \prime)-10 i ;} \quad 1 \leq i<\frac{n+1}{2}\right.
$$

$$
g\left(u_{2 i+1}{ }^{\prime}\right)=g\left(v_{n-1}{ }^{\prime}\right)-10-10 i ; \quad 0 \leq i<\frac{n+1}{2}
$$

$$
g\left(u_{2 i+1} "\right)=g\left(v_{n-1}>\right)-10-10 i ; \quad 0 \leq i<\frac{n+1}{2}
$$

$$
g\left(u_{2 i}{ }^{\prime}\right)=g\left(v_{n}{ }^{\prime}\right)+10 i ; \quad 1 \leq i<\frac{n+1}{2}
$$

$$
g\left(u_{2 i}^{\prime \prime}\right)=g\left(v_{n}^{\prime "}\right)+10 i ; \quad 1 \leq i<\frac{n+1}{2}
$$

For the vertex labeling g the induced edge labeling $g *$ is defined by
$g *\left(v_{i} v_{i+1}\right)=f *\left(v_{i} v_{i+1}\right)+4 n ;$
$1 \leq i \leq n-1$

$$
\begin{array}{ll}
g^{*}\left(u_{i} u_{i+1}\right)=f^{*}\left(u_{i} u_{i+1}\right)+4 n ; & 1 \leq i \leq n-1 \\
g^{*}\left(v_{i} v_{i}^{\prime}\right)=2 i-1 ; & 1 \leq i \leq n \\
g^{*}\left(v_{i} v_{i}^{\prime \prime}\right)=2 i ; & 1 \leq i \leq n \\
g^{*}\left(u_{i} u_{i}^{\prime}\right)=2 n+2 i-1 ; & 1 \leq i \leq n \\
g^{*}\left(u_{i} u_{i}^{\prime \prime}\right)=2 n+2 i, & 1 \leq i \leq n \\
g^{*}\left(\frac{v_{n+1}}{2} u_{n+1}^{2}\right)=5 f^{*}\left(v_{\frac{n+1}{}}^{2} u_{n+1}^{2}\right) &
\end{array}
$$

Case (ii) Let n be even.

$$
\begin{array}{ll}
g\left(v_{2 i+1}\right)=f\left(v_{2 i+1}\right) ; & 0 \leq i<\frac{n}{2} \\
g\left(v_{2 i}\right)=f\left(v_{2 i}\right)+8 n ; & 1 \leq i \leq \frac{n}{2} \\
g\left(u_{2 i+1}\right)=f\left(u_{2 i+1}\right) ; & 0 \leq i<\frac{n}{2} \\
g\left(u_{2 i}\right)=f\left(u_{2 i}\right)+8 n ; & 1 \leq i \leq \frac{n}{2} \\
g\left(v_{2 i+1}{ }^{\prime}\right)=2+10 i ; & 0 \leq i<\frac{n}{2} \\
g\left(v_{2 i+1} \prime \prime\right)=4+10 i ; & 0 \leq i<\frac{n}{2} \\
g\left(v_{2}^{\prime}\right)=g\left(v_{2}\right)-5 & \\
g\left(v_{2}^{\prime \prime}\right)=g\left(v_{2}\right)-7 & 1 \leq i \leq \frac{n}{2} \\
g\left(v_{4}^{\prime}\right)=g\left(v_{2}^{\prime}\right)-11 & 1 \leq i \leq \frac{n}{2} \\
g\left(v_{4}^{\prime \prime}\right)=g\left(v_{2}^{\prime \prime}\right)-11 & 0 \leq i<\frac{n}{2} \\
g\left(v_{4+2 i}^{\prime}\right)=g\left(v_{4}^{\prime}\right)-10 i ; & \\
g\left(v_{4+2 i}{ }^{\prime}\right)=g\left(v_{4}^{\prime \prime}\right)-10 i ; & \\
g\left(u_{2 i+1}^{\prime}\right)=g\left(v_{n-1}{ }^{\prime}\right)+10+10 i ; & 0
\end{array}
$$

$$
\begin{array}{ll}
g\left(u_{2 i+1}{ }^{\prime}\right)=g\left(v_{n-1}^{\prime \prime}\right)+10+10 i ; & 0 \leq i<\frac{n}{2} \\
g\left(u_{2 i}^{\prime}\right)=g\left(v_{n}^{\prime}\right)-10 i ; & 1 \leq i \leq \frac{n}{2} \\
g\left(u_{2 i}^{\prime \prime}\right)=g\left(v_{n}^{\prime}\right)-10 i ; & 1 \leq i \leq \frac{n}{2}
\end{array}
$$

For the vertex labeling g the induced edge labeling $g *$ is defined by

$$
\begin{array}{ll}
g^{*}\left(v_{i} v_{i+1}\right)=f^{*}\left(v_{i} v_{i+1}\right)+4 n ; & 1 \leq i \leq n-1 \\
g^{*}\left(u_{i} u_{i+1}\right)=f^{*}\left(u_{i} u_{i+1}\right)+4 n ; & 1 \leq i \leq n-1 \\
g^{*}\left(v_{i} v_{i}^{\prime}\right)=2 i-1 ; & 1 \leq i \leq n \\
g^{*}\left(v_{i} v_{i}^{\prime \prime}\right)=2 i ; & 1 \leq i \leq n \\
g^{*}\left(u_{i} u_{i}^{\prime}\right)=2 n+2 i-1 ; & 1 \leq i \leq n \\
g^{*}\left(u_{i} u_{i}^{\prime \prime}\right)=2 n+2 i ; & 1 \leq i \leq n \\
g^{*}\left(\frac{v_{n}}{2} \frac{u_{n}}{2}\right)=5 f^{*}\left(\frac{v_{n}}{2} \frac{u_{n}}{2}\right) &
\end{array}
$$

In both the cases it can be verified that $G \odot S_{2}$ is a skolem difference mean graph.
The skolem difference mean labelings of the H-graphs G_{1} and G_{2} are given in Figure 5 and the skolem difference mean labelings of $G_{1} \odot S_{2}$ and $G_{2} \odot S_{2}$ are given in Figure 6.

Figure 5: Skolem difference mean labelings of the H-graphs G_{1} and G_{2}

Figure 6: Skolem difference mean labelings of $G_{1} \odot S_{2}$ and $G_{2} \odot S_{2}$

Theorem 2.5. If G_{1} and G_{2} are two skolem difference mean H-graphs then $G_{1} \cup G_{2}$ is also a skolem difference mean graph.

Proof. Let $V\left(G_{1}\right)=\left\{v_{i}, u_{i} / 1 \leq i \leq n\right\}$ and $V\left(G_{2}\right)=\left\{s_{i} t_{i} / 1 \leq i \leq m\right\}$. Let f and g be a skolem difference mean labeling of G_{1} and G_{2} respectively.

Let f^{*} and g^{*} be the induced edge labeling of f and g respectively.
Define a labeling $h: V\left(G_{1} \mathrm{U} G_{2}\right) \rightarrow\{1,2,3 \ldots 4 n+4 m-2\}$ as follows:

$$
\begin{aligned}
& h\left(v_{2 i+1}\right)=f\left(v_{2 i+1}\right) \\
& h\left(v_{2 i}\right)=f\left(v_{2 i}\right)+4 m-2 \\
& h\left(u_{2 i+1}\right)=f\left(u_{2 i+1}\right)+4 m-2 \text { when } n \text { is odd } \\
& \quad=f\left(u_{2 i+1}\right) \quad \text { when } n \text { is even } \\
& h\left(u_{2 i}\right)=f\left(u_{2 i}\right) \\
& \quad=f\left(u_{2 i}\right)+4 m-2 \quad \text { when } n \text { is odd } \\
& h\left(s_{2 i+1}\right)=g\left(s_{2 i+1}\right)+1
\end{aligned}
$$

$$
\begin{aligned}
& h\left(t_{2 i+1}\right)=g\left(t_{2 i+1}\right)+1 \\
& h\left(t_{2 i}\right)=g\left(t_{2 i}\right)+1
\end{aligned}
$$

For the vertex labeling h, the induced edge labeling h^{*} is defined as follows:
$h^{*}\left(v_{i} v_{i+1}\right)=f^{*}\left(v_{i} v_{i+1}\right)+2 m-1 ;$
$1 \leq i \leq n-1$
$h^{*}\left(u_{i} u_{i+1}\right)=f^{*}\left(u_{i} u_{i+1}\right)+2 m-1 ;$
$1 \leq i \leq n-1$
$h^{*}\left(s_{i} s_{i+1}\right)=g *\left(s_{i} s_{i+1}\right) ;$
$1 \leq i \leq m-1$
$h *\left(t_{i} t_{i+1}\right)=g *\left(t_{i} t_{i+1}\right) ;$
$1 \leq i \leq m-1$

Case (i) When both n and m are odd

$$
\begin{aligned}
& h^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)=f^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)+2 m-1 \\
& h^{*}\left(s_{\frac{m+1}{2}} \frac{\left.t_{\frac{m+1}{}}^{2}\right)=g^{*}\left(s_{\frac{m+1}{2}} t_{\frac{m+1}{2}}\right)}{}=\right.\text {, }
\end{aligned}
$$

Case (ii) When n is odd and m is even

$$
\begin{aligned}
& h^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)=f^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)+2 m-1 \\
& h^{*}\left(\boldsymbol{S}_{\frac{n}{2}} t_{\frac{n}{2}}\right)=g^{*}\left(\boldsymbol{S}_{\frac{n}{2}} t_{\frac{n}{2}}\right)
\end{aligned}
$$

Case (iii) When n is even and m is odd

$$
\begin{aligned}
& h^{*}\left(\frac{v_{n}^{2}}{2} u_{\frac{n}{2}}\right)=f^{*}\left(v_{\frac{n+1}{2}} \frac{u_{n}}{2}\right)+2 m-1 \\
& h^{*}\left(\boldsymbol{S}_{\frac{m+1}{2}} t_{\frac{m+1}{2}}\right)=g^{*}\left(S_{\frac{m+1}{2}} t_{\frac{m+1}{2}}\right)
\end{aligned}
$$

Case (iv) When both n and m are even

$$
h^{*}\left(\underset{\frac{2}{2}}{v_{n}} \frac{u_{n}}{}\right)=f^{*}\left(\underset{\frac{v_{n}}{2}}{ } \underline{v}_{\frac{1}{2}}\right)+2 m-1
$$

It can be easily verified that g is a skolem difference mean labeling of $G_{1} \cup G_{2}$.
For various skolem difference mean H-graphs G_{1} and G_{2}, we find a skolem difference mean labeling for $G_{1} \cup G_{2}$.

Illustration 2.6. The skolem difference mean labelings of G_{1} (the H-graph of P_{3}), G_{2} (the H-graph of P_{5}) and their union $G_{1} \cup G_{2}$ are given in Figure 7.

Figure 7: Skolem difference mean labelings of G_{1}, G_{2} and $G_{1} \cup G_{2}$

Illustration 2.7. The skolem difference mean labelings of G_{1} (the H-graph of P_{3}), G_{2} (the H-graph of P_{4}) and their union $G_{1} \cup G_{2}$ are given in Figure 8.

Figure 8: Skolem difference mean labelings of G_{1}, G_{2} and $G_{1} \cup G_{2}$.
Illustration 2.8. The skolem difference mean labelings of G_{1} (the H-graph of P_{4}), G_{2} (the H-graph of P_{3}) and their union $G_{1} \cup G_{2}$ are given in Figure 9 .

G

G

Figure 9: Skolem difference mean labelings of G_{1}, G_{2} and $G_{1} \cup G_{2}$
Illustration 2.9. The skolem difference mean labelings of G_{1} (the H-graph of P_{4}), G_{2} (the H-graph of P_{6}) and their union $G_{1} \cup G_{2}$ are given in Figure 10.

Figure 10: Skolem difference mean labelings of G_{1}, G_{2} and $G_{1} \cup G_{2}$

References

[1] V.Balaji, D.S.T.Ramesh, A.Subramanian, skolem Mean Labeling; Bulletin of Pure and Applied Sciences, Vol.26E (2) (2007), 245-248.
[2] Joseph A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 15(2008), \#DS6.

