International Journal of Mathematics and Soft Computing Vol.1, No.1 (2011), 115 - 129



## Skolem difference mean labeling of *H*-graphs

K. Murugan, A. Subramanian Department of Mathematics, The M.D.T. Hindu College, Tirunelveli– 627010, Tamilnadu, India. E-Mail: murugan\_mdt@yahoo.com, asmani1963@gmail.com

#### Abstract

A graph G(V,E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices  $x \in V$  with distinct elements f(x)from 1,2,3...p+q in such a way that the edge e=uv is labeled with  $\frac{|f(u) - f(v)|}{2}$ if |f(u)-f(v)| is even and  $\frac{|f(u) - f(v)| + 1}{2}$  if |f(u)-f(v)| is odd and the resulting edges get distinct labels from 1,2,3...q. A graph that admits skolem difference

**Key words:** skolem difference mean labeling, skolem difference mean graphs. **AMS Subject Classification (2010):** 05C78

mean labeling is called skolem difference mean graph.

#### **1** Introduction

Throughout this paper, by a graph, we mean a finite, undirected, simple graph. Let G(V,E) be a graph with p vertices and q edges. A path on n vertices is denoted by  $P_n$ . The H-graph of a path  $P_n$  is the graph obtained from two copies of  $P_n$  with vertices  $v_{1,v_2,...,v_n}$  and  $u_{1,u_2,...,u_n}$  by joining the vertices  $v_{\frac{n+1}{2}}$  and  $u_{\frac{n+1}{2}}$  if n is odd and the vertices  $v_{\frac{n}{2}+1}$  and  $u_{\frac{n}{2}}$  if n is even.

A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey can be found in [2]. The concept of skolem mean labeling was introduced by T.Ramesh, A.Subramanian and V.Balaji [1].

In this paper, we define skolem difference mean labeling and show that the *H*-graphs are skolem difference mean.

### 2 Main Results

**Definition 2.1.** A graph G(V,E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices  $x \in V$  with distinct elements f(x) from 1,2,3...p+q in such a way that the edge e=uv is labeled with  $\frac{|f(u) - f(v)|}{2}$  if |f(u)-f(v)| is even and  $\frac{|f(u) - f(v)| + 1}{2}$  if |f(u)-f(v)| is odd and the resulting edges get distinct labels from 1,2,3...q. A graph that admits skolem difference mean labeling is called skolem difference mean graph.

The skolem difference mean labeling of  $C_4$  is given in Figure 1.



Figure 1: Skolem difference mean labeling of  $C_4$ 

**Theorem 2.2.** *The H-graph G is a skolem difference mean graph.* 

**Proof.** Let  $v_1, v_2...v_n$  and  $u_1, u_2...u_n$  be the vertices of the graph *G*.

**Case (i)** Let *n* be odd. We define a labeling *f*:  $V(G) = \{1, 2, 3, \dots, 4n-1\}$  as follows:

$$f(v_{2i+1}) = 2i+1; \qquad 0 \quad i < \frac{n+1}{2}$$

$$f(v_{2i}) = 4n+1-2i; \qquad 1 \quad i < \frac{n+1}{2}$$

$$f(u_{2i+1}) = 3n-2i; \qquad 0 \quad i < \frac{n+1}{2}$$

 $f(u_{2i}) = n+2i;$   $1 \quad i < \frac{n+1}{2}$ 

**Case (ii)** Let *n* be even. We define a labeling *f*:  $V(G) = \{1, 2, 3, \dots, 4n-1\}$  as follows:

| $f(v_{2i+1})$ | =2i+1;     | 0 | $i < \frac{n}{2}$ |
|---------------|------------|---|-------------------|
| $f(v_{2i})$   | =4n+1-2i;  | 1 | $i \frac{n}{2}$   |
| $f(u_{2i+1})$ | = n+1+2i;  | 0 | $i < \frac{n}{2}$ |
| $f(u_{2i})$   | = 3n+1-2i; | 1 | $i \frac{n}{2}$   |

In both the cases the induced edge labels are 1, 2...2n-1. Hence the theorem.

The skolem difference mean labeling of the *H*-graphs of  $P_3$  and  $P_4$  are given in Figure 2.



Figure 2: Skolem difference mean labeling of the H-graphs of  $P_3$  and  $P_4$ 

**Theorem 2.3.** If a H-graph G is a skolem difference mean graph then  $G OS_1$  is also a skolem difference mean graph.

**Proof.** Let *f* be a skolem difference mean labeling of *G* with vertices  $v_1$ ,  $v_2$ ... $v_n$  and  $u_1$ ,  $u_2$ ... $u_n$ . Let  $f^*$  be the induced edge labeling of *G*.

Let  $v_1', v_2' \dots v_n'$  and  $u_1', u_2' \dots u_n'$  be the corresponding new vertices in  $G \odot S_1$ .

Define a labeling  $g: (G \odot S_1) \{1, 2, 3...8n-1\}$  as follows:

Case (i) Let *n* be odd.

| $g(v_{2i+1})=f(v_{2i+1});$       | 0 | $i < \frac{n+1}{2}$ |
|----------------------------------|---|---------------------|
| $g(v_{2i})=f(v_{2i})+4n;$        | 1 | $i < \frac{n+1}{2}$ |
| $g(u_{2i+1})=f(u_{2i+1})+4n;$    | 0 | $i < \frac{n+1}{2}$ |
| $g(u_{2i})=f(u_{2i});$           | 1 | $i < \frac{n+1}{2}$ |
| $g(v_{2i+1}')=4n-2i;$            | 0 | $i < \frac{n+1}{2}$ |
| $g(v_{2i}')=4n+2i;$              | 1 | $i < \frac{n+1}{2}$ |
| $g(u_{2i+1}')=g(v_{n-1}')+2+2i;$ | 0 | $i < \frac{n+1}{2}$ |
| $g(u_{2i}') = g(v_n')-2i;$       | 1 | $i < \frac{n+1}{2}$ |

For the vertex labeling g, the induced edge labeling  $g^*$  is defined by

$$g^{*}(v_{i}v_{i+1}) = f^{*}(v_{i}v_{i+1}) + 2n; \qquad 1 \quad i \quad n-1$$
$$g^{*}(u_{i}u_{i+1}) = f^{*}(u_{i}u_{i+1}) + 2n; \qquad 1 \quad i \quad n-1$$
$$g^{*}(v_{i}v_{i}') = f(v_{1}) + 2n-i; \qquad 1 \quad i \quad n$$

$$g^{*}(u_{i}u_{i})=f(u_{1})-2n-i+1;$$
 1 *i n*

$$g^{*}\left(v_{\frac{n+1}{2}}u_{\frac{n+1}{2}}\right) = 3f^{*}\left(v_{\frac{n+1}{2}}u_{\frac{n+1}{2}}\right)$$

Case (ii) Let *n* be even.

$$g(v_{2i+1}) = f(v_{2i+1}); \qquad 0 \quad i < \frac{n}{2}$$

$$g(v_{2i}) = f(v_{2i}) + 4n; \qquad 1 \quad i \quad \frac{n}{2}$$

$$g(u_{2i+1}) = f(u_{2i+1}); \qquad 0 \quad i < \frac{n}{2}$$

$$g(u_{2i}) = f(u_{2i}) + 4n; \qquad 1 \quad i \quad \frac{n}{2}$$

$$g(v_{2i+1}) = 4n - 2i; \qquad 0 \quad i < \frac{n}{2}$$

$$g(v_{2i+1}) = 4n + 2i; \qquad 1 \quad i \quad \frac{n}{2}$$

$$g(u_{2i+1}) = g(v_{n-1}) - 2 - 2i; \qquad 0 \quad i < \frac{n}{2}$$

$$g(u_{2i+1}) = g(v_{n-1}) - 2 - 2i; \qquad 0 \quad i < \frac{n}{2}$$

$$g(u_{2i+1}) = g(v_{n-1}) - 2 - 2i; \qquad 1 \quad i \quad \frac{n}{2}$$

For the vertex labeling g, the induced edge labeling g\* is defined by

| $g^{*}(v_{i}v_{i+1})=f^{*}(v_{i}v_{i+1})+2n;$ | 1 | i | <i>n</i> -1 |
|-----------------------------------------------|---|---|-------------|
| $g^{*}(u_{i}u_{i+1})=f^{*}(u_{i}u_{i+1})+2n;$ | 1 | i | <i>n</i> -1 |
| $g^{*}(v_{i}v_{i}')=f(v_{1})+2n-i;$           | 1 | i | n           |
| $g^{*}(u_{i}u_{i}')=f(u_{1})-i;$              | 1 | i | п           |

 $g^{*}(\underbrace{V_{n}}_{2}\underbrace{U_{n}}_{2}) = 3f^{*}(\underbrace{V_{n}}_{2}\underbrace{U_{n}}_{2})$ 

In both the cases it can be verified that  $G \odot S_1$  is a skolem difference mean graph.

The skolem difference mean labelings of the two *H*-graphs  $G_1$  and  $G_2$  are given in Figure 3 and the skolem difference mean labelings of  $G_1 \odot S_1$  and  $G_2 \odot S_1$  are given in Figure 4.



Figure 3: Skolem difference mean labelings of the *H*-graphs *G*<sub>1</sub> and *G*<sub>2</sub>



Figure 4: Skolem difference mean labelings of  $G_1 \odot S_1$  and  $G_2 \odot S_1$ 

# **Theorem 2.4.** If a H-graph G is a skolem difference mean graph then $G OS_2$ is also a skolem difference mean graph.

**Proof:** Let *f* be a skolem difference mean labeling of *G* with vertices  $v_1, v_2...v_n$  and  $u_1, u_2...u_n$ . Let  $f^*$  be the induced edge labeling of *f*.

Let  $v_1', v_2' \dots v_n' \& v_1'', v_2'' \dots v_n''$  and  $u_1', u_2' \dots u_n' \& u_1'', u_2'' \dots u_n''$  be the corresponding new vertices in  $G \odot S_2$ 

Define a labeling g:  $(G \odot S_2)$  {1,2,3...12*n*-1} as follows:

Case (i) Let *n* be odd.

For the vertex labeling g the induced edge labeling  $g^*$  is defined by  $g^*(v_iv_{i+1})=f^*(v_iv_{i+1})+4n;$  1 *i* n-1

| $g^{*}(u_{i}u_{i+1})=f^{*}(u_{i}u_{i+1})+4n;$ | 1 | i | <i>n</i> -1 |
|-----------------------------------------------|---|---|-------------|
| $g^{*}(v_{i}v_{i}')=2i-1;$                    | 1 | i | n           |
| $g^*(v_iv_i")=2i;$                            | 1 | i | n           |
| $g^{*}(u_{i}u_{i}')=2n+2i-1;$                 | 1 | i | n           |
| $g^{*}(u_{i}u_{i})=2n+2i,$                    | 1 | i | n           |
|                                               |   |   |             |

$$g^{*}(\frac{\mathcal{V}_{n+1}}{2}\frac{\mathcal{U}_{n+1}}{2})=5f^{*}(\frac{\mathcal{V}_{n+1}}{2}\frac{\mathcal{U}_{n+1}}{2})$$

### Case (ii) Let *n* be even.

| $g(v_{2i+1})=f(v_{2i+1});$    | 0 | i < | $< \frac{n}{2}$ |
|-------------------------------|---|-----|-----------------|
| $g(v_{2i}) = f(v_{2i}) + 8n;$ | 1 | i   | $\frac{n}{2}$   |
| $g(u_{2i+1})=f(u_{2i+1});$    | 0 | i < | $\frac{n}{2}$   |
| $g(u_{2i}) = f(u_{2i}) + 8n;$ | 1 | i   | $\frac{n}{2}$   |
| $g(v_{2i+1}')=2+10i;$         | 0 | i < | $< \frac{n}{2}$ |
| $g(v_{2i+1})=4+10i;$          | 0 | i < | $\frac{n}{2}$   |
| $g(v_2')=g(v_2)-5$            |   |     |                 |
| $g(v_2")=g(v_2)-7$            |   |     |                 |
| $g(v_4') = g(v_2') - 11$      |   |     |                 |
| $g(v_4") = g(v_2") - 11$      |   |     |                 |
| $g(v_{4+2i}) = g(v_4) - 10i;$ | 1 | i   | $\frac{n}{2}$   |
| $g(v_{4+2i}) = g(v_4) - 10i;$ | 1 | i   | $\frac{n}{2}$   |

$$g(u_{2i+1}')=g(v_{n-1}')+10+10i;$$
 0  $i<\frac{n}{2}$ 

$$g(u_{2i+1}") = g(v_{n-1}") + 10 + 10i; \quad 0 \quad i < \frac{n}{2}$$
$$g(u_{2i}') = g(v_{n}') - 10i; \quad 1 \quad i \quad \frac{n}{2}$$
$$g(u_{2i}") = g(v_{n}") - 10i; \quad 1 \quad i \quad \frac{n}{2}$$

For the vertex labeling g the induced edge labeling  $g^*$  is defined by

| $g^{*}(v_{i}v_{i+1}) = f^{*}(v_{i}v_{i+1}) + 4n;$ | 1 | i | <i>n</i> -1 |
|---------------------------------------------------|---|---|-------------|
| $g^{*}(u_{i}u_{i+1})=f^{*}(u_{i}u_{i+1})+4n;$     | 1 | i | <i>n</i> -1 |
| $g^{*}(v_{i}v_{i}')=2i-1;$                        | 1 | i | n           |
| $g^*(v_iv_i")=2i;$                                | 1 | i | n           |
| $g^{*}(u_{i}u_{i}')=2n+2i-1;$                     | 1 | i | n           |
| $g^*(u_iu_i")=2n+2i;$                             | 1 | i | n           |

$$g^{*}(\underbrace{V_{n}}_{\overline{2}} \underbrace{u_{n}}_{\overline{2}}) = 5f^{*}(\underbrace{V_{n}}_{\overline{2}} \underbrace{u_{n}}_{\overline{2}})$$

In both the cases it can be verified that  $G \odot S_2$  is a skolem difference mean graph.

The skolem difference mean labelings of the *H*-graphs  $G_1$  and  $G_2$  are given in Figure 5 and the skolem difference mean labelings of  $G_1 \odot S_2$  and  $G_2 \odot S_2$  are given in Figure 6.



Figure 5: Skolem difference mean labelings of the H-graphs  $G_1$  and  $G_2$ 



Figure 6: Skolem difference mean labelings of  $G_1 \odot S_2$  and  $G_2 \odot S_2$ 

**Theorem 2.5.** If  $G_1$  and  $G_2$  are two skolem difference mean H-graphs then  $G_1 \cup G_2$  is also a skolem difference mean graph.

**Proof.** Let  $V(G_1) = \{v_i, u_i / 1 \ i \ n\}$  and  $V(G_2) = \{s_i, t_i / 1 \ i \ m\}$ . Let f and g be a skolem difference mean labeling of  $G_1$  and  $G_2$  respectively.

Let  $f^*$  and  $g^*$  be the induced edge labeling of f and g respectively.

Define a labeling *h*:  $V(G_1 U G_2) = \{1, 2, 3... 4n + 4m - 2\}$  as follows:

 $h(v_{2i+1}) = f(v_{2i+1})$ 

 $h(v_{2i}) = f(v_{2i}) + 4m - 2$ 

 $h(u_{2i+1}) = f(u_{2i+1}) + 4m - 2$  when *n* is odd

 $= f(u_{2i+1})$  when *n* is even  $h(u_{2i})=f(u_{2i})$  when *n* is odd  $= f(u_{2i}) + 4m-2$  when *n* is even  $h(s_{2i+1})=g(s_{2i+1})+1$  $h(s_{2i})=g(s_{2i})+1$ 

$$h(t_{2i+1}) = g(t_{2i+1}) + 1$$

 $h(t_{2i}) = g(t_{2i}) + 1$ 

For the vertex labeling h, the induced edge labeling  $h^*$  is defined as follows:

| $h^{*}(v_{i}v_{i+1})=f^{*}(v_{i}v_{i+1})+2m-1;$ | 1 | i | <i>n</i> -1 |
|-------------------------------------------------|---|---|-------------|
| $h^{*}(u_{i}u_{i+1})=f^{*}(u_{i}u_{i+1})+2m-1;$ | 1 | i | <i>n</i> -1 |
| $h^{*}(s_{i}s_{i+1})=g^{*}(s_{i}s_{i+1});$      | 1 | i | <i>m</i> -1 |
| $h^{*}(t_{i}t_{i+1}) = g^{*}(t_{i}t_{i+1})$ ;   | 1 | i | <i>m</i> -1 |

Case (i) When both *n* and *m* are odd

$$h^{*}(v_{\underline{n+1}} u_{\underline{n+1}}) = f^{*}(v_{\underline{n+1}} u_{\underline{n+1}}) + 2m - 1$$

$$h^*(\underline{s_{m+1}}_2, \underline{t_{m+1}}_2) = g^*(\underline{s_{m+1}}_2, \underline{t_{m+1}}_2)$$

Case (ii) When *n* is odd and m is even

$$h^{*}(\underbrace{v_{n+1}}_{2}\underbrace{u_{n+1}}_{2}) = f^{*}(\underbrace{v_{n+1}}_{2}\underbrace{u_{n+1}}_{2}) + 2m - 1$$
$$h^{*}(\underbrace{s_{n}}_{2}\underbrace{t_{n}}_{2}) = g^{*}(\underbrace{s_{n}}_{2}\underbrace{t_{n}}_{2})$$

Case (iii) When *n* is even and *m* is odd

$$h^{*}(\frac{V_{n}}{2} + \frac{U_{n}}{2}) = f^{*}(\frac{V_{n}}{2} + \frac{U_{n}}{2}) + 2m - 1$$
$$h^{*}(\frac{S_{m+1}}{2} + \frac{t_{m+1}}{2}) = g^{*}(\frac{S_{m+1}}{2} + \frac{t_{m+1}}{2})$$

Case (iv) When both *n* and *m* are even

$$h^*(\underbrace{V_n}_{\overline{2}} \underbrace{u_n}_{2}) = f^*(\underbrace{V_n}_{\overline{2}} \underbrace{u_n}_{2}) + 2m-1$$

$$h^{*}(\underbrace{s_{m}}_{2} \underbrace{t_{n}}_{2}) = g^{*}(\underbrace{s_{m}}_{2} \underbrace{t_{n}}_{2}).$$

It can be easily verified that g is a skolem difference mean labeling of  $G_1 \cup G_2$ .

For various skolem difference mean *H*-graphs  $G_1$  and  $G_2$ , we find a skolem difference mean labeling for  $G_1 \cup G_2$ .

**Illustration 2.6.** The skolem difference mean labelings of  $G_1$  (the *H*-graph of  $P_3$ ),  $G_2$  (the *H*-graph of  $P_5$ ) and their union  $G_1 \cup G_2$  are given in Figure 7.



Figure 7: Skolem difference mean labelings of  $G_1$ ,  $G_2$  and  $G_1 \cup G_2$ 

**Illustration 2.7.** The skolem difference mean labelings of  $G_1$  (the *H*-graph of  $P_3$ ),  $G_2$  (the *H*-graph of  $P_4$ ) and their union  $G_1 \cup G_2$  are given in Figure 8.



Figure 8: Skolem difference mean labelings of  $G_1$ ,  $G_2$  and  $G_1 \cup G_2$ .

**Illustration 2.8.** The skolem difference mean labelings of  $G_1$  (the *H*-graph of  $P_4$ ),  $G_2$  (the *H*-graph of  $P_3$ ) and their union  $G_1 \cup G_2$  are given in Figure 9.





Figure 9: Skolem difference mean labelings of  $G_1$ ,  $G_2$  and  $G_1 \cup G_2$ 

**Illustration 2.9.** The skolem difference mean labelings of  $G_1$  (the *H*-graph of  $P_4$ ),  $G_2$  (the *H*-graph of  $P_6$ ) and their union  $G_1 \cup G_2$  are given in Figure 10.



Figure 10: Skolem difference mean labelings of  $G_1$ ,  $G_2$  and  $G_1 \cup G_2$ 

# References

[1] V.Balaji, D.S.T.Ramesh, A.Subramanian, *skolem Mean Labeling*; Bulletin of Pure and Applied Sciences, Vol.26E (2) (2007), 245-248.

[2] Joseph A.Gallian, *A Dynamic Survey of Graph Labeling*, The Electronic Journal of Combinatorics, 15(2008), #DS6.