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Abstract

Rosa [12] introduced the notion of graceful labelings. In 1985, Lo [11]

introduced the notion of edge – graceful graphs. We extended the concept of edge –
graceful labelings to directed graphs in [8]. In this paper we investigate directed

edge – graceful labeling of cycle and star related graphs.
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1 Introduction

All graphs in this paper are finite and directed.  Terms not defined here are

used in the sense of Harary [9].  The symbols V(G) and E(G) denote the vertex set

and edge set of a graph G.  The cardinality of the vertex set is called the order of G

denoted by p.  The cardinality of the edge set is called the size of G denoted by q. A

graph with p vertices and q edges is called a (p, q) graph.

A graph labeling is an assignment of integers to the vertices or edges or both

subject to certain conditions.  Labeled graphs serve as useful models for a broad

range of applications [1, 2].  A good account on graceful labeling problems can be

found in the dynamic survey of Gallian [6].

A graph G is called a graceful labeling if f is an injection from the vertices of

G to the set {0, 1, 2, ..., q} such that, when each edge xy is assigned the label | f(x) –
f(y)|, the resulting edge labels are distinct.
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A graph G(V, E) is said to be edge–graceful if there exists a bijection f from E

to {1, 2, ..., |E|} such that the induced mapping f  from V to {0, 1, ..., |V| – 1} given

by, ( )f x = (f(xy)) mod(|V|) taken over all edges xy incident at x is a bijection.

A necessary condition for a graph G with p vertices and q edges to be edge–

graceful is q(q + 1) 
( 1)

(mod )
2

p p
p


. Gayathri and Duraisamy introduced the

concept of even edge-graceful labeling in [7]. Bloom and Hsu [3, 4, and 5] extended

the notion of graceful labeling to directed graph.  The concept of magic, antimagic

and conservative labelings have been extended to directed graphs [10].  In [8] we

extended the concept of edge–graceful labelings to directed graphs. In this paper we

investigate directed edge – graceful labeling of cycle and star related graphs.

A (p, q) graph G is said to be directed edge – graceful if there exists an

orientation of G and a labeling f of the arcs A of G with {1, 2, ..., q} such that induced

mapping g on V defined by, g(v) = ( ) ( )f v f v    (mod p) is a bijection where,

( )f v = the sum of the labels of all arcs with head v and ( )f v = the sum of the

labels of all arcs with v as tail.

A graph G is said to be directed edge–graceful graph if it has directed edge–
graceful labelings.  Here, we investigate directed edge – graceful labeling of cycle

and star related graphs.

2 Prior Results
Theorem 2.1. [8] The path P2n+1 is directed edge-graceful for all n  1.

Theorem 2.2. [8] The cycle graph C2n+1 is directed edge-graceful for all n  1.

Theorem 2.3. [8] The Butterfly graph Bn is directed edge-graceful if n is odd.

Theorem 2.4. [8] The Butterfly graph Bn is directed edge – graceful if n is even and

n  4.

Theorem 2.5. [8] The snail graph SN(2n + 1) is directed edge-graceful for all n  1.

Theorem 2.6. [8] :1, 1,K Kn n is directed edge-graceful if n is even and n  4.

Theorem 2.7. [8] The graph P3  K1,2n+1 is directed edge-graceful for all n  1.
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Theorem 2.8. [8] The graph P2m @ K1,2n+1 is directed edge-graceful for all m  2

and n  1.

Theorem 2.9. [8] The graph P2m+1 @ K1,2n is directed edge-graceful for all m1 and

n  1.

3 Main Results

Definition 3.1. G1 @ G2 is nothing but one point union of G1 and G2.

Theorem 3.2. The graph C2m @ K1, 2n+1 is directed edge-graceful for m  2 and n  1.

Proof. Let G = C2m @ K1, 2n+1 and V[C2m @ K1, 2n+1] = {v1, v2, ..., v2m, u1, u2, ..., u2n+1}

be the set of vertices. Now we orient the edges of C2m @ K1, 2n+1 such that the arc set

A is given by,

A = {(v2i+1, v2i), 1  i  m – 1}  {v1, v2m)}  {(v2i-1, v2i), 1  i  m}  {(v1, uj),

1  j  2n + 1}.

The edges and their orientation of C2m @ K1,2n+1 are as in Figure 1.

v1 v2 v3 ........

v2m
u1

u2

u3

..
..

..
..

.

u2n

u2n+1

Figure 1: C2m @ K1,2n+1 with orientation
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We now label the arcs of A as follows:

f ((v2i+1, v2i)) = i, 1  i  m – 1

f ((v1, v2m)) = m

f ((v2i-1, v2i)) = m + 2n + 1+ i, 1  i  m

f ((v1, u2j-1)) = m + j, 1  j  n + 1

f ((v1, u2j)) = m + 2n + 2 – j,  1  j  n

Then the values of f  (vi), f  (uj) and f  (vi), f  (uj) are computed as under.

f  (v2i) = m + 2n + 1 + 2i, 1  i  m

f  (v2i) = 0, 1  i  m

f  (v2i+1) = 0, 1  i  m – 1

f  (v2i+1) = – (m + 2n + 2 +2i), 1  i  m – 1

f  (v1)= 0

f  (v1)= – (m + n + 1) [2(n + 1) + 1]

f  (u2j-1) = m + j, 1  j  n + 1

f  (u2j – 1) = 0, 1  j  n + 1

f  (u2j) = m + 2n + 2 – j, 1  j  n

f  (u2j) = 0, 1  j  n

Then the induced vertex labels are,

g(u2j-1) = m + j, 1  j  n + 1

g(u2j) = m + 2n + 2 – j, 1  j  n

Case (i) m is odd.

g(v2i-1) = m + 1 – 2i, 1  i 
1

2

m 
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g(v2i) = m + 2n + 1+ 2i, 1  i 
1

2

m 

g(vm-1+2i) = 2i – 1, 1  i 
1

2

m 

g(vm+2i) = (2m + 2n + 1) -
1

2

m  
 
 

+ 2 – 2i, 1  i 
1

2

m 

Case (ii) m is even.

g(v2i-1) = m + 1 – 2i, 1  i 
2

m

g(v2i) = m + 2n + 1+ 2i, 1  i 
2

2

m 

g(vm-2+2i) = 2i – 2, 1  i 
2

2

m 

g(vm-1+2i) = 2m + 2n + 2 – 2i,  1  i 
2

m
.

Clearly, g(V) = {0, 1, ..., 2m + 2n} = {0, 1, ..., p – 1}

So, it follows that all the vertex labels are distinct and g is a bijection. Hence,

C2m @ K1,2n+1 is a directed edge - graceful graph. The directed edge - graceful labeling

of C10 @ K1,13 and C12 @ K1,9 are given in Figure 2 and Figure 3 respectively.


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Figure 2: C10 @ K1,13 with directed edge - graceful labeling
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Figure 3: C12 @ K1,9 with directed edge - graceful labeling

Theorem 3.3. The graph C2m+1 @ K1,2n is a directed edge - graceful for m  1 and

n  1.

Proof. Let G = C2m+1 @ K1,2n and V[C2m+1 @ K1,2n] = {v1, v2, ..., v2m+1, u1, u2, ..., u2n}

be the set of vertices. Now we orient the edges of C2m+1 @ K1,2n such that the arc set A

is given by,

A = {(v2i-1, v2i), 1  i  m}  {(v2i+1, v2i), 1  i  m}  {(v2m+1, v1)}  {(vm+1,

uj), 1  j  2n}

The edges and their orientation of C2m+1 @ K1,2n are as in Figure 4.

v1 v2 .....

v2n

u1
u2

u3

...
..

u2n

m+1

.....

Figure 4: C2m+1 @ K1,2n with orientation

We now label the arcs of A as follows:

v

v2m+1
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2
( )

i
f v

f ((v2i-1, v2i)) = m + 2n + i, 1  i  m

f ((v2i+1, v2i)) = i, 1  i  m

f ((v2m+1, v1)) = 2m + 2n + 1

f ((vm+1, u1)) = m + 1

f ((vm+1, u2j)) = m + 1 + j, 1  j  n

f ((vm+1, u2j+1))= m + 2n + 1 – j, 1  j  n – 1

Then the values of ( )f vi
 , ( )f u j

 and ( )f vi
 , ( )f u j

 are computed as under.

1
( )f v = 2m + 2n + 1

1
( )f v = – (m + 2n + 1)

m + 2n + 2i, 1  i 
2

m
if m is even

m + 2n + 2i, 1  i 
1

2

m 
if m is odd

0, 1  i 
2

m
if m is even.

0, 1  i 
1

2

m 
if m is odd

2m + 2n + 1, if m is odd
( )

0, if m is even1
f v

m





 


- [(  - 1)(2  + 2  + 2) + 2(  +1) + n], if is odd
( )

 - [ (2  + 2  + 3) + 2  + 1], if  is even1

n m n m m
f v

n m n m mm





 


2  + 2  + 2 , 1        if  is even
2( )

12  0, 1   if  is odd
2

mm n i i m
f v

mm i i m




 

  
  

=2
( )

i
f v

=
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0, 1      if  is even
2( )

12  - (2  + 2  + 2 ), 1      if  is odd
2

mi m
f v

mm i m n i i m







  
  

0, 1    if  is even
2( )

11 2  2  + 2  + 1 + 2 , 1        if  is odd
2

mi m
f v

mm i m n i i m







   
   

- (2  + 2  + 1 + 2 ), 1   if  is even
2

11 2 0, 1    if  is odd.
2

( )

m
m n i i m

mm i i m

f v





   

  
 

1
( )f u = m + 1

1
( )f u = 0

2
( )

j
f u = m + 1 + j, 1  j  n

2
( )

j
f u = 0, 1  j  n

2 1
( )

j
f u



 = m + 2n + 1 – j, 1  j  n – 1

2 1
( )

j
f u



 = 0, 1  j  n – 1

Then the induced vertex labels are

g(u1) = m + 1

g(u2j) = m + 1 + j, 1  j  n

g(u2j+1) = m + 2n + 1 – j, 1  j  n – 1

Case (i) m is odd

g(v2i-1) = m + 2 – 2i, 1  i 
1

2

m 

g(v2i) = m + 2n + 2i, 1  i 
1

2

m 

g(vm+1) = 0
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g(vm+2i) = 2m + 2n + 2 – 2i, 1  i 
1

2

m 

g(vm+1+2i) = 2i, 1  i 
1

2

m 

Case (ii) m is even

g(v2i-1) = m + 2 – 2i, 1  i 
2

m

g(v2i) = m + 2n + 2i, 1  i 
2

m

g(vm+1) = 0

g(vm+2i) = 2i – 1, 1  i 
2

m

g(vm+1+2i) = 2m + 2n + 1 – 2i, 1  i 
2

m

Clearly, g(V) = {0, 1, ..., 2m + 2n} = {0, 1, ..., p – 1}

So, it follows that all the vertex labels are distinct and g is a bijection. Hence,

C2m+1 @ K1,2n is a directed edge-graceful graph. 

The directed edge-graceful labeling of C9 @ K1,10 and C11 @ K1,8 are given in

Figure 5 and Figure 6 respectively.
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Figure 5: C9 @ K1,10 with directed edge - graceful labeling
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Figure 6: C11 @ K1,8 with directed edge - graceful labeling

Definition 3.4. If G has order n, the corona of G with H denoted by GH is the

graph obtained by taking one copy of G and n copies of H and joining the ith vertex of

G with an edge to every vertex in the ith copy of H.

Theorem 3.5. The graph Cn mK is directed edge-graceful if n is odd and m is even

for n  3 & m  2.

Proof. Let G = Cn
m

K and V[Cn 
m

K ] = {v1, v2, ..., vn, v11, v12, ..., v1m, v21, v22, ...,

v2m, ..., vn1, vn2, ..., vnm} be the set of vertices. Now we orient the edges of Cn  Km

such that the arc set A is given by,

A =  2 1 2

1
( , ), 1

2i i

n
v v i




    2 1 2

1
( , ), 1

2i i

n
v v i




   {(vn, v1)} 

{(vi, vi,j), 1  i  n, 1  j  m}

The edges and their orientation of Cn 
m

K are as in Figure 7.
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vn

v1

v2

v3

.........

vn1

vn2

.........

vnm

v11

v12

.........

v1m v21 v22

.....
....

v2m

...
...

...

...
...

...

Figure 7: Cn 
m

K with orientation

We now label the arcs of A as follows:

f (v2i+1, v2i) = i, 1  i 
1

2

n 

f (v2i-1, v2i) = n(m + 1) –
1

2

n  
 
 

– 1 + i, 1  i 
1

2

n 

f (vn, v1) = n(m + 1)

f (vi, vi(2j-1)) =
1

( 1) ,
2 2

n m
i j


   

 
 

1  i  n, 1  j 
2

m

f (vi, vi(2j)) =
1

( 1) ( 1) ,
2 2

n m
n m i j


    

  
    

1 in,1 j 
2

m

Then the values of f  (vi), f  (vij) and f  (vi), f  (vi,j) are computed as under

1
( )f v = n(m + 1)
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1
( )f v = –

1
( ) 1

2 2

m n
nm n


  

    
        

2
( )

i
f v =

1
( ) 1 2 ,

2

n
nm n i


    

 
 

1  i 
1

2

n 

2
( )

i
f v = – ( )

2

m
nm n 

  
, 1  i 

1

2

n 

2 1
( )

i
f v



 = 0, 1  i 
1

2

n 

( )2 1f v i



= –

1
( ) 1 2

2 2

m n
nm n i


   

    
        

, 1  i 
1

2

n 

( 2 1)
( )

i j
f v



 =
1

( 1)
2 2

n m
i j


   

 
 

, 1  i  n, 1  j 
2

m

(2 1)
( )

i j
f v



 = 0, 1  i  n, 1  j 
2

m

(2 )
( )

i j
f v =

1
( 1) ( 1)

2 2

n m
n m i j


    

  
    

,1  i n,1  j
2

m

(2 )
( )

i j
f v = 0, 1  i  n, 1  j 

2

m

Then the induced vertex labels are,

g(vi(2j-1)) =
1

( 1)
2 2

n m
i j


   

 
 

, 1  i  n, 1  j 
2

m

g(vi(2j)) =
1

( 1) ( 1)
2 2

n m
n m i j


    

  
    

,1  i  n,1  j 
2

m
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Case (i)
1

2

n  
 
 

is even.

g(v2i-1) =
1

2 2
2

n
i


  

 
 

, 1  i 
3

4

n 

g(v2i) = n(m + 1) –
1

2

n  
 
 

– 1 + 2i, 1  i 
1

4

n 

1
2

2

n
i

g v



 
 
 

= 2i – 1, 1  i 
1

4

n 

1
2

2

n
i

g v



 
 
 

= n(m + 1) – 2i, 1  i 
1

4

n 

Case (ii)
1

2

n  
 
 

is odd.

g(v2i-1) =
1

2 2
2

n
i


  

 
 

, 1  i 
1

4

n 

g(v2i) = n(m + 1) –
1

2

n  
 
 

– 1 + 2i, 1  i 
3

4

n 

3
2

2

n
i

g v
  

 

 
  
 

= 2i – 2, 1  i 
1

4

n 

1
2

2

n
i

g v
  

 

 
 
 

= n(m + 1) + 1 – 2i, 1  i 
1

4

n 

Clearly, g(V) = {0, 1, ..., nm + n – 1} = {0, 1, ..., p – 1}.

So, it follows that all the vertex labels are distinct and g is bijection. Hence,

Cn Km is a directed edge-graceful graph. 

The directed edge-graceful labeling of C5
8

K and C7
8

K are given in

Figure 8 and Figure 9 respectively.
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Figure 8: C5  8K with directed edge - graceful labeling
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Figure 9: C7  8K with directed edge - graceful labeling
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