Directed edge - graceful labeling of cycle and star related graphs

B. Gayathri
Associate Professor of Mathematics, Periyar E.V.R. College,
Trichy - 620023.
E-mail: maduraigayathri@gmail.com
V. Vanitha
Research Scholar, Mother Teresa Women's University, Kodaikanal-624 102.
E-mail: rajarajanvani@gmail.com

Abstract

Rosa [12] introduced the notion of graceful labelings. In 1985, Lo [11] introduced the notion of edge - graceful graphs. We extended the concept of edge graceful labelings to directed graphs in [8]. In this paper we investigate directed edge - graceful labeling of cycle and star related graphs.

Key words: Graceful graphs, Directed graphs, Edge-graceful labeling AMS Subject Classification (2010): 05C78

1 Introduction

All graphs in this paper are finite and directed. Terms not defined here are used in the sense of Harary [9]. The symbols $V(G)$ and $E(G)$ denote the vertex set and edge set of a graph G. The cardinality of the vertex set is called the order of G denoted by p. The cardinality of the edge set is called the size of G denoted by q. A graph with p vertices and q edges is called a (p, q) graph.

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. Labeled graphs serve as useful models for a broad range of applications [1,2]. A good account on graceful labeling problems can be found in the dynamic survey of Gallian [6].

A graph G is called a graceful labeling if f is an injection from the vertices of G to the set $\{0,1,2, \ldots, q\}$ such that, when each edge $x y$ is assigned the label $\mid f(x)-$ $f(y) \mid$, the resulting edge labels are distinct.

A graph $G(V, E)$ is said to be edge-graceful if there exists a bijection f from E to $\{1,2, \ldots,|E|\}$ such that the induced mapping f^{+}from V to $\{0,1, \ldots,|V|-1\}$ given by, $f^{+}(x)=(\Sigma f(x y)) \bmod (|V|)$ taken over all edges $x y$ incident at x is a bijection.

A necessary condition for a graph G with p vertices and q edges to be edgegraceful is $\mathrm{q}(\mathrm{q}+1) \equiv \frac{p(p+1)}{2}(\bmod p)$. Gayathri and Duraisamy introduced the concept of even edge-graceful labeling in [7]. Bloom and Hsu [3, 4, and 5] extended the notion of graceful labeling to directed graph. The concept of magic, antimagic and conservative labelings have been extended to directed graphs [10]. In [8] we extended the concept of edge-graceful labelings to directed graphs. In this paper we investigate directed edge - graceful labeling of cycle and star related graphs.

A (p, q) graph G is said to be directed edge - graceful if there exists an orientation of G and a labeling f of the $\operatorname{arcs} A$ of G with $\{1,2, \ldots, q\}$ such that induced mapping g on V defined by, $g(v)=\left[f^{+}(v)-f^{-}(v)\right](\bmod p)$ is a bijection where, $f^{+}(v)=$ the sum of the labels of all arcs with head v and $f^{-}(v)=$ the sum of the labels of all arcs with v as tail.

A graph G is said to be directed edge-graceful graph if it has directed edgegraceful labelings. Here, we investigate directed edge - graceful labeling of cycle and star related graphs.

2 Prior Results

Theorem 2.1. [8] The path $P_{2 n+1}$ is directed edge-graceful for all $n \geq 1$.
Theorem 2.2. [8] The cycle graph $C_{2 n+1}$ is directed edge-graceful for all $n \geq 1$.
Theorem 2.3. [8] The Butterfly graph B_{n} is directed edge-graceful if n is odd.
Theorem 2.4. [8] The Butterfly graph B_{n} is directed edge - graceful if n is even and $n \geq 4$.

Theorem 2.5. [8] The snail graph $\operatorname{SN}(2 n+1)$ is directed edge-graceful for all $n \geq 1$.
Theorem 2.6. [8] $\left\langle K_{1, n}: K_{1, n}\right\rangle$ is directed edge-graceful ifn is even and $n \geq 4$.
Theorem 2.7. [8] The graph $P_{3} \cup K_{1,2 n+1}$ is directed edge-graceful for all $n \geq 1$.

Theorem 2.8. [8] The graph $P_{2 m} @ K_{1,2 n+1}$ is directed edge-graceful for all $m \geq 2$ and $n \geq 1$.

Theorem 2.9. [8] The graph $P_{2 m+1} @ K_{1,2 n}$ is directed edge-graceful for all $m \geq 1$ and $n \geq 1$.

3 Main Results

Definition 3.1. $G_{1} @ G_{2}$ is nothing but one point union of G_{1} and G_{2}.

Theorem 3.2. The graph $C_{2 m} @ K_{1,2 n+1}$ is directed edge-graceful for $m \geq 2$ and $n \geq 1$.
Proof. Let $G=C_{2 m} @ K_{1,2 n+1}$ and $V\left[C_{2 m} @ K_{1,2 n+1}\right]=\left\{v_{1}, v_{2}, \ldots, v_{2 m}, u_{1}, u_{2}, \ldots, \mathrm{u}_{2 n+1}\right\}$ be the set of vertices. Now we orient the edges of $C_{2 m} @ K_{1,2 n+1}$ such that the arc set A is given by,
$\left.A=\left\{\left(v_{2 i+1}, v_{2 i}\right), 1 \leq i \leq m-1\right\} \cup\left\{v_{1}, v_{2 m}\right)\right\} \cup\left\{\left(v_{2 i-1}, v_{2 i}\right), 1 \leq i \leq m\right\} \cup\left\{\left(v_{1}, u_{j}\right)\right.$, $1 \leq j \leq 2 n+1\}$.
The edges and their orientation of $C_{2 m} @ K_{1,2 n+1}$ are as in Figure 1.

Figure 1: $C_{2 \mathrm{~m}} @ K_{1,2 \mathrm{n}+1}$ with orientation

We now label the arcs of A as follows:

$$
\begin{array}{ll}
f\left(\left(v_{2 i+1}, v_{2 i}\right)\right) & =i, 1 \leq i \leq m-1 \\
f\left(\left(v_{1}, v_{2 m}\right)\right) & =m \\
f\left(\left(v_{2 i-1}, v_{2 i}\right)\right) & =m+2 n+1+i, 1 \leq i \leq m \\
f\left(\left(v_{1}, u_{2 j-1}\right)\right) & =m+j, 1 \leq j \leq n+1 \\
f\left(\left(v_{1}, u_{2 j}\right)\right) & =m+2 n+2-j, 1 \leq j \leq n
\end{array}
$$

Then the values of $f^{+}\left(v_{i}\right), f^{+}\left(u_{j}\right)$ and $f^{-}\left(v_{i}\right), f^{-}\left(u_{j}\right)$ are computed as under.

$$
\begin{array}{ll}
f^{+}\left(v_{2 i}\right) & =m+2 n+1+2 i, 1 \leq i \leq m \\
f^{-}\left(v_{2 i}\right) & =0,1 \leq i \leq m \\
f^{+}\left(v_{2 i+1}\right) & =0,1 \leq i \leq m-1 \\
f^{-}\left(v_{2 i+1}\right) & =-(m+2 n+2+2 i), 1 \leq i \leq m-1 \\
f^{+}\left(v_{1}\right)=0 \\
\left.f^{-}{ }_{\left(v_{1}\right)=-(m}+n+1\right)[2(n+1)+1] \\
f^{+}{ }_{\left(u_{2 j-1}\right)} \quad=m+j, 1 \leq j \leq n+1 \\
f^{-}{ }_{\left(u_{2 j-1}\right)} \quad=0,1 \leq j \leq n+1 \\
f^{+}\left(u_{2 j}\right) & =m+2 n+2-j, 1 \leq j \leq n \\
f^{-}\left(u_{2 j}\right) & =0,1 \leq j \leq n
\end{array}
$$

Then the induced vertex labels are,

$$
\begin{array}{ll}
g\left(u_{2 j-1}\right) & =m+j, 1 \leq j \leq n+1 \\
g\left(u_{2 j}\right) & =m+2 n+2-j, 1 \leq j \leq n
\end{array}
$$

Case (i) m is odd.

$$
g\left(v_{2 \mathrm{i}-1}\right) \quad=m+1-2 i, 1 \leq i \leq \frac{m+1}{2}
$$

$$
\begin{array}{ll}
g\left(v_{2 i}\right) & =m+2 n+1+2 i, 1 \leq i \leq \frac{m-1}{2} \\
g\left(v_{m-1+2 i}\right) & =2 i-1,1 \leq i \leq \frac{m+1}{2} \\
g\left(v_{m+2 i}\right) & =(2 m+2 n+1)-\left(\frac{m-1}{2}\right)+2-2 i, 1 \leq i \leq \frac{m-1}{2}
\end{array}
$$

Case (ii) m is even.

$$
\begin{array}{ll}
g\left(v_{2 i-1}\right) & =m+1-2 i, 1 \leq i \leq \frac{m}{2} \\
g\left(v_{2 i}\right) & =m+2 n+1+2 i, 1 \leq i \leq \frac{m-2}{2} \\
g\left(v_{m-2+2 i}\right) & =2 i-2,1 \leq i \leq \frac{m+2}{2} \\
g\left(v_{m-1+2 i}\right) & =2 m+2 n+2-2 i, 1 \leq i \leq \frac{m}{2} .
\end{array}
$$

$$
\text { Clearly, } g(V)=\{0,1, \ldots, 2 m+2 n\}=\{0,1, \ldots, p-1\}
$$

So, it follows that all the vertex labels are distinct and g is a bijection. Hence, $C_{2 m} @ K_{1,2 n+1}$ is a directed edge - graceful graph. The directed edge - graceful labeling of $C_{10} @ K_{1,13}$ and $C_{12} @ K_{1,9}$ are given in Figure 2 and Figure 3 respectively.

Figure 2: $C_{10} @ K_{1,13}$ with directed edge - graceful labeling

Figure 3: $C_{12} @ K_{1,9}$ with directed edge - graceful labeling
Theorem 3.3. The graph $C_{2 m+1} @ K_{1,2 n}$ is a directed edge - graceful for $m \geq 1$ and $n \geq 1$.

Proof. Let $G=C_{2 m+1} @ K_{1,2 n}$ and $V\left[C_{2 m+1} @ K_{1,2 n}\right]=\left\{v_{1}, v_{2}, \ldots, v_{2 m+1}, u_{1}, u_{2}, \ldots, u_{2 n}\right\}$ be the set of vertices. Now we orient the edges of $C_{2 m+1} @ K_{1,2 n}$ such that the arc set A is given by,

$$
A=\left\{\left(v_{2 i-1}, v_{2 i}\right), 1 \leq i \leq m\right\} \cup\left\{\left(v_{2 i+1}, v_{2 i}\right), 1 \leq i \leq m\right\} \cup\left\{\left(v_{2 m+1}, v_{1}\right)\right\} \cup\left\{\left(v_{m+1},\right.\right.
$$ $\left.\left.u_{j}\right), 1 \leq j \leq 2 n\right\}$

The edges and their orientation of $C_{2 m+1} @ K_{1,2 n}$ are as in Figure 4.

Figure 4: $C_{2 m+1} @ K_{1,2 n}$ with orientation

We now label the arcs of A as follows:

$$
\begin{array}{ll}
f\left(\left(v_{2 i-1}, v_{2 i}\right)\right) & =m+2 n+i, 1 \leq i \leq m \\
f\left(\left(v_{2 i+1}, v_{2 i}\right)\right) & =i, 1 \leq i \leq m \\
f\left(\left(v_{2 m+1}, v_{1}\right)\right) & =2 m+2 n+1 \\
f\left(\left(v_{m+1}, u_{1}\right)\right) & =m+1 \\
f\left(\left(v_{m+1}, u_{2 j}\right)\right) & =m+1+j, 1 \leq j \leq n \\
f\left(\left(v_{m+1}, u_{2 j+1}\right)\right) & =m+2 n+1-j, 1 \leq j \leq n-1
\end{array}
$$

Then the values of $f^{+}\left(v_{i}\right), f^{+}\left(u_{j}\right)$ and $f^{-}\left(v_{i}\right), f^{-}\left(u_{j}\right)$ are computed as under.

$$
\begin{aligned}
& f^{+}\left(v_{1}\right) \quad=2 m+2 n+1 \\
& f^{-}\left(v_{1}\right)=-(m+2 n+1) \\
& f^{+}\left(v_{2 i}\right)=\left\{\begin{array}{l}
m+2 n+2 i, 1 \leq i \leq \frac{m}{2} \text { if } m \text { is even } \\
m+2 n+2 i, 1 \leq i \leq \frac{m-1}{2} \text { if } m \text { is odd }
\end{array}\right. \\
& f^{-}\left(v_{2 i}\right)=\left\{\begin{array}{l}
0,1 \leq i \leq \frac{m}{2} \text { if } m \text { is even. } \\
0,1 \leq i \leq \frac{m-1}{2} \text { if } m \text { is odd }
\end{array}\right. \\
& f^{+}\left(v_{m+1}\right)=\left\{\begin{array}{l}
2 \mathrm{~m}+2 \mathrm{n}+1, \text { if } \mathrm{m} \text { is odd } \\
0, \text { if } \mathrm{m} \text { is even }
\end{array}\right. \\
& f^{-}\left(v_{m+1}\right)=\left\{\begin{array}{c}
-[(n-1)(2 m+2 n+2)+2(m+1)+n], \text { if } m \text { is odd } \\
-[n(2 m+2 n+3)+2 m+1], \text { if } m \text { is even }
\end{array}\right. \\
& f^{+}\left(v_{m+2 i}\right)=\left\{\begin{array}{l}
2 m+2 n+2 i, 1 \leq i \leq \frac{m}{2} \text { if } m \text { is even } \\
0,1 \leq i \leq \frac{m+1}{2} \text { if } m \text { is odd }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& f^{-}\left(v_{m+2 i}\right)=\left\{\begin{array}{l}
0,1 \leq i \leq \frac{m}{2} \text { if } m \text { is even } \\
-(2 m+2 n+2 i), 1 \leq i \leq \frac{m+1}{2} \text { if } m \text { is odd }
\end{array}\right. \\
& f^{+}\left(v_{m+1+2 i}\right)=\left\{\begin{array}{l}
0,1 \leq i \leq \frac{m}{2} \text { if } m \text { is even } \\
2 m+2 n+1+2 i, 1 \leq i \leq \frac{m-1}{2} \text { if } m \text { is odd }
\end{array}\right. \\
& f^{-}\left(v_{m+1+2 i}\right)=\left\{\begin{array}{l}
-(2 m+2 n+1+2 i), 1 \leq i \leq \frac{m}{2} \text { if } m \text { is even } \\
0,1 \leq i \leq \frac{m-1}{2} \text { if } m \text { is odd. }
\end{array}\right. \\
& f^{+}\left(u_{1}\right) \quad=m+1 \\
& f^{-}\left(u_{1}\right) \quad=0 \\
& f^{+}\left(u_{2 j}\right) \quad=m+1+j, 1 \leq j \leq n \\
& f^{-}\left(u_{2 j}\right) \quad=0,1 \leq j \leq n \\
& f^{+}\left(u_{2 j+1}\right) \quad=m+2 n+1-j, 1 \leq j \leq n-1 \\
& f^{-}\left(u_{2_{j+1}}\right) \quad=0,1 \leq j \leq n-1
\end{aligned}
$$

Then the induced vertex labels are

$$
\begin{array}{ll}
g\left(u_{1}\right) & =m+1 \\
g\left(u_{2 j}\right) & =m+1+j, 1 \leq j \leq n \\
g\left(u_{2 j+1}\right) & =m+2 n+1-j, 1 \leq j \leq n-1
\end{array}
$$

Case (i) m is odd

$$
\begin{array}{ll}
g\left(v_{2 i-1}\right) & =m+2-2 i, 1 \leq i \leq \frac{m+1}{2} \\
g\left(v_{2 i}\right) & =m+2 n+2 i, 1 \leq i \leq \frac{m-1}{2} \\
g\left(v_{m+1}\right) & =0
\end{array}
$$

$$
\begin{array}{ll}
g\left(v_{m+2 i}\right) & =2 m+2 n+2-2 i, 1 \leq i \leq \frac{m+1}{2} \\
g\left(v_{m+1+2 i}\right) & =2 i, 1 \leq i \leq \frac{m-1}{2}
\end{array}
$$

Case (ii) m is even

$$
\begin{array}{ll}
g\left(v_{2 i-1}\right) & =m+2-2 \mathrm{i}, 1 \leq i \leq \frac{m}{2} \\
g\left(v_{2 i}\right) & =m+2 n+2 i, 1 \leq i \leq \frac{m}{2} \\
g\left(v_{m+1}\right) & =0 \\
g\left(v_{m+2 i}\right) & =2 i-1,1 \leq i \leq \frac{m}{2} \\
g\left(v_{m+1+2 i}\right) & =2 m+2 n+1-2 i, 1 \leq i \leq \frac{m}{2}
\end{array}
$$

Clearly, $g(V)=\{0,1, \ldots, 2 m+2 n\}=\{0,1, \ldots, p-1\}$
So, it follows that all the vertex labels are distinct and g is a bijection. Hence, $C_{2 m+1} @ K_{1,2 n}$ is a directed edge-graceful graph.

The directed edge-graceful labeling of $C_{9} @ K_{1,10}$ and $C_{11} @ K_{1,8}$ are given in Figure 5 and Figure 6 respectively.

Figure 5: $C_{9} @ K_{1,10}$ with directed edge - graceful labeling

Figure 6: $C_{11} @ K_{1,8}$ with directed edge - graceful labeling
Definition 3.4. If G has order n, the corona of G with H denoted by $G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the $i^{\text {th }}$ vertex of G with an edge to every vertex in the $i^{\text {th }}$ copy of H.

Theorem 3.5. The graph $C_{n} \odot \bar{K}_{m}$ is directed edge-graceful if n is odd and m is even for $n \geq 3 \& m \geq 2$.

Proof. Let $G=C_{n} \odot \bar{K}_{m}$ and $V\left[C_{n} \odot \bar{K}_{m}\right]=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{11}, v_{12}, \ldots, v_{1 m}, v_{21}, v_{22}, \ldots\right.$, $\left.v_{2 m}, \ldots, v_{n 1}, v_{n 2}, \ldots, v_{n m}\right\}$ be the set of vertices. Now we orient the edges of $C_{n} \odot \bar{K}_{m}$ such that the $\operatorname{arc} \operatorname{set} A$ is given by,

$$
\begin{aligned}
A=\left\{\left(v_{2 i-1}, v_{2 i}\right), 1 \leq i \leq \frac{n-1}{2}\right\} \cup\left\{\left(v_{2 i+1}, v_{2 i}\right), 1 \leq i \leq \frac{n-1}{2}\right\} & \cup\left\{\left(v_{n}, v_{1}\right)\right\} \cup \\
& \left\{\left(v_{i}, v_{i, j}\right), 1 \leq i \leq n, 1 \leq j \leq m\right\}
\end{aligned}
$$

The edges and their orientation of $C_{n} \odot \bar{K}_{m}$ are as in Figure 7.

Figure 7: $C_{n} \odot \bar{K}_{m}$ with orientation

We now label the arcs of A as follows:

$$
\begin{array}{ll}
f\left(v_{2 i+1}, v_{2 i}\right) & =i, 1 \leq i \leq \frac{n-1}{2} \\
f\left(v_{2 i-1}, v_{2 i}\right) & =n(m+1)-\left(\frac{n-1}{2}\right)-1+i, 1 \leq i \leq \frac{n-1}{2} \\
f\left(v_{n}, v_{1}\right) & =n(m+1) \\
f\left(v_{i}, v_{i(2 j-1)}\right) & =\left(\frac{n-1}{2}\right)+\frac{m}{2}(i-1)+j, 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2} \\
f\left(v_{i}, v_{i(2 j)}\right) & =\left[n(m+1)-\left(\frac{n-1}{2}\right)\right]-\frac{m}{2}(i-1)-j, 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2}
\end{array}
$$

Then the values of $f^{+}\left(v_{i}\right), f^{+}\left(v_{i j}\right)$ and $f^{-}\left(v_{i}\right), f^{-}\left(v_{i, j}\right)$ are computed as under

$$
f^{+}\left(v_{1}\right) \quad=n(m+1)
$$

$$
\begin{array}{ll}
f^{-}\left(v_{1}\right) & =-\left[(n m+n)\left(\frac{m}{2}+1\right)-\left(\frac{n-1}{2}\right)\right] \\
f^{+}\left(v_{2 i}\right) & =(n m+n)-\left(\frac{n-1}{2}\right)-1+2 i, 1 \leq i \leq \frac{n-1}{2} \\
f^{-}\left(v_{2 i}\right) & =-\left[\frac{m}{2}(n m+n)\right], 1 \leq i \leq \frac{n-1}{2} \\
f^{+}\left(v_{2 i+1}\right) & =0,1 \leq \mathrm{i} \leq \frac{n-1}{2} \\
f^{-}\left(v_{2 i+1}\right) & =-\left[(n m+n)\left(\frac{m}{2}+1\right)-\left(\frac{n-1}{2}\right)+2 i\right], 1 \leq i \leq \frac{n-1}{2} \\
f^{+}\left(v_{i(2 j-1)}\right) & =\left(\frac{n-1}{2}\right)+\frac{m}{2}(i-1)+j, 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2} \\
f^{-}\left(v_{i(2 j-1)}\right) & =0,1 \leq i \leq n, 1 \leq j \leq \frac{m}{2} \\
f^{+}\left(v_{i(2 j)}\right) & =\left[n(m+1)-\left(\frac{n-1}{2}\right)\right]-\frac{m}{2}(i-1)-j, 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2} \\
f^{-}\left(v_{i(2 j)}\right) & =0,1 \leq i \leq n, 1 \leq j \leq \frac{m}{2}
\end{array}
$$

Then the induced vertex labels are,

$$
\begin{array}{ll}
g\left(v_{i(2 j-1)}\right) & =\left(\frac{n-1}{2}\right)+\frac{m}{2}(i-1)+j, 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2} \\
g\left(v_{i(2 j)}\right) & =\left[n(m+1)-\left(\frac{n-1}{2}\right)\right]-\frac{m}{2}(i-1)-j, 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2}
\end{array}
$$

Case (i) $\left(\frac{n-1}{2}\right)$ is even.

$$
\begin{array}{ll}
g\left(v_{2 i-1}\right) & =\left(\frac{n-1}{2}\right)+2-2 i, 1 \leq i \leq \frac{n+3}{4} \\
g\left(v_{2 i}\right) & =n(m+1)-\left(\frac{n-1}{2}\right)-1+2 i, 1 \leq i \leq \frac{n-1}{4} \\
g\left(v_{\frac{n-1}{2}+2 i}\right) & =2 i-1,1 \leq i \leq \frac{n-1}{4} \\
g\left(\begin{array}{l}
v_{\frac{n+1}{2}+2 i}
\end{array}\right) \quad & =n(m+1)-2 i, 1 \leq i \leq \frac{n-1}{4}
\end{array}
$$

Case (ii) $\left(\frac{n-1}{2}\right)$ is odd.

$$
\begin{array}{ll}
g\left(v_{2 i-1}\right) & =\left(\frac{n-1}{2}\right)+2-2 i, 1 \leq i \leq \frac{n+1}{4} \\
g\left(v_{2 i}\right) & =n(m+1)-\left(\frac{n-1}{2}\right)-1+2 i, 1 \leq i \leq \frac{n-3}{4}
\end{array}
$$

$$
g\left(v_{\left(\frac{n-3}{2}\right)+2 i}\right)
$$

$$
=2 i-2,1 \leq i \leq \frac{n+1}{4}
$$

$$
g\left(v_{\left(\frac{n-1}{2}\right)+2 i}\right) \quad=n(m+1)+1-2 i, 1 \leq i \leq \frac{n+1}{4}
$$

Clearly, $g(V)=\{0,1, \ldots, n m+n-1\}=\{0,1, \ldots, p-1\}$.
So, it follows that all the vertex labels are distinct and g is bijection. Hence, $C_{n} \odot \bar{K}_{m}$ is a directed edge-graceful graph.

The directed edge-graceful labeling of $C_{5} \odot \bar{K}_{8}$ and $C_{7} \odot \bar{K}_{8}$ are given in Figure 8 and Figure 9 respectively.

Figure 8: $\mathrm{C}_{5} \odot \overline{\boldsymbol{K}}_{\mathbf{8}}$ with directed edge - graceful labeling

Figure 9: $\mathrm{C}_{7} \odot \overline{\boldsymbol{K}}_{\mathbf{8}}$ with directed edge - graceful labeling

References

[1] G. S. Bloom, S. W. Golomb, Applications of numbered undirected graphs, Proc-IEEE, 65 (1977), 562-570.
[2] G. S. Bloom, S. W. Golomb, Numbered complete graphs, Unusual rulers, and assorted applications, in Theory and Applications of Graphs, Lecture Notes in Math., 642, Springer - Verlag, New York (1978), 53-65.
[3] G. S. Bloom, D. F. Hsu, On graceful digraphs and a problem in network addressing, Congr. Numer., 35 (1982), 91-103.
[4] G. S. Bloom, D. F. Hsu, On graceful directed graphs that are computational models of some algebraic systems, Graph Theory with Applications to Algorithms and Computers, Ed. Y. Alavi, Wiley, New York (1985).
[5] G. S. Bloom, D. F. Hsu, On graceful directed graphs, SIAM J. Alg. Discrete Math., 6 (1985), 519-536.
[6] J. A. Gallian, A dynamic survey of graph labeling, The Electronic journal of Combinatorics (2010).
[7] B. Gayathri, M. Duraisamy, Even edge - graceful labeling of fan graphs, Bulletin of Pure and Applied Sciences, 26E (No.2) (2007), 285-293.
[8] B. Gayathri, V. Vanitha, Directed edge - graceful labeling of some trees and cycle related graphs, Bharathidasan University journal of Science and Technology, (in press).
[9] F. Harary, Graph theory, Addison Wesley, Reading Mass (1972).
[10] S. Jayarani, Studies in graph theory- labelings of graphs, Ph.D. thesis, Manonmaniam Sundaranar University, (1996).
[11] S. Lo, On edge-graceful labelings of graphs, Congr. Numer., 50(1985), 231-241.
[12] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967), 349-355.

