International Journal of Mathematics and Soft Computing Vol.1, No.1 (2011), 89 - 104

Directed edge - graceful labeling of cycle and star related graphs

B. Gayathri

Associate Professor of Mathematics, Periyar E.V.R. College, Trichy – 620 023. E-mail: maduraigayathri@gmail.com

V. Vanitha Research Scholar, Mother Teresa Women's University, Kodaikanal – 624 102. E-mail: rajarajanvani@gmail.com

Abstract

Rosa [12] introduced the notion of graceful labelings. In 1985, Lo [11] introduced the notion of edge – graceful graphs. We extended the concept of edge – graceful labelings to directed graphs in [8]. In this paper we investigate directed edge – graceful labeling of cycle and star related graphs.

Key words: Graceful graphs, Directed graphs, Edge-graceful labeling **AMS Subject Classification (2010):** 05C78

1 Introduction

All graphs in this paper are finite and directed. Terms not defined here are used in the sense of Harary [9]. The symbols V(G) and E(G) denote the vertex set and edge set of a graph G. The cardinality of the vertex set is called the order of G denoted by p. The cardinality of the edge set is called the size of G denoted by q. A graph with p vertices and q edges is called a (p, q) graph.

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. Labeled graphs serve as useful models for a broad range of applications [1, 2]. A good account on graceful labeling problems can be found in the dynamic survey of Gallian [6].

A graph *G* is called a graceful labeling if *f* is an injection from the vertices of *G* to the set $\{0, 1, 2, ..., q\}$ such that, when each edge *xy* is assigned the label |f(x) - f(y)|, the resulting edge labels are distinct.

A graph G(V, E) is said to be edge–graceful if there exists a bijection f from E to $\{1, 2, ..., |E|\}$ such that the induced mapping f^+ from V to $\{0, 1, ..., |V| - 1\}$ given by, $f^+(x) = (\Sigma f(xy)) \mod(|V|)$ taken over all edges xy incident at x is a bijection.

A necessary condition for a graph *G* with *p* vertices and *q* edges to be edgegraceful is $q(q + 1) \equiv \frac{p(p+1)}{2} \pmod{p}$. Gayathri and Duraisamy introduced the concept of even edge-graceful labeling in [7]. Bloom and Hsu [3, 4, and 5] extended the notion of graceful labeling to directed graph. The concept of magic, antimagic and conservative labelings have been extended to directed graphs [10]. In [8] we extended the concept of edge–graceful labelings to directed graphs. In this paper we investigate directed edge – graceful labeling of cycle and star related graphs.

A (p, q) graph G is said to be directed edge – graceful if there exists an orientation of G and a labeling f of the arcs A of G with $\{1, 2, ..., q\}$ such that induced mapping g on V defined by, $g(v) = \left[f^+(v) - f^-(v)\right] \pmod{p}$ is a bijection where, $f^+(v) =$ the sum of the labels of all arcs with head v and $f^-(v) =$ the sum of the labels of all arcs with v as tail.

A graph G is said to be directed edge–graceful graph if it has directed edge– graceful labelings. Here, we investigate directed edge – graceful labeling of cycle and star related graphs.

2 Prior Results

Theorem 2.1. [8] The path P_{2n+1} is directed edge-graceful for all $n \ge 1$.

Theorem 2.2. [8] *The cycle graph* C_{2n+1} *is directed edge-graceful for all* $n \ge 1$.

Theorem 2.3. [8] The Butterfly graph B_n is directed edge-graceful if n is odd.

Theorem 2.4. [8] The Butterfly graph B_n is directed edge – graceful if n is even and $n \ge 4$.

Theorem 2.5. [8] The snail graph SN(2n + 1) is directed edge-graceful for all $n \ge 1$.

Theorem 2.6. [8] $\langle K_{1,n} : K_{1,n} \rangle$ is directed edge-graceful if n is even and $n \ge 4$.

Theorem 2.7. [8] The graph $P_3 \cup K_{1,2n+1}$ is directed edge-graceful for all $n \ge 1$.

Theorem 2.8. [8] The graph P_{2m} @ $K_{1,2n+1}$ is directed edge-graceful for all $m \ge 2$ and $n \ge 1$.

Theorem 2.9. [8] The graph $P_{2m+1} @ K_{1,2n}$ is directed edge-graceful for all $m \ge 1$ and $n \ge 1$.

3 Main Results

Definition 3.1. $G_1 @ G_2$ is nothing but one point union of G_1 and G_2 .

Theorem 3.2. The graph $C_{2m} \otimes K_{1, 2n+1}$ is directed edge-graceful for $m \ge 2$ and $n \ge 1$.

Proof. Let $G = C_{2m} @ K_{1, 2n+1}$ and $V[C_{2m} @ K_{1, 2n+1}] = \{v_1, v_2, ..., v_{2m}, u_1, u_2, ..., u_{2n+1}\}$ be the set of vertices. Now we orient the edges of $C_{2m} @ K_{1, 2n+1}$ such that the arc set *A* is given by,

 $A = \{(v_{2i+1}, v_{2i}), 1 \le i \le m-1\} \cup \{v_1, v_{2m}\} \cup \{(v_{2i-1}, v_{2i}), 1 \le i \le m\} \cup \{(v_1, u_j), 1 \le j \le 2n+1\}.$

The edges and their orientation of $C_{2m} \otimes K_{1,2n+1}$ are as in Figure 1.

Figure 1: $C_{2m} @ K_{1,2n+1}$ with orientation

We now label the arcs of *A* as follows:

$f((v_{2i+1}, v_{2i}))$	$= i, 1 \le i \le m - 1$
$f((v_1, v_{2m}))$	= m
$f((v_{2i-1}, v_{2i}))$	$= m + 2n + 1 + i, 1 \le i \le m$
$f((v_1, u_{2j-1}))$	$= m + j, 1 \le j \le n + 1$
$f((v_1, u_{2j}))$	$= m + 2n + 2 - j, \ 1 \le j \le n$

Then the values of $f^+(v_i)$, $f^+(u_j)$ and $f^-(v_i)$, $f^-(u_j)$ are computed as under.

$$f^{+}(v_{2i}) = m + 2n + 1 + 2i, 1 \le i \le m$$

$$f^{-}(v_{2i}) = 0, 1 \le i \le m$$

$$f^{+}(v_{2i+1}) = 0, 1 \le i \le m - 1$$

$$f^{-}(v_{2i+1}) = -(m + 2n + 2 + 2i), 1 \le i \le m - 1$$

$$f^{+}(v_{1}) = 0$$

$$f^{-}(v_{1}) = -(m + n + 1) [2(n + 1) + 1]$$

$$f^{+}(u_{2j-1}) = m + j, 1 \le j \le n + 1$$

$$f^{-}(u_{2j-1}) = 0, 1 \le j \le n + 1$$

$$f^{+}(u_{2j}) = m + 2n + 2 - j, 1 \le j \le n$$

$$f^{-}(u_{2j}) = 0, 1 \le j \le n$$

Then the induced vertex labels are,

$$g(u_{2j-1}) = m + j, \ 1 \le j \le n + 1$$

$$g(u_{2j}) = m + 2n + 2 - j, \ 1 \le j \le n$$

Case (i) *m* is odd.

$$g(v_{2i-1}) = m+1-2i, 1 \le i \le \frac{m+1}{2}$$

$$g(v_{2i}) = m + 2n + 1 + 2i, \ 1 \le i \le \frac{m-1}{2}$$

$$g(v_{m-1+2i}) = 2i - 1, \ 1 \le i \le \frac{m+1}{2}$$

$$g(v_{m+2i}) = (2m+2n+1) \cdot \left(\frac{m-1}{2}\right) + 2 - 2i, 1 \le i \le \frac{m-1}{2}$$

Case (ii) *m* is even.

$$g(v_{2i-1}) = m + 1 - 2i, \ 1 \le i \le \frac{m}{2}$$

$$g(v_{2i}) = m + 2n + 1 + 2i, \ 1 \le i \le \frac{m-2}{2}$$

$$g(v_{m-2+2i}) = 2i-2, \ 1 \le i \le \frac{m+2}{2}$$

$$g(v_{m-1+2i}) = 2m + 2n + 2 - 2i, \ 1 \le i \le \frac{m}{2}.$$

Clearly, $g(V) = \{0, 1, ..., 2m + 2n\} = \{0, 1, ..., p - 1\}$

So, it follows that all the vertex labels are distinct and g is a bijection. Hence, $C_{2m} @ K_{1,2n+1}$ is a directed edge - graceful graph. The directed edge - graceful labeling of $C_{10} @ K_{1,13}$ and $C_{12} @ K_{1,9}$ are given in Figure 2 and Figure 3 respectively.

Figure 2: $C_{10} @ K_{1,13}$ with directed edge - graceful labeling

Figure 3: $C_{12} @ K_{1,9}$ with directed edge - graceful labeling

Theorem 3.3. The graph $C_{2m+1} @ K_{1,2n}$ is a directed edge - graceful for $m \ge 1$ and $n \ge 1$.

Proof. Let $G = C_{2m+1} @ K_{1,2n}$ and $V[C_{2m+1} @ K_{1,2n}] = \{v_1, v_2, ..., v_{2m+1}, u_1, u_2, ..., u_{2n}\}$ be the set of vertices. Now we orient the edges of $C_{2m+1} @ K_{1,2n}$ such that the arc set *A* is given by,

 $A = \{(v_{2i-1}, v_{2i}), 1 \le i \le m\} \cup \{(v_{2i+1}, v_{2i}), 1 \le i \le m\} \cup \{(v_{2m+1}, v_1)\} \cup \{(v_{m+1}, u_j), 1 \le j \le 2n\}$

The edges and their orientation of C_{2m+1} @ $K_{1,2n}$ are as in Figure 4.

Figure 4: $C_{2m+1} @ K_{1,2n}$ with orientation

We now label the arcs of A as follows:

$$\begin{aligned} f\left((v_{2i-1}, v_{2i})\right) &= m + 2n + i, \ 1 \le i \le m \\ f\left((v_{2i+1}, v_{2i})\right) &= i, \ 1 \le i \le m \\ f\left((v_{2m+1}, v_1)\right) &= 2m + 2n + 1 \\ f\left((v_{m+1}, u_1)\right) &= m + 1 \\ f\left((v_{m+1}, u_{2j})\right) &= m + 1 + j, \ 1 \le j \le n \\ f\left((v_{m+1}, u_{2j+1})\right) &= m + 2n + 1 - j, \ 1 \le j \le n - 1 \end{aligned}$$

Then the values of $f^+(v_i)$, $f^+(u_j)$ and $f^-(v_i)$, $f^-(u_j)$ are computed as under.

$$f^{+}(v_{1}) = 2m + 2n + 1$$

$$f^{-}(v_{1}) = -(m + 2n + 1)$$

$$f^{+}(v_{2i}) = \begin{cases} m + 2n + 2i, 1 \le i \le \frac{m}{2} \text{ if } m \text{ is even} \\ m + 2n + 2i, 1 \le i \le \frac{m - 1}{2} \text{ if } m \text{ is odd} \end{cases}$$

$$f^{-}(v_{2i}) = \begin{cases} 0, 1 \le i \le \frac{m}{2} \text{ if } m \text{ is even.} \\ 0, 1 \le i \le \frac{m - 1}{2} \text{ if } m \text{ is odd} \end{cases}$$

$$f^{+}(v_{m+1}) = \begin{cases} 2m + 2n + 1, \text{ if } m \text{ is odd} \\ 0, \text{ if } m \text{ is even} \end{cases}$$

$$f^{-}(v_{m+1}) = \begin{cases} -[(n - 1)(2m + 2n + 2) + 2(m + 1) + n], \text{ if } m \text{ is odd} \\ -[n(2m + 2n + 3) + 2m + 1], \text{ if } m \text{ is even} \end{cases}$$

$$f^{+}(v_{m+2i}) = \begin{cases} 2m + 2n + 2i, 1 \le i \le \frac{m}{2} \text{ if } m \text{ is even} \\ 0, 1 \le i \le \frac{m + 1}{2} \text{ if } m \text{ is odd} \end{cases}$$

$$f^{-}(v_{m+2i}) = \begin{cases} 0, 1 \le i \le \frac{m}{2} & \text{if } m \text{ is even} \\ -(2m+2n+2i), 1 \le i \le \frac{m+1}{2} & \text{if } m \text{ is odd} \end{cases}$$

$$f^{+}(v_{m+1+2i}) = \begin{cases} 0, 1 \le i \le \frac{m}{2} \text{ if } m \text{ is even} \\ 2m + 2n + 1 + 2i, 1 \le i \le \frac{m-1}{2} \text{ if } m \text{ is odd} \end{cases}$$

$$f^{-}(v_{m+1+2i}) = \begin{cases} -(2m+2n+1+2i), 1 \le i \le \frac{m}{2} \text{ if } m \text{ is even} \\ 0, 1 \le i \le \frac{m-1}{2} \text{ if } m \text{ is odd.} \end{cases}$$

$$f^{+}(u_{1}) = m+1$$

$$f^{-}(u_{1}) = 0$$

$$f^{+}(u_{2j}) = m+1+j, 1 \le j \le n$$

$$f^{-}(u_{2j}) = 0, 1 \le j \le n$$

$$f^{+}(u_{2j+1}) = m+2n+1-j, 1 \le j \le n-1$$

$$f^{-}(u_{2j+1}) = 0, 1 \le j \le n-1$$

Then the induced vertex labels are

$$g(u_1) = m + 1$$

$$g(u_{2j}) = m + 1 + j, 1 \le j \le n$$

$$g(u_{2j+1}) = m + 2n + 1 - j, 1 \le j \le n - 1$$

Case (i) m is odd

$$g(v_{2i-1}) = m + 2 - 2i, 1 \le i \le \frac{m+1}{2}$$
$$g(v_{2i}) = m + 2n + 2i, 1 \le i \le \frac{m-1}{2}$$
$$g(v_{m+1}) = 0$$

$$g(v_{m+2i}) = 2m + 2n + 2 - 2i, \ 1 \le i \le \frac{m+1}{2}$$
$$g(v_{m+1+2i}) = 2i, \ 1 \le i \le \frac{m-1}{2}$$

Case (ii) *m* is even

$$g(v_{2i-1}) = m + 2 - 2i, \ 1 \le i \le \frac{m}{2}$$

$$g(v_{2i}) = m + 2n + 2i, \ 1 \le i \le \frac{m}{2}$$

$$g(v_{m+1}) = 0$$

$$g(v_{m+2i}) = 2i - 1, \ 1 \le i \le \frac{m}{2}$$

$$g(v_{m+1+2i}) = 2m + 2n + 1 - 2i, \ 1 \le i \le \frac{m}{2}$$

Clearly, $g(V) = \{0, 1, ..., 2m + 2n\} = \{0, 1, ..., p - 1\}$

So, it follows that all the vertex labels are distinct and g is a bijection. Hence, $C_{2m+1} @ K_{1,2n}$ is a directed edge-graceful graph.

The directed edge-graceful labeling of $C_9 @ K_{1,10}$ and $C_{11} @ K_{1,8}$ are given in Figure 5 and Figure 6 respectively.

Figure 5: $C_9 @ K_{1,10}$ with directed edge - graceful labeling

B. Gayathri and V. Vanitha

Figure 6: C_{11} @ $K_{1,8}$ with directed edge - graceful labeling

Definition 3.4. If G has order n, the corona of G with H denoted by $G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the *i*th vertex of G with an edge to every vertex in the *i*th copy of H.

Theorem 3.5. The graph $C_n \odot \overline{K}_m$ is directed edge-graceful if n is odd and m is even for $n \ge 3 \& m \ge 2$.

Proof. Let $G = C_n \odot \overline{K}_m$ and $V[C_n \odot \overline{K}_m] = \{v_1, v_2, ..., v_n, v_{11}, v_{12}, ..., v_{1m}, v_{21}, v_{22}, ..., v_{2m}, ..., v_{n1}, v_{n2}, ..., v_{nm}\}$ be the set of vertices. Now we orient the edges of $C_n \odot \overline{K}_m$ such that the arc set A is given by,

$$A = \left\{ (v_{2i-1}, v_{2i}), 1 \le i \le \frac{n-1}{2} \right\} \cup \left\{ (v_{2i+1}, v_{2i}), 1 \le i \le \frac{n-1}{2} \right\} \cup \{ (v_n, v_1) \} \cup$$

 $\{(v_i, v_{i,j}), 1 \le i \le n, 1 \le j \le m\}$

The edges and their orientation of $C_n \odot \overline{K}_m$ are as in Figure 7.

Figure 7: $C_n \odot \bar{K}_m$ with orientation

We now label the arcs of *A* as follows:

$$f(v_{2i+1}, v_{2i}) = i, 1 \le i \le \frac{n-1}{2}$$

$$f(v_{2i-1}, v_{2i}) = n(m+1) - \left(\frac{n-1}{2}\right) - 1 + i, 1 \le i \le \frac{n-1}{2}$$

$$f(v_n, v_1) = n(m+1)$$

$$f(v_i, v_{i(2j-1)}) = \left(\frac{n-1}{2}\right) + \frac{m}{2}(i-1) + j, 1 \le i \le n, 1 \le j \le \frac{m}{2}$$

$$f(v_i, v_{i(2j)}) = \left[n(m+1) - \left(\frac{n-1}{2}\right)\right] - \frac{m}{2}(i-1) - j, 1 \le i \le n, 1 \le j \le \frac{m}{2}$$

Then the values of $f^+(v_i)$, $f^+(v_{ij})$ and $f^-(v_i)$, $f^-(v_{i,j})$ are computed as under $f^+(v_1) = n(m+1)$

$$\begin{split} f^{-}(v_{1}) &= -\left[(nm+n)\left(\frac{m}{2}+1\right) - \left(\frac{n-1}{2}\right)\right] \\ f^{+}(v_{2i}) &= (nm+n) - \left(\frac{n-1}{2}\right) - 1 + 2i, \ 1 \leq i \leq \frac{n-1}{2} \\ f^{-}(v_{2i}) &= -\left[\frac{m}{2}(nm+n)\right], \ 1 \leq i \leq \frac{n-1}{2} \\ f^{+}(v_{2i+1}) &= 0, \ 1 \leq i \leq \frac{n-1}{2} \\ f^{-}(v_{2i+1}) &= -\left[(nm+n)\left(\frac{m}{2}+1\right) - \left(\frac{n-1}{2}\right) + 2i\right], \ 1 \leq i \leq \frac{n-1}{2} \\ f^{+}(v_{i(2j-1)}) &= \left(\frac{n-1}{2}\right) + \frac{m}{2}(i-1) + j, \ 1 \leq i \leq n, \ 1 \leq j \leq \frac{m}{2} \\ f^{-}(v_{i(2j-1)}) &= 0, \ 1 \leq i \leq n, \ 1 \leq j \leq \frac{m}{2} \\ f^{+}(v_{i(2j)}) &= \left[n(m+1) - \left(\frac{n-1}{2}\right)\right] - \frac{m}{2}(i-1) - j, \ 1 \leq i \leq n, \ 1 \leq j \leq \frac{m}{2} \\ f^{-}(v_{i(2j)}) &= 0, \ 1 \leq i \leq n, \ 1 \leq j \leq \frac{m}{2} \end{split}$$

Then the induced vertex labels are,

$$g(v_{i(2j-1)}) = \left(\frac{n-1}{2}\right) + \frac{m}{2}(i-1) + j, 1 \le i \le n, 1 \le j \le \frac{m}{2}$$
$$g(v_{i(2j)}) = \left[n(m+1) - \left(\frac{n-1}{2}\right)\right] - \frac{m}{2}(i-1) - j, 1 \le i \le n, 1 \le j \le \frac{m}{2}$$

$$\begin{aligned} \mathbf{Case} (\mathbf{i}) \left(\frac{n-1}{2}\right) & = \left(\frac{n-1}{2}\right) + 2 - 2i, \ 1 \le i \le \frac{n+3}{4} \\ g(v_{2i-1}) & = n(m+1) - \left(\frac{n-1}{2}\right) - 1 + 2i, \ 1 \le i \le \frac{n-1}{4} \\ g\left(v_{\frac{n-1}{2}+2i}\right) & = 2i - 1, \ 1 \le i \le \frac{n-1}{4} \\ g\left(v_{\frac{n+1}{2}+2i}\right) & = n(m+1) - 2i, \ 1 \le i \le \frac{n-1}{4} \\ \end{aligned}$$
$$\begin{aligned} \mathbf{Case} (\mathbf{ii}) \left(\frac{n-1}{2}\right) & = n(m+1) - 2i, \ 1 \le i \le \frac{n+1}{4} \\ g(v_{2i-1}) & = n(m+1) - \left(\frac{n-1}{2}\right) - 1 + 2i, \ 1 \le i \le \frac{n-3}{4} \\ g\left(v_{\frac{n-3}{2}+2i}\right) & = 2i - 2, \ 1 \le i \le \frac{n+1}{4} \\ g\left(v_{\frac{n-3}{2}+2i}\right) & = 2i - 2, \ 1 \le i \le \frac{n+1}{4} \\ g\left(v_{\frac{n-3}{2}+2i}\right) & = n(m+1) + 1 - 2i, \ 1 \le i \le \frac{n+1}{4} \end{aligned}$$

Clearly, $g(V) = \{0, 1, ..., nm + n - 1\} = \{0, 1, ..., p - 1\}.$

So, it follows that all the vertex labels are distinct and g is bijection. Hence, $C_n \odot \overline{K}_m$ is a directed edge-graceful graph.

The directed edge-graceful labeling of $C_5 \odot \overline{K}_{_8}$ and $C_7 \odot \overline{K}_{_8}$ are given in Figure 8 and Figure 9 respectively.

Figure 8: C₅ \odot \overline{K}_8 with directed edge - graceful labeling

Figure 9: C₇ \odot \overline{K}_8 with directed edge - graceful labeling

References

- [1] G. S. Bloom, S. W. Golomb, *Applications of numbered undirected graphs*, Proc–IEEE, 65 (1977), 562–570.
- [2] G. S. Bloom, S. W. Golomb, Numbered complete graphs, Unusual rulers, and assorted applications, in Theory and Applications of Graphs, Lecture Notes in Math., 642, Springer – Verlag, New York (1978), 53–65.
- [3] G. S. Bloom, D. F. Hsu, On graceful digraphs and a problem in network addressing, Congr. Numer., 35 (1982), 91–103.
- [4] G. S. Bloom, D. F. Hsu, On graceful directed graphs that are computational models of some algebraic systems, Graph Theory with Applications to Algorithms and Computers, Ed. Y. Alavi, Wiley, New York (1985).
- [5] G. S. Bloom, D. F. Hsu, On graceful directed graphs, SIAM J. Alg. Discrete Math., 6 (1985), 519–536.
- [6] J. A. Gallian, *A dynamic survey of graph labeling*, The Electronic journal of Combinatorics (2010).
- [7] B. Gayathri, M. Duraisamy, Even edge graceful labeling of fan graphs, Bulletin of Pure and Applied Sciences, 26E (No.2) (2007), 285–293.
- [8] B. Gayathri, V. Vanitha, Directed edge graceful labeling of some trees and cycle related graphs, Bharathidasan University journal of Science and Technology, (in press).
- [9] F. Harary, *Graph theory*, Addison Wesley, Reading Mass (1972).
- [10] S. Jayarani, *Studies in graph theory- labelings of graphs*, Ph.D. thesis, Manonmaniam Sundaranar University, (1996).
- [11] S. Lo, On edge–graceful labelings of graphs, Congr. Numer., 50(1985), 231–241.

104 B. Gayathri and V. Vanitha

[12] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967), 349–355.