Cordial labeling for the splitting graph of some standard graphs

P. Lawrence Rozario Raj
Department of Mathematics, St. Joseph's College Trichirappalli - 620 002, Tamil Nadu, India. E-mail: lawraj2006@yahoo.co.in
S. Koilraj
Department of Mathematics, St. Joseph's College Trichirappalli - 620 002, Tamil Nadu, India. E-mail: skoilraj@yahoo.com

Abstract

In this paper we prove that the splitting graph of path P_{n}, cycle C_{n}, complete bipartite graph $K_{m, n}$, matching M_{n}, wheel W_{n} and $\left\langle\mathrm{K}_{1, \mathrm{n}}^{(1)}: \mathrm{K}_{1, \mathrm{n}}^{(2)}: \ldots: \mathrm{K}_{1, \mathrm{n}}^{(\mathrm{k})}>\right.$ are cordial.

Key words: Cordial labeling, Splitting graph.
AMS Subject Classification (2010): 05C78.

1 Introduction

All graphs considered here are finite, simple and undirected. The origin of graph labelings can be attributed to Rosa [7]. For all terminologies and notations we follow Harary [5]. Following definitions are useful for the present study.

Definition 1.1. [8] For each vertex v of a graph G, take a new vertex v'. Join v'to all the vertices of G adjacent to v. The graph $S(G)$ thus obtained is called splitting graph of G.

Definition 1.2. [9] The graph $G=\left\langle K_{1, n}^{(1)}: K_{1, n}^{(2)}: \ldots . . K_{1, n}^{(k)}\right\rangle$ is obtained from k copies of stars $K_{1, n}^{(1)}, K_{1, n}^{(2)}, \ldots, K_{1, n}^{(k)}$ by joining apex vertices of each $K_{1, n}^{(p-1)}$ and $K_{1, n}^{(p)}$ to a new vertex $x_{p-1}, 2 \leq p \leq k$.

Note that G has $k(n+2)-1$ vertices and $k(n+2)-2$ edges.

Definition 1.3. The assignment of values subject to certain conditions to the vertices of a graph is known as graph labeling.

Definition 1.4. Let $G=(V, E)$ be a graph. A mapping $f: V(G) \rightarrow\{0,1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f.

For an edge $\mathrm{e}=\mathrm{uv}$, the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ is given by $f^{*}(e)$ $=|f(u)-f(v)|$. Let $v_{f}(0), v_{f}(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and let $e_{f}(0), e_{f}(1)$ be the number of edges having labels 0 and 1 respectively under f^{*}.

Definition 1.5. A binary vertex labeling of a graph G is called a cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is cordial if it admits cordial labeling.

Definition 1.6. A wheel graph W_{n} is obtained from a cycle C_{n} by adding a new vertex and joining it to all the vertices of the cycle by an edge, the new edges are called the spokes of the wheel.

Definition 1.7. A fan graph F_{n} is obtained from a path P_{n} by adding a new vertex and joining it to all the vertices of the path by an edge, the new edges are called the spokes of the fan.

Definition 1.8. A matching graph M_{n} is n copies of K_{2}.
The concept of cordial labeling was introduced by Cahit [3]. S.M. Lee and A. Liu [6] proved that all complete bipartite graphs and all fans are cordial. Further, they proved that, the cycle C_{n} is cordial if and only if $n \not \equiv 2(\bmod 4)$, the matching M_{n} is cordial if and only if $n \not \equiv 2(\bmod 4)$ and the wheel W_{n} is cordial if and only if $n \not \equiv$ $3(\bmod 4), \mathrm{n} \geq 3$. S.K. Vaidya et al.[9] proved $\left\langle\mathrm{K}_{1, \mathrm{n}}^{(1)}: \mathrm{K}_{1, \mathrm{n}}^{(2)}: \ldots: \mathrm{K}_{1, \mathrm{n}}^{(\mathrm{k})}>\right.$ is cordial.

In this paper, we prove that the splitting graph of path P_{n}, cycle C_{n}, complete bipartite graph $K_{m, n}$, matching M_{n}, wheel W_{n} and $\left\langle\mathrm{K}_{1, \mathrm{n}}^{(1)}: \mathrm{K}_{1, \mathrm{n}}^{(2)}: \ldots: \mathrm{K}_{1, \mathrm{n}}^{(\mathrm{k})}\right\rangle$ are cordial.

2 Main Results

Theorem 2.1. The graph $S\left(P_{n}\right)$ is cordial.
Proof. Let G be P_{n}. The vertices of P_{n} are $v_{l}, v_{2}, \ldots, v_{n}$. Then $S(G)$ has the vertices $v_{1}, v_{2}, \ldots, v_{n}, v_{1}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$. The vertex labeling $f: V(S(G)) \rightarrow\{0,1\}$ is given below.
$f\left(v_{i}\right)= \begin{cases}1 & \text { if } i \equiv 0,1(\bmod 4) \\ 0 & \text { if } i \equiv 2,3(\bmod 4)\end{cases}$
$f\left(v_{i}\right)= \begin{cases}1 & \text { if } i \equiv 2,3(\bmod 4) \\ 0 & \text { if } i \equiv 0,1(\bmod 4)\end{cases}$
$v_{f}(0)=v_{f}(1)$ for all n and $e_{f}(0)=e_{f}(1)+1$ if n is even and
$e_{f}(0)=e_{f}(1)$ if n is odd.
Therefore the graph $S(G)$ satisfies the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence $S\left(P_{n}\right)$ is cordial.
Illustration 2.2. The cordial labelings of $S\left(P_{4}\right)$ and $S\left(P_{5}\right)$ are shown in Figure 1(a) and 1 (b).

Figure 1: Cordial labelings of $S\left(P_{4}\right)$ and $S\left(P_{5}\right)$

Theorem 2.3. The graph $S\left(C_{n}\right)$ is cordial for $n \not \equiv 2(\bmod 4), n \geq 3$.
Proof. Let G be $C_{n}(n \geq 3)$. The vertices of C_{n} are $v_{1}, v_{2}, \ldots, v_{n}$. Then $S(G)$ has the vertices $v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$. The vertex labeling $f: V(S(G)) \rightarrow\{0,1\}$ is given below.

$$
\begin{array}{lll}
f\left(v_{i}\right)=0 \text { and } f\left(v_{i}\right)=1 & \text { if } & i \equiv 2,3(\bmod 4), \\
f\left(v_{i}\right)=1 \text { and } f\left(v_{i}\right)=0 & \text { if } & i \equiv 0,1(\bmod 4) .
\end{array}
$$

The following table shows that the graph $S(G)$ satisfies the conditions
$\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

n	Vertex Conditions	Edge Conditions
$n \equiv 0(\bmod 4)$	$v_{f}(0)=v_{f}(1)$	$e_{f}(0)=e_{f}(1)$
n is odd	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$

Hence $S\left(C_{n}\right)$ is cordial.
Illustration 2.4. The cordial labelings of $S\left(C_{4}\right)$ and $S\left(C_{5}\right)$ are shown in Figure 2 (a) and 2(b).

Figure 2: Cordial labelings of $S\left(C_{4}\right)$ and $S\left(C_{5}\right)$

Theorem 2.5. The graph $S\left(W_{n}\right)$ is cordial for $n \not \equiv 2(\bmod 4), n \geq 3$.
Proof. Let G be $W_{n}(n \geq 3)$. The vertices are $c, v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$. Then $S(G)$ has the vertices $c, v_{1}, v_{2}, \ldots, v_{n}, c^{\prime}, v_{1}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$. The vertex labeling $f: V(S(G)) \rightarrow\{0,1\}$ is given below.

$$
f(c)=0 \text { and } f\left(c^{\prime}\right)=1
$$

Case (i) $n \equiv 0(\bmod 4)$

$$
\begin{array}{lll}
f\left(v_{i}\right)=f\left(v_{i}^{\prime}\right)=1 & \text { if } & i \equiv 1,2(\bmod 4), \\
f\left(v_{i}\right)=f\left(v_{i}\right)=0 & \text { if } & i \equiv 0,3(\bmod 4) .
\end{array}
$$

Case (ii) $n \equiv 1(\bmod 4)$

$$
\begin{array}{ll}
f\left(v_{i}\right)=0 & \text { if } \quad i \equiv 2,3(\bmod 4), \\
f\left(v_{i}\right)=1 & \text { if } \quad i \equiv 0,1(\bmod 4), \\
f\left(v_{i}^{\prime}\right)=1 & \text { for } \quad i=1 \text { to }(n-1) / 2, \\
f\left(v_{i}^{\prime}\right)=0 & \text { for } \quad i=(\mathrm{n}+1) / 2 \text { to } n .
\end{array}
$$

Case $($ iii) $n \equiv 3(\bmod 4)$

$$
\begin{array}{ll}
f\left(v_{i}\right)=0 & \text { if } \quad i \equiv 2,3(\bmod 4), \\
f\left(v_{i}\right)=1 & \text { if } \quad i \equiv 0,1(\bmod 4), \\
f\left(v_{i}^{\prime}\right)=0 & \text { for } \quad i=1 \text { to }(n-1) / 2, \\
f\left(v_{i}^{\prime}\right)=1 & \text { for } \quad i=(n+1) / 2 \text { to } .
\end{array}
$$

The following table shows that the graph $S(G)$ satisfies the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

n	Vertex Conditions	Edge Conditions
$n \equiv 0(\bmod 4)$	$v_{f}(0)=v_{f}(1)$	$e_{f}(0)=e_{f}(1)$
$n \equiv 1(\bmod 4)$	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)$
$n \equiv 3(\bmod 4)$	$v_{f}(0)=v_{f}(1)$	$e_{f}(0)=e_{f}(1)$

Hence $\mathrm{S}\left(\mathrm{W}_{\mathrm{n}}\right)$ is cordial.

Illustration 2.6. The cordial labelings of $S\left(W_{4}\right)$ and $S\left(W_{5}\right)$ are shown in Figure 3 (a) and 3(b).

(a)

Figure 3: Cordial labelings of $S\left(W_{4}\right)$ and $S\left(W_{5}\right)$
Theorem 2.7. The graph $S\left(M_{n}\right)$ is cordial.
Proof. Let G be M_{n}. The vertices are $v_{1}, v_{2}, \ldots, v_{2 n}$. Then $S(G)$ has the vertices $v_{1}, v_{2}, \ldots, v_{2 n}, v_{1}, v_{2}^{\prime}, \ldots, v_{2 n}{ }^{\prime}$ in the order $v_{2}^{\prime}, v_{1}, v_{2}, v_{1}, v_{4}{ }^{\prime}, v_{3}, v_{4}, v_{3}^{\prime}, \ldots, v_{2 n}{ }^{\prime}, v_{2 n-1}, v_{2 n}$, $v_{2 n-1} I^{\prime}$. The vertex labeling $f: V(S(G)) \rightarrow\{0,1\}$ is given below.

$$
f\left(v_{i}\right)=0 \quad \text { if } \quad i \equiv 0,1,2(\bmod 4)
$$

$$
\begin{array}{lll}
f\left(v_{i}\right)=1 & \text { if } & i \equiv 3(\bmod 4) \\
f\left(v_{i}^{\prime}\right)=1 & \text { if } & i \equiv 0,1,2(\bmod 4) \\
f\left(v_{i}^{\prime}\right)=0 & \text { if } & i \equiv 3(\bmod 4)
\end{array}
$$

The following table shows that the graph $S(G)$ satisfies the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

n	Vertex Conditions	Edge Conditions
n is odd	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$
n is even	$v_{f}(0)=v_{f}(1)$	$e_{f}(0)=e_{f}(1)$

Hence $S\left(M_{n}\right)$ is cordial.
Illustration 2.8. The cordial labelings of $S\left(M_{3}\right)$ and $S\left(M_{4}\right)$ are shown in Figure 4(a) and 4(b).

(a)

(b)

Figure 4: Cordial labelings of $S\left(M_{3}\right)$ and $S\left(M_{4}\right)$

Theorem 2.9. The graph $S\left(F_{n}\right)$ is cordial for $n \geq 2$.
Proof. Let G be $F_{n}(n \geq 2)$. The vertices are $c, v_{1}, v_{2}, \ldots, v_{n}$. Then $S(G)$ has the vertices $c, v_{1}, v_{2}, \ldots, v_{n}, c^{\prime}, v_{1}{ }^{\prime}, v_{2}^{\prime}, \ldots, v_{n}{ }^{\prime}$. The vertex labeling $f: V(S(G)) \rightarrow\{0,1\}$ is given below.
$f(c)=1 \quad$ and $f\left(c^{\prime}\right)=0$
$f\left(v_{i}\right)=0$ and $f\left(v_{i}^{\prime}\right)=1 \quad$ for $i=1$ to n.
The graph $S(G)$ satisfies the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ since $v_{f}(0)=v_{f}(1)$ and $e_{f}(0)=e_{f}(1)+1$ for $n \geq 2$.

Hence $S\left(F_{n}\right)$ is cordial for $n \geq 2$.

Illustration 2.10. The cordial labelings of $S\left(F_{4}\right)$ and $S\left(F_{5}\right)$ are shown in Figure 5(a) and 5(b).

Figure 5: Cordial labelings of $S\left(F_{4}\right)$ and $S\left(F_{5}\right)$
Theorem 2.11. The graph $S\left(K_{m, n}\right)$ is cordial for any $m, n \in N$.
Proof. Let G be $K_{m, n}$. Denote the vertices of $K_{m, n}$ as $v_{l}, v_{2}, \ldots, v_{m}$ and $u_{l}, u_{2}, \ldots, u_{n}$. Then $S(G)$ has the vertices $v_{l}, v_{2}, \ldots, v_{m}, v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots, v_{m}^{\prime}, u_{1}, u_{2}, \ldots, u_{n}, u_{1}, u_{2}{ }_{2}^{\prime}, \ldots, u_{n}^{\prime}$. The vertex labeling $f: V(S(G)) \rightarrow\{0,1\}$ is given below.

$$
\begin{array}{llll}
f\left(v_{i}\right)=f\left(u_{i}\right)=1 & \text { and } & f\left(v_{i}^{\prime}\right)=f\left(u_{i}^{\prime}\right)=0 & \text { if } \quad i \text { is odd. } \\
f\left(v_{i}\right)=f\left(u_{i}\right)=0 & \text { and } & f\left(v_{i}^{\prime}\right)=f\left(u_{i}\right)=1 \text { if } & i \text { is even. }
\end{array}
$$

The following table shows that the graph $\mathrm{S}(G)$ satisfies the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

m	n	Vertex Conditions	Edge Conditions
1	odd	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$
odd	1	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$
$m=n$ and odd		$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$
others	$v_{f}(0)=v_{f}(1)$	$e_{f}(0)=e_{f}(1)$	

Hence $S\left(K_{m, n}\right)$ is cordial.
Illustration 2.12. The cordial labelings of $S\left(K_{2,3}\right)$ and $S\left(K_{3,3}\right)$ are shown in Figure 6(a) and 6(b).

Figure 6: Cordial labelings of $S\left(K_{2,3}\right)$ and $S\left(K_{3,3}\right)$

Theorem 2.13. The graph $S\left(\left\langle K_{1, n}^{(\mathbf{1})}: K_{1, n}^{(\mathbf{2})}: \ldots: K_{1, n}^{(k)}\right\rangle\right)$ is cordial.
Proof. Let G be $\left.<K_{1, n}^{(1)}: K_{1, n}^{(2)}: \ldots: K_{1, n}^{(k)}\right\rangle$. Let $K_{1, n}^{(i)}, i=1,2, . ., k$ be copies of $K_{1, n}$. Let $v_{i j}$ be the pendant vertices of $K_{1, n}^{(i)}$ and c_{i} be the apex vertex of $K_{1, n}^{(i)}(i=1,2, . ., k$ and $j=$ $1,2, \ldots, n)$ and $x_{1}, x_{2}, \ldots, x_{n-1}$ be vertices such that c_{i-1} and c_{i} are adjacent to x_{i-1}, where $2 \leq i \leq k$.

Now $S(G)$ has the vertices $v_{i j}, v_{i j}{ }^{\prime}, c_{i}, c_{i}{ }^{\prime}, x_{i-1}$ and $x_{i-1}{ }^{\prime}$ vertices, where $i=1,2, . ., k$ and $j=1,2, . ., n$. The vertex labeling $f: V(S(G)) \rightarrow\{0,1\}$ is given below.
For $i=1,2, . ., k$

$$
\begin{array}{lll}
f\left(v_{i j}\right)=1 \text { and } f\left(v_{i j}^{\prime}\right)=0 & \text { if } & j \text { is odd, } \\
f\left(v_{i j}\right)=0 \text { and } f\left(v_{i j}^{\prime}\right)=1 & \text { if } & j \text { is even, } \\
f\left(c_{i}\right)=1 \text { and } f\left(c_{i}\right)=0 & \text { if } & i \text { is odd, } \\
f\left(c_{i}\right)=0 \text { and } f\left(c_{i}\right)=1 & \text { if } & i \text { is even, } \\
f\left(x_{i}\right)=1 \text { and } f\left(x_{i}\right)=0 \text { for } i=1 \text { to } n .
\end{array}
$$

The graph $S(G)$ satisfies the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ since $v_{f}(0)=v_{f}(1)$ for all n and k and $e_{f}(1)=e_{f}(0)+1$ if n and k are odd, others $e_{f}(0)=e_{f}(1)$.

Hence $S\left(\left\langle K_{1, n}^{(\mathbf{1})}: K_{1, n}^{(\mathbf{2})}: \ldots: K_{1, n}^{(k)}\right\rangle\right)$ is cordial.

Illustration 2.14. The cordial labelings of $S\left(\left\langle K_{1,3}^{(1)}: K_{1,3}^{(2)}: K_{1,3}^{(3)}\right\rangle\right)$ and $S\left(\left\langle K_{1,4}^{(\mathbf{1})}: K_{1,4}^{(\mathbf{2})}: K_{1,4}^{(\mathbf{3})}: K_{1,4}^{(\mathbf{4})}\right\rangle\right)$ are shown in Figure 7(a) and 7(b).

(a)

(b)

Figure 7: Cordial labelings of $S\left(\left\langle K_{\mathbf{1}, \mathbf{3}}^{(\mathbf{1})}: K_{\mathbf{1}, \mathbf{3}}^{(\mathbf{2})}: K_{\mathbf{1 , 3}}^{(\mathbf{3})}\right\rangle\right)$ and

$$
S\left(\left\langle K_{1,4}^{(1)}: K_{1,4}^{(2)}: K_{1,4}^{(3)}: K_{1,4}^{(4)}\right\rangle\right)
$$

Acknowledgement

The authors are thankful to the referee for the valuable comments which led to the substantial improvement in the paper.

References

[1] L.W. Beineke, S.M. Hegde, Strongly Multiplicative graphs, Discuss. Math. Graph Theory, 21(2001), 63-75.
[2] G.S. Bloom, S.W. Golomb, Applications of numbered undirected graphs, Proceedings of IEEE, 165(4) (1977), 562-570.
[3] I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious Graphs, Ars Combinatoria, 23(1987), 201-207.
[4] J.A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 16(2009) DS6.
[5] F. Harary, Graph theory, Addison Wesley, Reading, Massachusetts, 1972.
[6] S.M. Lee, A. Liu, A construction of cordial graphs from smaller cordial graphs, Ars Combinatoria 32(1991), 209-214.
[7] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Sympos., Rome, 1966), Gorden and Breach, (1967), 349-355.
[8] E. Sampathkumar, H.B. Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci., 25 and 26 (Combined) (1980-81), 13-16.
[9] S.K. Vaidya, N.A. Dani, K.K. Kanani, P.L. Vihol, Cordial and 3-equitable labeling for some star related graphs, International Mathematical Forum, 4, (2009), no. 31, 1543-1553.

