International Journal of Mathematics and Soft Computing Vol.1, No.1 (2011), 105 - 114

Cordial labeling for the splitting graph of some standard graphs

P. Lawrence Rozario Raj

Department of Mathematics, St. Joseph's College Trichirappalli – 620 002, Tamil Nadu, India. E-mail: lawraj2006@yahoo.co.in

S. Koilraj

Department of Mathematics, St. Joseph's College Trichirappalli – 620 002, Tamil Nadu, India. E-mail: skoilraj@yahoo.com

Abstract

In this paper we prove that the splitting graph of path P_n , cycle C_n , complete bipartite graph $K_{m,n}$, matching M_n , wheel W_n and $\langle K_{1,n}^{(1)} : K_{1,n}^{(2)} : ... : K_{1,n}^{(k)} \rangle$ are cordial.

Key words: Cordial labeling, Splitting graph.

AMS Subject Classification (2010): 05C78.

1 Introduction

All graphs considered here are finite, simple and undirected. The origin of graph labelings can be attributed to Rosa [7]. For all terminologies and notations we follow Harary [5]. Following definitions are useful for the present study.

Definition 1.1. [8] For each vertex v of a graph G, take a new vertex v'. Join v' to all the vertices of G adjacent to v. The graph S(G) thus obtained is called splitting graph of G.

Definition 1.2. [9] The graph $G = \langle K_{1,n}^{(1)}:K_{1,n}^{(2)}:...:K_{1,n}^{(k)} \rangle$ is obtained from k copies of stars $K_{1,n}^{(1)}, K_{1,n}^{(2)}, ..., K_{1,n}^{(k)}$ by joining apex vertices of each $K_{1,n}^{(p-1)}$ and $K_{1,n}^{(p)}$ to a new vertex $x_{p-1}, 2 \le p \le k$.

Note that *G* has k(n + 2) - 1 vertices and k(n + 2) - 2 edges.

Definition 1.3. The assignment of values subject to certain conditions to the vertices of a graph is known as graph labeling.

Definition 1.4. Let G = (V, E) be a graph. A mapping $f : V(G) = \{0,1\}$ is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f.

For an edge e = uv, the induced edge labeling f^* : $E(G) \{0,1\}$ is given by $f^*(e) = |f(u) - f(v)|$. Let $v_f(0)$, $v_f(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and let $e_f(0)$, $e_f(1)$ be the number of edges having labels 0 and 1 respectively under f^* .

Definition 1.5. A binary vertex labeling of a graph G is called a cordial labeling if $|v_{f}(0) - v_{f}(1)| \le 1$ and $|e_{f}(0) - e_{f}(1)| \le 1$. A graph G is cordial if it admits cordial labeling.

Definition 1.6. A wheel graph W_n is obtained from a cycle C_n by adding a new vertex and joining it to all the vertices of the cycle by an edge, the new edges are called the spokes of the wheel.

Definition 1.7. A fan graph F_n is obtained from a path P_n by adding a new vertex and joining it to all the vertices of the path by an edge, the new edges are called the spokes of the fan.

Definition 1.8. A matching graph M_n is n copies of K_2 .

The concept of cordial labeling was introduced by Cahit [3]. S.M. Lee and A. Liu [6] proved that all complete bipartite graphs and all fans are cordial. Further, they proved that, the cycle C_n is cordial if and only if $n \neq 2 \pmod{4}$, the matching M_n is cordial if and only if $n \neq 2 \pmod{4}$ and the wheel W_n is cordial if and only if $n \neq 3 \pmod{4}$, $n \geq 3$. S.K. Vaidya et al.[9] proved $\langle K_{1,n}^{(1)} : K_{1,n}^{(2)} : ... : K_{1,n}^{(k)} \rangle$ is cordial.

In this paper, we prove that the splitting graph of path P_n , cycle C_n , complete bipartite graph $K_{m,n}$, matching M_n , wheel W_n and $\langle K_{1,n}^{(1)} : K_{1,n}^{(2)} : ... : K_{1,n}^{(k)} \rangle$ are cordial.

2 Main Results

Theorem 2.1. *The graph* $S(P_n)$ *is cordial.*

Proof. Let G be P_n . The vertices of P_n are $v_1, v_2, ..., v_n$. Then S(G) has the vertices $v_1, v_2, ..., v_n, v_1', v_2', ..., v_n'$. The vertex labeling $f : V(S(G)) \to \{0,1\}$ is given below.

$$f(v_i) = \begin{cases} 1 & \text{if } i \equiv 0, 1 \pmod{4} \\ 0 & \text{if } i \equiv 2, 3 \pmod{4} \end{cases}$$

$$f(v_i) = \begin{cases} 1 & \text{if } i \equiv 2, 3 \pmod{4} \\ 0 & \text{if } i \equiv 0, 1 \pmod{4} \end{cases}$$

$$v_f(0) = v_f(1) \text{ for all n and } e_f(0) = e_f(1) + 1 \text{ if } n \text{ is even and}$$

$$e_f(0) = e_f(1) & \text{if } n \text{ is odd.}$$

Therefore the graph S(G) satisfies the conditions $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$.

Hence $S(P_n)$ is cordial.

Illustration 2.2. The cordial labelings of $S(P_4)$ and $S(P_5)$ are shown in Figure 1(a) and 1(b).

Figure 1: Cordial labelings of $S(P_4)$ and $S(P_5)$

Theorem 2.3. The graph $S(C_n)$ is cordial for $n \neq 2 \pmod{4}$, $n \geq 3$.

Proof. Let G be C_n $(n \ge 3)$. The vertices of C_n are $v_1, v_2, ..., v_n$. Then S(G) has the vertices $v_1, v_2, ..., v_n$, $v_1', v_2', ..., v_n'$. The vertex labeling f: $V(S(G)) \rightarrow \{0,1\}$ is given below.

$$f(v_i) = 0 \text{ and } f(v_i') = 1 \text{ if } i \equiv 2, 3 \pmod{4},$$

 $f(v_i) = 1 \text{ and } f(v_i') = 0 \text{ if } i \equiv 0, 1 \pmod{4}.$

The following table shows that the graph S(G) satisfies the conditions

п	Vertex Conditions	Edge Conditions	
$n \equiv 0 \pmod{4}$	$v_f(0) = v_f(1)$	$e_f(0) = e_f(1)$	
<i>n</i> is odd	$v_f(0) = v_f(1)$	$e_f(1) = e_f(0) + 1$	

 $|v_{f}(0)-v_{f}(1)| \leq 1$ and $|e_{f}(0)-e_{f}(1)| \leq 1$.

Hence $S(C_n)$ is cordial.

Illustration 2.4. The cordial labelings of $S(C_4)$ and $S(C_5)$ are shown in Figure 2 (a) and 2(b).

Figure 2: Cordial labelings of $S(C_4)$ and $S(C_5)$

Theorem 2.5. The graph $S(W_n)$ is cordial for $n \neq 2 \pmod{4}$, $n \geq 3$.

Proof. Let *G* be W_n ($n \ge 3$). The vertices are $c, v_1, v_2, ..., v_n$. Then S(G) has the vertices $c, v_1, v_2, ..., v_n, c', v_1', v_2', ..., v_n'$. The vertex labeling $f : V(S(G)) \rightarrow \{0,1\}$ is given below.

f(c) = 0 and f(c') = 1

Case (i) $n \equiv 0 \pmod{4}$

$$f(v_i) = f(v_i') = 1 \quad \text{if} \quad i \equiv 1, 2 \pmod{4},$$

$$f(v_i) = f(v_i') = 0 \quad \text{if} \quad i \equiv 0, 3 \pmod{4}.$$

Case (ii) $n \equiv 1 \pmod{4}$

 $\begin{array}{ll} f(v_i) = 0 & \text{if} \quad i \equiv 2, \ 3 \ (\text{mod } 4), \\ f(v_i) = 1 & \text{if} \quad i \equiv 0, \ 1 \ (\text{mod } 4), \\ f(v_i') = 1 & \text{for} \quad i = 1 \ \text{to} \ (n-1)/2, \\ f(v_i') = 0 & \text{for} \quad i = (n+1)/2 \ \text{to} \ n. \end{array}$

Case (iii) $n \equiv 3 \pmod{4}$

$f(v_i) = 0$	if $i \equiv 2, 3 \pmod{2}$	l 4),
$f(v_i) = 1$	if $i \equiv 0, 1 \pmod{2}$	l 4),
$f(v_i')=0$	for $i = 1$ to $(n - 1)$	1)/2,
$f(v_i') = 1$	for $i = (n+1)/2$	to n.

The following table shows that the graph S(G) satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$.

n	Vertex Conditions	Edge Conditions
$n \equiv 0 \pmod{4}$	$v_f(0) = v_f(1)$	$e_f(0) = e_f(1)$
$n \equiv 1 \pmod{4}$	$v_f(0) = v_f(1)$	$e_f(1) = e_f(0)$
$n \equiv 3 \pmod{4}$	$v_f(0) = v_f(1)$	$e_f(0) = e_f(1)$

Hence $S(W_n)$ is cordial.

Illustration 2.6. The cordial labelings of $S(W_4)$ and $S(W_5)$ are shown in Figure 3 (a) and 3(b).

Figure 3: Cordial labelings of $S(W_4)$ and $S(W_5)$

Theorem 2.7. *The graph* $S(M_n)$ *is cordial.*

Proof. Let G be M_n . The vertices are v_1, v_2, \dots, v_{2n} . Then S(G) has the vertices $v_1, v_2, \dots, v_{2n}, v_1', v_2', \dots, v_{2n'}'$ in the order $v_2', v_1, v_2, v_1', v_4', v_3, v_4, v_3', \dots, v_{2n'}, v_{2n-1}, v_{2n}, v_{2n-1'}'$. The vertex labeling $f: V(S(G)) \rightarrow \{0,1\}$ is given below.

 $f(v_i) = 0$ if $i \equiv 0, 1, 2 \pmod{4}$,

 $f(v_i) = 1 if i \equiv 3 \pmod{4},$ $f(v_i') = 1 if i \equiv 0, 1, 2 \pmod{4},$ $f(v_i') = 0 if i \equiv 3 \pmod{4}.$

The following table shows that the graph S(G) satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$.

п	Vertex Conditions	Edge Conditions
<i>n</i> is odd	$v_f(0) = v_f(1)$	$e_f(1) = e_f(0) + 1$
<i>n</i> is even	$v_f(0) = v_f(1)$	$e_f(0) = e_f(1)$

Hence $S(M_n)$ is cordial.

Illustration 2.8. The cordial labelings of $S(M_3)$ and $S(M_4)$ are shown in Figure 4(a) and 4(b).

Figure 4: Cordial labelings of $S(M_3)$ and $S(M_4)$

Theorem 2.9. *The graph* $S(F_n)$ *is cordial for* $n \ge 2$ *.*

Proof. Let *G* be F_n $(n \ge 2)$. The vertices are $c, v_1, v_2, ..., v_n$. Then S(G) has the vertices $c, v_1, v_2, ..., v_n, c', v_1', v_2', ..., v_n'$. The vertex labeling $f : V(S(G)) \rightarrow \{0,1\}$ is given below.

f(c) = 1 and f(c') = 0 $f(v_i) = 0$ and $f(v_i') = 1$ for i = 1 to n.

The graph *S*(*G*) satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$ since $v_f(0) = v_f(1)$ and $e_f(0) = e_f(1) + 1$ for $n \ge 2$.

Hence $S(F_n)$ is cordial for $n \ge 2$.

Illustration 2.10. The cordial labelings of $S(F_4)$ and $S(F_5)$ are shown in Figure 5(a) and 5(b).

Cordial labeling for the splitting graph of some standard graphs

Figure 5: Cordial labelings of $S(F_4)$ and $S(F_5)$

Theorem 2.11. The graph $S(K_{m,n})$ is cordial for any $m, n \in N$.

Proof. Let G be $K_{m,n}$. Denote the vertices of $K_{m,n}$ as $v_1, v_2, ..., v_m$ and $u_1, u_2, ..., u_n$. Then S(G) has the vertices $v_1, v_2, ..., v_m, v_1', v_2', ..., v_m', u_1, u_2, ..., u_n, u_1', u_2', ..., u_n'$. The vertex labeling $f: V(S(G)) \rightarrow \{0,1\}$ is given below.

$$f(v_i) = f(u_i) = 1 \quad \text{and} \quad f(v_i) = f(u_i) = 0 \quad \text{if} \quad i \text{ is odd.}$$

$$f(v_i) = f(u_i) = 0 \quad \text{and} \quad f(v_i) = f(u_i) = 1 \text{ if} \quad i \text{ is even.}$$

The following table shows that the graph S(G) satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$.

т	n	Vertex Conditions	Edge Conditions
1	odd	$v_f(0) = v_f(1)$	$e_f(1) = e_f(0) + 1$
odd	1	$v_f(0) = v_f(1)$	$e_f(1) = e_f(0) + 1$
m = n and odd		$v_f(0) = v_f(1)$	$e_f(1) = e_f(0) + 1$
others		$v_f(0) = v_f(1)$	$e_f(0) = e_f(1)$

Hence $S(K_{m,n})$ is cordial.

Illustration 2.12. The cordial labelings of $S(K_{2,3})$ and $S(K_{3,3})$ are shown in Figure 6(a) and 6(b).

Figure 6: Cordial labelings of $S(K_{2,3})$ and $S(K_{3,3})$

Theorem 2.13. The graph $S(< K_{1,n}^{(1)}:K_{1,n}^{(2)}:...:K_{1,n}^{(k)} >)$ is cordial.

Proof. Let G be $\langle K_{1,n}^{(1)}:K_{1,n}^{(2)}:\ldots:K_{1,n}^{(k)} \rangle$. Let $K_{1,n}^{(i)}$, $i = 1,2,\ldots,k$ be copies of $K_{1,n}$. Let v_{ij} be the pendant vertices of $K_{1,n}^{(i)}$ and c_i be the apex vertex of $K_{1,n}^{(i)}$ ($i = 1,2,\ldots,k$ and $j = 1,2,\ldots,n$) and x_1, x_2,\ldots, x_{n-1} be vertices such that c_{i-1} and c_i are adjacent to x_{i-1} , where $2 \le i \le k$.

Now S(G) has the vertices v_{ij} , v_{ij} , c_i , c_i , x_{i-1} and x_{i-1} vertices, where i = 1, 2, ..., k and j = 1, 2, ..., n. The vertex labeling $f : V(S(G)) \rightarrow \{0, 1\}$ is given below. For i = 1, 2, ..., k

 $f(v_{ij}) = 1 \text{ and } f(v_{ij}') = 0 \text{ if } j \text{ is odd,}$ $f(v_{ij}) = 0 \text{ and } f(v_{ij}') = 1 \text{ if } j \text{ is even,}$ $f(c_i) = 1 \text{ and } f(c_i') = 0 \text{ if } i \text{ is odd,}$ $f(c_i) = 0 \text{ and } f(c_i') = 1 \text{ if } i \text{ is even,}$ $f(x_i) = 1 \text{ and } f(x_i') = 0 \text{ for } i = 1 \text{ to } n.$

The graph S(G) satisfies the conditions $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$ since $v_f(0) = v_f(1)$ for all *n* and k and $e_f(1) = e_f(0) + 1$ if *n* and k are odd, others $e_f(0) = e_f(1)$.

Hence
$$S(\langle K_{1,n}^{(1)}:K_{1,n}^{(2)}:...:K_{1,n}^{(k)} \rangle)$$
 is cordial.

Illustration 2.14. The cordial labelings of $S(\langle K_{1,3}^{(1)}; K_{1,3}^{(2)}; K_{1,3}^{(3)} \rangle)$ and $S(\langle K_{1,4}^{(1)}; K_{1,4}^{(2)}; K_{1,4}^{(3)}; K_{1,4}^{(4)} \rangle)$ are shown in Figure 7(a) and 7(b).

Cordial labeling for the splitting graph of some standard graphs

$S(\langle K_{1,4}^{(1)}; K_{1,4}^{(2)}; K_{1,4}^{(3)}; K_{1,4}^{(4)} \rangle)$

Acknowledgement

The authors are thankful to the referee for the valuable comments which led to the substantial improvement in the paper.

References

- [1] L.W. Beineke, S.M. Hegde, *Strongly Multiplicative graphs, Discuss. Math. Graph Theory*, 21(2001), 63-75.
- [2] G.S. Bloom, S.W. Golomb, *Applications of numbered undirected graphs*, Proceedings of IEEE, 165(4) (1977), 562-570.
- [3] I. Cahit, *Cordial Graphs: A weaker version of graceful and harmonious Graphs*, Ars Combinatoria, 23(1987), 201-207.
- [4] J.A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 16(2009) DS6.
- [5] F. Harary, *Graph theory*, Addison Wesley, Reading, Massachusetts, 1972.
- [6] S.M. Lee, A. Liu, *A construction of cordial graphs from smaller cordial graphs*, Ars Combinatoria 32(1991), 209-214.
- [7] A. Rosa, *On certain valuations of the vertices of a graph*, Theory of Graphs (Internat. Sympos., Rome, 1966), Gorden and Breach, (1967), 349-355.

- [8] E. Sampathkumar, H.B. Walikar, *On splitting graph of a graph*, J. Karnatak Univ. Sci., 25 and 26 (Combined) (1980-81), 13-16.
- [9] S.K. Vaidya, N.A. Dani, K.K. Kanani, P.L. Vihol, Cordial and 3-equitable labeling for some star related graphs, International Mathematical Forum, 4, (2009), no. 31, 1543 - 1553.