International Journal of Mathematics and Soft Computing Vol.1, No.1 (2011), 77 - 87

Extended results on two domination number and chromatic number of a graph

G.Mahadevan

Department of Mathematics, Anna University of Technology, Tirunelveli-627002, India. E-mail: gmaha2003@yahoo.co.in

A.Selvam avadyappan

Department of Mathematics, V.H.N.S.N.College, Virudhunagar, India. E-mail: selvam_avadayappan@yahoo.co.in.

A.Mydeen bibi

Research Scholar, Mother Teresa Women's University, Kodaikanal, India. E-mail: amydeen2006@yahoo.co.in

Abstract

A subset *S* of *V* is called a dominating set in *G* if every vertex in *V*-*S* is adjacent to at least one vertex in *S*. A Dominating set is said to be two dominating set if every vertex in *V*-*S* is adjacent to atleast two vertices in *S*. The minimum cardinality taken over all, the minimal two dominating set is called two domination number and is denoted by $_2(G)$. The minimum number of colors required to colour all the vertices such that adjacent vertices do not receive the same colour is the chromatic number (*G*). In [6], it was proved that sum of two domination number and chromatic number is equals to 2n-5 and 2n-6. In this paper, we characterize all graphs whose sum of two domination number and chromatic number is 2n-7.

Key words: Two Domination Number, Chromatic Number.

AMS Subject Classification (2010): 05C

1 Introduction

Let G = (V, E) be a simple undirected graph. The degree of any vertex u in G is the number of edges incident with u and is denoted by d(u). The minimum and maximum degree of a vertex is denoted by $\delta(G)$ and $\Delta(G)$ respectively. P_n denotes the path on *n* vertices. The vertex connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph. A colouring of a graph is

an assignment of colours to its vertices so that two adjacent vertices do not have the same colour. An n-colouring of a graph *G* uses *n* colours. The Chromatic Number χ is defined to be the minimum *n* for which *G* has an *n*-colouring. If $\chi(G) = k$ but $\chi(H) < k$, for every proper subgraph *H* of *G*, then *G* is *k*-critical.

A subset *S* of V is called a dominating set in *G* if every vertex in V-*S* is adjacent to atleast one vertex in *S*. The minimum cardinality taken over all dominating sets in *G* is called the domination number of *G* and is denoted by γ . A dominating set is said to be two dominating set if every vertex in V-*S* is adjacent to atleast two vertices in *S*. The minimum cardinality taken over all the minimal two dominating set is called two domination number and is denoted by $\gamma_2(G)$.

In [5], Harary and Haynes defined a subset *S* of V to be a double dominating set (DDS) of *G* if every vertex $v \in V$, $(N(v) \cap S) \ge 2$. The double domination number $\gamma_2(G)$ is the minimum cardinality of a DDS.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. In [12], J. Paulraj Joseph and S. Arumugam proved that +k p. In [13], J. Paulraj Joseph and S. Arumugam proved that $\gamma_c + \chi = p+1$. They also characterized the class of graphs for which the upper bound is attained. They also proved similar results for γ and γ_t . In [9], J. Paulraj Joseph and G. Mahadevan proved that $\gamma_{cc} + \chi \leq 2n-1$ and characterized the corresponding extremal graphs. In [8], J. Paulraj Joseph and G. Mahadevan proved that $\gamma_{cr} + \chi \leq 2n-1$ and characterized the corresponding extremal graphs. In [11], J. Paulraj Joseph and G. Mahadevan introduced the concept of complementary perfect domination number γ_{cp} and proved that $\gamma_{cp} + \chi \leq 2n-2$, and characterized the corresponding extremal graphs. They also obtained the similar results for the induced complementary perfect domination number and chromatic number of a graph. In this paper, we characterize all graphs whose sum of two domination number and chromatic number and chromatic number is 2n-7. Terms not defined here, are used in the sense of Harary[1].

Notations. $K_n(P_m)$ denotes the graph obtained from K_n by attaching the end vertex of P_m to anyone vertices of K_n . $K_n(m_1, m_2, m_3, \dots, m_k)$ denotes the graph obtained from K_n

by attaching m_1 edges to any one vertex u_i of K_n , m_2 edges to any one vertex u_j for i j of K_n , m_3 edges to any one vertex u_k for i j k of K_n ,..., m_k edges to all the distinct vertices of K_n . $S(K_{I,m})$ is a graph obtained from $K_{I,m}$ by subdividing at one edge of $K_{I,m}$.

Theorem 1.1. For any connected graph G, $\gamma_2(G) \le n$.

Theorem 1.2. For any connected graph G, $\chi(G) \leq \Delta(G) + 1$.

2 Main Results

Theorem 2.1. For any connected graph G, $\gamma_2(G) + (G) = 2n - 7$ if and only if $G \cong S(K_{1, 7})$, $K_4(5,0,0,0)$, $K_4(4,1,0,0)$, $K_4(3,2,0,0)$, $K_5(4,0,0,0,0)$, $K_5(3,1,0,0,0)$, $K_5(2,2,0,0,0)$, $K_3(P_5)$, $K_4(P_2.P_4,0,0)$, $K_3(P_3,P_3,0)$, $K_6(3,0,0,0,0,0)$, $K_6(2,1,0,0,0,0)$, $K_6(1,1,1,0,0,0)$, $K_5(P_4)$, $K_5(P_3,P_2,0,0,0)$, K_5 ($P_3,P_2,0,0,0$), $K_6(P_3)$, $K_7(2,0,0,0,0,0,0,0)$, $K_7(1,1,0,0,0,0,0)$, $K_8(1,0,0,0,0,0,0)$, K_9 or any one of the graphs given in figure 2.1.

Figure 2.1.

Proof. If G is anyone of the graph given in the figure, then clearly $\gamma_2(G) + (G) = 2n-7$. Conversely assume that $\gamma_2(G) + (G) = 2n-7$. This is possible only if $\gamma_2 = n$, = n-7 (or) $\gamma_2 = n-1$, = n-6 (or) $\gamma_2 = n-2$, = n-5 (or) $\gamma_2 = n-3$, = n-4 (or) $\gamma_2 = n-4$, = n-3 (or) $\gamma_2 = n-5$, = n-2 (or) $\gamma_2 = n-6$, = n-1(or) $\gamma_2 = n-7$, = n.

Case (i) Let $_2(G) = n$ and (G) = n-7. Since = n-7, G contains a clique K on n-7 vertices or does not contains a clique K on n-7 vertices. Let $S = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\} \in V$ -S. Let $\langle S \rangle = K_7$, $\overline{K_7}$, P_7 , $K_4 \cup K_3$, $K_2 \cup K_5$, $P_3 \cup K_4$, $P_4 \cup K_3$, $K_{1,6}$, $K_{2,5}$, $K_{3,4}$. If $\langle S \rangle = K_7$, $\overline{K_7}$, P_7 , $K_4 \cup K_5$, $P_3 \cup K_4$, $P_4 \cup K_3$, $K_{1,6}$, $K_{2,5}$, $K_{3,4}$, then in all the cases no graph exists.

If G does not contain a clique K on n-7 vertices, then it can be verified that no new graph exists.

Case (ii) Let $_{2}(G) = n-1$ and (G) = n-6. Since = n-6, G contains a clique K on n-6 vertices. Let $S = \{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\} \in V$ -S. Let $\langle S \rangle = K_{6}, \overline{K_{6}}, P_{6}, K_{3} \cup K_{3}, K_{2} \cup K_{4}, P_{3} \cup K_{3}, P_{2} \cup K_{4}, K_{1,5}, K_{3,3}, K_{2,4}$. If $\langle S \rangle = K_{6}, \overline{K_{6}}, P_{6}, K_{3} \cup K_{3}, K_{2} \cup K_{4}, P_{3} \cup K_{3}, P_{2} \cup K_{4}, K_{3,3}, K_{2,4}$, then in all the cases no graph exists.

Subcase (a) Let $\langle S \rangle = K_{1,5}$. Let the root of $K_{1,5}$ be x_1 . Let x_2 , x_3 , x_4 , x_5 , x_6 be adjacent to x_1 . Since *G* is connected, there exists a vertex u_i in K_{n-6} which is adjacent to x_1 or any one of $\{x_2, x_3, x_4, x_5, x_6\}$. Then in both cases, $\{x_2, x_3, x_4, x_5, x_6, u_i, u_j\}$ for *i j* is a $_2$ set, so that n=8. Hence $K=K_2 = uv$. If *u* is adjacent to x_1 , then $G \cong S(K_{1,7})$. Let *u* be adjacent to any one of $\{x_2, x_3, x_4, x_5, x_6\}$, which is a contradiction no graph exists. If *G* does not contain a clique K on *n*-6 vertices, then it can be verified that no new graph exists.

Case (iii) Let $_{2}(G) = n-2$ and (G) = n-5. Since = n-5, *G* contains a clique K on n-5 vertices. Let $S = \{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\} \in V$ -*S*. Let $\langle S \rangle = K_{5}$, $\overline{K_{5}}$, P_{5} , $K_{4} \cup K_{1}$, $P_{3} \cup K_{2}$, $K_{1,4}$, $P_{4} \cup K_{1}$, $K_{2,3}$, $K_{3} \cup K_{2}$. If $\langle S \rangle = K_{5}$, P_{5} , $K_{4} \cup K_{1}$, $K_{2,3}$, then in all the cases no graph exists.

Subcase (a) Let $\langle S \rangle = \overline{K_{5,j}}$ since *G* is connected. There exists a vertex u_i in K_{n-5} which is adjacent to all the vertices of *S* (or) four vertices of *S* (or) three vertices of *S* (or) two vertices of *S* (or) one vertex of *S*. Then in all the cases, $\{x_1, x_2, x_3, x_4, x_5, u_i, u_j\}$ for i = j is a $_2$ set, so that n = 9. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of

82

 K_4 . If u_1 is adjacent to all the vertices of *S* and if $d(x_1) = d(x_2) = d(x_3) = d(x_4) = d(x_5)$ = 1, then $G \cong K_4$ (5, 0, 0, 0). If u_1 is adjacent to four vertices of *S* and fifth one is adjacent to u_2 , and if $d(x_1) = d(x_2) = d(x_3) = d(x_4) = d(x_5) = 1$, then $G \cong K_4(4, 1, 0, 0)$. If u_1 is adjacent to three vertices of *S* and remaining two is adjacent to u_2 , and if $d(x_1) = d(x_2) = d(x_3) = d(x_4) = d(x_5) = 1$, then $G \cong K_4(3, 2, 0, 0)$.

Subcase (b) Let $\langle S \rangle = P_3 \cup K_2$. Let $P_3 = (x_1, x_2, x_3)$ and let x_4, x_5 be the vertices of K_2 , since *G* is connected. There exists a vertex say \underline{u}_i in K_{n-5} which is adjacent to x_1 . Again since *G* is connected we consider the following two situations: (i) the vertex u_i is adjacent to x_1 (or equivalently x_3) or x_4 . (ii) There exists a vertex u_i in K_{n-5} such that u_i is adjacent to x_2 and x_4 (or) the vertex u_i is adjacent to x_1 and u_j for $i \ j$ is adjacent to x_5 . Then in all the cases, $\{x_1, x_3, x_5, u_i, u_j\}$ for $i \ j$ is a _2 set, so that n = 7. Hence $K = K_2$. Let u, v be the vertices of K_2 . Let u be adjacent to x_1 (or equivalently x_3) and x_4 (or) let u be adjacent to x_2 and x_4 (or equivalently x_5) (or) let u be adjacent to x_2 and v is adjacent to x_4 (or equivalently x_5), which is a a contradiction. Hence no graph exists.

Subcase (c) Let $\langle S \rangle = K_3 \cup K_2$, since *G* is connected. Let x_1, x_2, x_3 be the vertices of K_3 and x_4, x_5 be the vertices of K_2 . There exists a vertex u_i in K_{n-5} is adjacent to x_1 and x_4 (or equivalently x_5) (or) u_i is adjacent to x_1 and u_j for $i \ j$ is adjacent to x_4 (or equivalently x_5). Then in both the cases, $\{x_1, x_2, x_5, u_i, u_j\}$ for $i \ j$ is a $_2$ set of *G*, so that n = 7. Hence $K = K_2$. Let u, v be the vertices of K_2 . Let u be adjacent to x_1 and x_4 (or equivalently x_5) then $G \cong G_4$. If u is adjacent to x_1 and v is adjacent to x_4 (or equivalently x_5) then $L \cong 4$, which is a contradiction. Hence no graph exists.

Subcase (d) Let $\langle S \rangle = P_4 \cup K_1$, since *G* is connected. Let $P_4 = (x_1, x_2, x_3, x_4)$ and x_5 be the vertex of K_1 . There exists a vertex u_i in K_{n-5} is adjacent to x_1 (or equivalently x_4) and x_5 (or) If u_i is adjacent to x_1 and u_j for $i \ j$ is adjacent to x_5 . In both the cases $\{x_2, x_4, x_5, u_i, u_j\}$ is a $_2$ set, so that n = 7. Hence $K = K_2$. Let u, v be the vertices of K_2 . Let u be adjacent to x_1 (or equivalently x_4) and x_5 , Hence $G \cong G_5$. Let u be adjacent to x_2 (or equivalently x_3) and x_5 . Hence $G \cong G_6$. Let u be adjacent to x_2 (or equivalently x_3) and x_5 .

then $\{x_1, x_3, x_4, x_5, u_i, u_j\}$ for i j is a $_2$ set, so that n = 8. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . If u_1 is adjacent to x_2 (or equivalently x_3) and x_5 , then $G \cong G_8$.

Subcase (e) Let $\langle S \rangle = K_{1,4}$. Since G is connected, the vertex x_1 be adjacent to x_2 , x_3 , x_4 , x_5 . There exists a vertex u_i in K_{n-5} , which is adjacent to x_1 or any one of $\{x_2, x_3, x_4, x_5\}$. Then $\{x_2, x_3, x_4, x_5, u_i, u_j\}$ for i j is a $_2$ set, so that n=8. Hence $K=K_3$. If u_1 is adjacent to x_1 , then $G \cong G_9$. If u is adjacent to x_5 , then $G \cong G_{10}$.

For all the remaining cases, no new graph exists.

If G does not contain a clique K on n-5 vertices, then it can be verified that no new graph exists.

Case (iv) Let $_2(G) = n-3$ and (G) = n-4. Since $\chi = n-4$, *G* contains a clique K on *n*-4 vertices or does not contain a clique K on *n*-4 vertices. Let $S = \{x_1, x_2, x_3, x_4\} \in V$ -S. Let $\langle S \rangle = K_4$, $\overline{K_4}$, P_4 , $K_3 \cup K_1$, $K_{1,3}$, $K_2 \cup K_2$, $P_3 \cup K_1$. If $\langle S \rangle = K_4$, then no graph exists.

Subcase (a) Let $\langle S \rangle = \overline{K_4}$. Since *G* is connected, one of the vertices of K_{n-4} say u_i is adjacent to all the vertices of *S* (or) three vertices of *S* (or) two vertices of *S* (or) one vertex of *S*. In all the cases, $\{x_1, x_2, x_3, x_4, u_b, u_j\}$ for *i j* is a $_2$ set, so that n = 9. Hence $K = K_5$. Let u_1 , u_2 , u_3 , u_4 , u_5 be the vertices of K_5 . If all the vertices of *S* are adjacent to u_1 and $d(x_1) = d(x_2) = d(x_3) = d(x_4) = d(x_5) = 1$, then $G \cong K_5(4, 0, 0, 0, 0)$. If three vertices of *S* are adjacent to u_1 and the remaining two vertices are adjacent to u_2 and $d(x_1) = d(x_2) = d(x_3) = d(x_4) = d(x_5) = 1$, then $G \cong K_5(2, 2, 0, 0, 0)$.

Subcase (b) Let $\langle S \rangle = P_4 = (x_1, x_2, x_3, x_4)$. Since *G* is connected, there exists a vertex say u_i in K_{n-4} which is adjacent to x_1 (or equivalently x_4) (or) x_2 (or equivalently x_3). Let u_i be adjacent to x_1 then $\{x_2, x_4, u_i, u_j\}$ for *i j* is a $_2$ set, so that n = 6. Hence $K = K_2 = uv$. If x_1 is adjacent to *u*, then $G \cong P_6$. Let u_i be adjacent to x_2 then $\{x_1, x_3, x_4, u_i, u_j\}$ for *i j* is a $_2$ set, so that n = 6. Hence *K* is a u_i, u_j for *i j* is a $_2$ set, so that n = 6. Hence *K* is a set, so that n = 6. Hence *K* is a set of x_1 is adjacent to *u_i* then $G \cong P_6$. Let u_i be adjacent to x_2 then $\{x_1, x_3, x_4, u_i, u_j\}$ for *i j* is a $_2$ set, so that n = 7. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . If x_1 of *S* is adjacent to u_1 , then $G \cong K_3$ (P_5). If x_2 is adjacent to u_1 , then no graph exists. Let u_i be adjacent to x_2 then $\{x_1, x_3, x_4, u_i, u_j\}$ for *i j* is a $_2$ set, so that n = 8.

Hence $K = K_4$. Let u_1 , u_2 , u_3 , u_4 be the vertices of K_4 . If x_2 of S is adjacent to u_1 , then $G \cong G_{11}$.

Subcase (c) Let $\langle S \rangle = K_{1,3}$. Let the vertex x_1 be adjacent to x_2 , x_3 , x_4 . Since *G* is connected, there exists a vertex u_i in K_{n-4} which is adjacent to x_1 or any one of (x_2, x_3, x_4) . In all the cases, $\{x_2, x_3, x_4, u_i, u_j\}$ for *i j* is a $_2$ set, so that n = 8. Hence $K = K_4$. Let u_1 , u_2 , u_3 , u_4 be the vertices of K_4 . If u_1 is adjacent to x_1 , then $G \cong G_{12}$. If u_1 is adjacent to x_4 , then $G \cong G_{13}$.

Subcase (d) Let $\langle S \rangle = P_3 \cup K_1$. Let $P_3 = (x_2, x_3, x_4)$ since G is connected, there exists a vertex say u_i in K_{n-4} which is adjacent to x_1 . Again since G is connected we consider the following two situations: (i) The vertex u_i is adjacent to x_2 (or equivalently x_4) or x_3 . (ii)There exists a vertex u_j for i j in K_{n-4} such that u_j is adjacent to x_2 (or equivalently x_4) or x_3 . In all the cases, $\{x_1, x_2, x_4, u_b, u_j\}$ for i j is a _2 set, so that n = 8. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4 . Let u_1 be adjacent to x_1 and x_2 (or equivalently x_3) and let u_1 be adjacent to x_1 and u_2 be adjacent to x_2 (or equivalently x_3). In all the cases, $G \cong K_4$ ($P_2, P_4, 0, 0$), G_{14}, G_{15} .

Subcase (e) Let $\langle S \rangle = K_2 \cup K_2$. Let x_1x_2 and x_3x_4 be the edges in $\langle S \rangle$. Since *G* is connected, there exists a vertex u_i in K_{n-4} which is adjacent to x_1 and x_3 in *S* (or) u_i is adjacent to x_1 and u_j is adjacent to x_3 for *i j* in K_{n-4} . In both the cases, $\{x_2, x_4, u_i, u_j\}$ for *i j* is a _2 set, hence _2 = 4, so that n=7. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . If u_1 is adjacent to x_1 and x_3 , then $G \cong K_3(P_3, P_3, 0)$. If u_1 is adjacent to x_1 and u_2 is adjacent to x_3 , then $G \cong K_3(P_3, P_3, 0)$.

Subcase (f) Let $\langle S \rangle = K_3 \cup K_1$. Since *G* is connected, there exists a vertex u_i in K_{n-4} which is adjacent to x_1 and x_4 (or) u_i is adjacent to x_1 and u_j for $i \ j$ is adjacent to x_4 . In both the cases, $\{x_2, x_3, x_4, u_i, u_j\}$ for $i \ j$ is a $_2$ set of *G*, so that $_2 = 5$. Hence n = 8, since $\chi = n-4 = 3$. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4 . If u_1 is adjacent to x_1 and x_4 , then $G \cong G_{16}$. If u_1 is adjacent to x_1 and u_2 is adjacent to x_4 , then $G \cong G_{17}$.

If G does not contain a clique K on n-4 vertices, then it can be verified that no new graph exists.

Case (v) Let $_2 = n-4$ and $\chi = n-3$. Since *G* is connected. Since $\chi = n-3$, *G* contains a clique K on *n*-3 vertices or does not contain a clique K on *n*-3 vertices. Let $S = \{x_1, x_2, x_3\} \in V$ -S. Let $\langle S \rangle = K_3$, $\overline{K_3}$, P_3 , $K_2 \cup K_1$.

Subcase (a) Let $\langle S \rangle = K_3$. Since G is connected, let x_1 be adjacent to u_i for some i in K_{n-3} . Then $\{x_2, x_3, u_i, u_j\}$ for i j is a $_2$ set, so that n = 8. Hence $K = K_5$. Let u_1, u_2, u_3, u_4, u_5 be the vertices of K_5 . If u_1 is adjacent to x_1 , then $G \cong G_{18}$.

Subcase (b) Let $\langle S \rangle = \overline{K_3}$. Since *G* is connected, one of the vertices of K_{n-3} , say u_i is adjacent to all the vertices of *S* (or) two vertices of *S* (or) one vertex of *S*. In all the cases, $\{x_1, x_2, x_3, u_i, u_j\}$ for i *j* is a $_2$ set, so that n=9. Hence $K=K_6$. Let u_1 , u_2 , u_3 , u_4 , u_5 , u_6 be the vertices of K_6 , without loss of generality, u_1 is adjacent to all the vertices of *S* and $d(x_1) = d(x_2) = d(x_3) = 1$, hence $G \cong K_6(3, 0, 0, 0, 0, 0)$. If u_1 is adjacent to x_1 and u_2 is adjacent to x_2 and u_3 is adjacent to x_3 , then $G \cong K_6(1, 1, 1, 0, 0, 0)$.

Subcase (c) Let $\langle S \rangle = P_3 = (x_1, x_2, x_3)$. Since *G* is connected, there exists a vertex u_i in K_{n-3} is adjacent to x_1 (or equivalently x_3) (or) u_i is adjacent to x_2 . In both the cases, $\{x_1, x_3, u_i, u_j\}$ for i j is a $_2$ set, so that n = 8. Hence $K = K_5$. Let u_1, u_2, u_3, u_4, u_5 be the vertices of K_5 . If u_1 is adjacent to x_1 , then $G \cong K_5(P_4)$. If u_1 is adjacent to x_2 , then $G \cong G_{19}$.

Subcase (d) Let $\langle S \rangle = K_2 \cup K_1$. Let $x_1 x_2$ be the edge in K_2 . Since *G* is connected. There exists an u_i in K_{n-3} is adjacent to x_1 and x_3 (or) u_i is adjacent to x_1 and u_j for *i j* is adjacent to x_3 . In both the cases, $\{x_2, x_3, u_i, u_j\}$ for *i j* is a $_2$ set, so that n = 8 and hence $K = K_5$. Let u_1 , u_2 , u_3 , u_4 , u_5 be the vertices of K_5 . If u_1 is adjacent to x_1 and x_3 , then $G \cong K_5(P_3, P_2, 0, 0, 0)$. If u_1 is adjacent to x_1 and u_2 is adjacent to x_3 , then $G \cong K_5(P_3, P_2, 0, 0, 0)$.

If G does not contain a clique K on n-3 vertices, then it can be verified that no new graph exists.

Case (vi) Let $_2 = n-5$ and $\chi = n-2$. Since $\chi = n-2$, *G* contains a clique *K* on n-2 vertices or does not contain a clique *K* on n-2 vertices. If *G* contains a clique *K* on n-2 vertices, then $S = \{x_1, x_2\} \in V$ -*S*. Then $\langle S \rangle = K_2$ or $\overline{K_2}$.

Subcase (a) Let $\langle S \rangle = K_2$. Since G is connected, there exists a vertex u_i in K_{n-2} is adjacent to x_i . Then $\{x_2, u_i, u_j\}$ for $i \ j$ is a $_2$ set, so that n=8. Hence $K = K_6$. Let u_i , u_2, u_3, u_4, u_5, u_6 be the vertices of K_6 . If u_i is adjacent to x_i , then $G \cong K_6(P_3)$.

Subcase (b) Let $\langle S \rangle = \overline{K_2}$. Since G is connected, there exists a vertex u_i in K_{n-2} is adjacent to x_1 and x_2 (or) if u_i is adjacent to x_1 and u_j for i j is adjacent to x_2 . In both the cases, $\{x_1, x_2, u_i, u_j\}$ for i j is a 2 set, so that n = 9. Hence $K = K_7$. Let $u_1, u_2, u_3, u_4, u_5, u_6, u_7$ be the vertices of K_7 . If x_1 and x_2 be adjacent to u_1 , then $G \cong K_7$ (2,0,0,0,0,0,0). If x_1 is adjacent to u_1 and x_2 is adjacent to u_2 , then $G \cong K_7(1,1,0,0,0,0,0)$.

If G does not contain a clique K on n-2 vertices, then it can be verified that no new graph exists.

Case (vii) Let $_2 = n-6$ and $\chi = n-1$. Since $\chi = n-1$, *G* contains a clique K on n-1 vertices or does not contain a clique K on n-1 vertices. If *G* contains a clique K on n-1 vertices, then there exists a vertex u_i in K_{n-1} adjacent to *x*. Hence $\{x, u_i, u_j\}$ for *i j* is a $_2$ set, so that n = 9. Hence $K = K_8$. Let $u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8$ be the vertices of K_8 . If u_1 is adjacent to *x*, then $G \cong K_8(1,0,0,0,0,0,0,0)$.

If G does not contain a clique K on n-1 vertices, then it can be verified that no new graph exists.

Case (viii) Let $_2 = n-7$ and $\chi = n$. Since $\chi = n$, we have $G = K_n$. But for K_n , $_2 = 2$, so that n = 9.

Hence $G \cong K_9$.

86

References

- [1] F. Harary, *Graph Theory*, Addison Wesley Reading Mass, 1972.
- [2] Haynes, W. Teresa W. (2000): *Paired domination in graphs*, Congr. Number 150, 2000.
- [3] Haynes, Teresa W, Induced-Paired domination in graphs, Ars Combin. 57(2001), 111-128.

Extended results on two domination number and chromatic number of a graph 87

- [4] Teresa W .Haynes, T. Stephen T. Hedemiemi and Peter J .Slater (1998), Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- [5] F.Harary, T.W.Haynes, *Double domination in Graphs*, Ars Combin., 55(2000) 201-213.
- [6] G. Mahadevan, A. Mydeenbibi, *Double domination number and Chromatic number of a graph*, Narosa publications, India,(2007), 182-190.
- [7] G. Mahadevan, A. Mydeenbibi, *Characterization of Two domination number and Chromatic number of a graph*, International Journal of Computational Science and Mathematics, Vol 3, No. 2(2011), 245-254.
- [8] G. Mahadevan, *On Domination theory and related concepts in graphs*, Ph.D., thesis (2005), Manonmaniam Sundaranar University, Tirunelveli, India.
- [9] G. Mahadevan, J. Paulraj Joseph, *Complementary connected domination number and chromatic number of a graph*, Allied publications, India. 56(2003), 342-349.
- [10] G. Mahadevan, A. Selvam, J. Paulraj Joseph, Extended results on Complementary connected domination number and chromatic number of a graph, Proceedings of the SACOEFERENCE, Dr. Sivanthi Aditanar College of Engineering, (2005), 438-441.
- [11] J. Paulraj Joseph, G. Mahadevan, *On Complementary perfect domination number* of a graph, Acta Cienia Indica, Vol. XXXI M, No. 2(2006), 847
- [12] J. Paulraj Joseph, S. Arumugam, *Domination and connectivity in graphs*, International Journal of Management and systems, Vol. 8, No 3(1992), 233-236.
- [13] J. Paulraj Joseph, S. Arumugam, *Domination and Colouring in graphs*, International Journal of management and systems, Vol.15, No.1(1999), 37-44.