Extended results on two domination number and chromatic number of a graph

G.Mahadevan
Department of Mathematics, Anna University of Technology, Tirunelveli-627002, India. E-mail: gmaha2003@yahoo.co.in
A.Selvam avadyappan
Department of Mathematics, V.H.N.S.N.College, Virudhunagar, India. E-mail: selvam_avadayappan@yahoo.co.in.
A.Mydeen bibi
Research Scholar, Mother Teresa Women's University, Kodaikanal, India. E-mail: amydeen2006@yahoo.co.in

Abstract

A subset S of V is called a dominating set in G if every vertex in $V-S$ is adjacent to at least one vertex in S. A Dominating set is said to be two dominating set if every vertex in $V-S$ is adjacent to atleast two vertices in S. The minimum cardinality taken over all, the minimal two dominating set is called two domination number and is denoted by $\gamma_{2}(G)$. The minimum number of colors required to colour all the vertices such that adjacent vertices do not receive the same colour is the chromatic number $\chi(G)$. In [6], it was proved that sum of two domination number and chromatic number is equals to $2 n-5$ and $2 n-6$. In this paper, we characterize all graphs whose sum of two domination number and chromatic number is $2 n-7$.

Key words: Two Domination Number, Chromatic Number.
AMS Subject Classification (2010): 05C

1 Introduction

Let $G=(V, E)$ be a simple undirected graph. The degree of any vertex u in G is the number of edges incident with u and is denoted by $d(u)$. The minimum and maximum degree of a vertex is denoted by $\delta(G)$ and $\Delta(G)$ respectively. P_{n} denotes the path on n vertices. The vertex connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph. A colouring of a graph is
an assignment of colours to its vertices so that two adjacent vertices do not have the same colour. An n-colouring of a graph G uses n colours. The Chromatic Number χ is defined to be the minimum n for which G has an n-colouring. If $\chi(G)=k$ but $\chi(H)<$ k, for every proper subgraph H of G, then G is k-critical.

A subset S of V is called a dominating set in G if every vertex in $\mathrm{V}-S$ is adjacent to atleast one vertex in S. The minimum cardinality taken over all dominating sets in G is called the domination number of G and is denoted by γ. A dominating set is said to be two dominating set if every vertex in V-S is adjacent to atleast two vertices in S. The minimum cardinality taken over all the minimal two dominating set is called two domination number and is denoted by $\gamma_{2}(G)$.

In [5], Harary and Haynes defined a subset S of V to be a double dominating set (DDS) of G if every vertex $v \in V,(N(v) \cap S) \geq 2$.The double domination number $\gamma_{2}(G)$ is the minimum cardinality of a DDS.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. In [12], J. Paulraj Joseph and S. Arumugam proved that $\gamma+k \leq p$. In [13], J. Paulraj Joseph and S. Arumugam proved that $\gamma_{c}+\chi=p+1$. They also characterized the class of graphs for which the upper bound is attained. They also proved similar results for γ and γ_{t}. In [9], J. Paulraj Joseph and G. Mahadevan proved that $\gamma_{c c}+\chi \leq 2 n-1$ and characterized the corresponding extremal graphs. In [8], J. Paulraj Joseph and G. Mahadevan proved that $\gamma_{p r}+\chi \leq 2 n-1$ and characterized the corresponding extremal graphs. In [11], J. Paulraj Joseph and G. Mahadevan introduced the concept of complementary perfect domination number γ_{cp} and proved that $\gamma_{c p}+\chi \leq 2 n-2$, and characterized the corresponding extremal graphs. They also obtained the similar results for the induced complementary perfect domination number and chromatic number of a graph. In this paper, we characterize all graphs whose sum of two domination number and chromatic number is $2 n-7$. Terms not defined here, are used in the sense of Harary[1].

Notations. $K_{n}\left(P_{m}\right)$ denotes the graph obtained from K_{n} by attaching the end vertex of P_{m} to anyone vertices of $K_{n} . K_{n}\left(m_{l}, m_{2}, m_{3}, \ldots . . m_{k}\right)$ denotes the graph obtained from K_{n}
by attaching m_{1} edges to any one vertex u_{i} of K_{n}, m_{2} edges to any one vertex u_{j} for $i \neq \dot{j}$ of $K_{n}, \quad m_{3}$ edges to any one vertex u_{k} for $i \neq \neq k$ of K_{n}, \ldots, m_{k} edges to all the distinct vertices of $K_{n} . \quad S\left(K_{l, m}\right)$ is a graph obtained from $K_{l, m}$ by subdividing at one edge of $K_{1, m}$.

Theorem 1.1. For any connected graph $G, \gamma_{2}(G) \leq n$.
Theorem 1.2. For any connected graph $G, \chi(G) \leq \Delta(G)+1$.

2 Main Results

Theorem 2.1. For any connected graph $G, \gamma_{2}(G)+\chi(G)=2 n-7$ if and only if $G \cong S\left(K_{1,7}\right), K_{4}(5,0,0,0), K_{4}(4,1,0,0), K_{4}(3,2,0,0), K_{5}(4,0,0,0,0), K_{5}(3,1,0,0,0)$, $K_{5}(2,2,0,0,0), \quad K_{3}\left(P_{5}\right), \quad K_{4}\left(P_{2} \cdot P_{4}, 0,0\right), \quad K_{3}\left(P_{3}, P_{3}, 0\right), \quad K_{6}(3,0,0,0,0,0), \quad K_{6}(2,1,0,0,0,0)$, $K_{6}(1,1,1,0,0,0), K_{5}\left(P_{4}\right), K_{5}\left(P_{3}, P_{2}, 0,0,0\right), \quad K_{5}\left(P_{3}, P_{2}, 0,0,0\right), K_{6}\left(P_{3}\right), K_{7}(2,0,0,0,0,0,0)$, $K_{7}(1,1,0,0,0,0,0), \quad K_{8}(1,0,0,0,0,0,0,0), K_{9}$ or any one of the graphs given in figure 2.1.

G_{1}

G3

G_{4}

G_{7}

Figure 2.1.

Proof. If G is anyone of the graph given in the figure, then clearly $\gamma_{2}(G)+\chi(G)=$ $2 n-7$. Conversely assume that $\gamma_{2}(G)+\chi(G)=2 n-7$. This is possible only if $\gamma_{2}=n, \chi$ $=n-7$ (or) $\quad \gamma_{2}=n-1, \chi=n-6$ (or) $\gamma_{2}=n-2, \chi=n-5$ (or) $\gamma_{2}=n-3, \chi=n-4$ (or) $\gamma_{2}=n$ 4, $\chi=n-3$ (or) $\gamma_{2}=n-5, \chi=n-2$ (or) $\gamma_{2}=n-6, \chi=n-1$ (or) $\gamma_{2}=n-7, \chi=n$.

Case (i) Let $\gamma_{2}(G)=n$ and $\chi(G)=n-7$. Since $\chi=n-7, G$ contains a clique K on $n-7$ vertices or does not contains a clique K on $n-7$ vertices. Let $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right.$, $\left.x_{7}\right\} \in V-S$. Let $\langle S\rangle=K_{7}, \bar{K}_{7}, P_{7}, K_{4} \cup K_{3}, K_{2} \cup K_{5}, P_{3} \cup K_{4}, P_{4} \cup K_{3}, K_{1,6}, K_{2,5}, K_{3,4}$. If $\langle S\rangle=K_{7}, \bar{K}_{7}, P_{7}, K_{4} \cup K_{3}, K_{2} \cup K_{5}, P_{3} \cup K_{4}, P_{4} \cup K_{3}, K_{1,6}, K_{2,5}, K_{3,4}$, then in all the cases no graph exists.

If G does not contain a clique K on $n-7$ vertices, then it can be verified that no new graph exists.

Case (ii) Let $\gamma_{2}(G)=n-1$ and $\chi(G)=n-6$. Since $\chi=n-6, G$ contains a clique K on n 6 vertices. Let $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\} \in V-S$. Let $\langle S\rangle=K_{6}, \bar{K}_{6}, P_{6}, K_{3} \cup K_{3}, K_{2} \cup K_{4}$, $P_{3} \cup K_{3}, P_{2} \cup K_{4}, K_{1,5}, K_{3,3}, K_{2,4}$. If $\langle S\rangle=K_{6}, \bar{K}_{6}, P_{6}, K_{3} \cup K_{3}, K_{2} \cup K_{4}, P_{3} \cup K_{3}, P_{2} \cup K_{4}$, $K_{3,3}, K_{2,4}$, then in all the cases no graph exists.

Subcase (a) Let $\langle S\rangle=K_{1,5}$. Let the root of $K_{1,5}$ be x_{1}. Let $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ be adjacent to x_{1}. Since G is connected, there exists a vertex u_{i} in K_{n-6} which is adjacent to x_{1} or any one of $\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$. Then in both cases, $\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=8$. Hence $K=K_{2}=u v$. If u is adjacent to x_{1}, then $G \cong S\left(K_{1,7}\right)$. Let u be adjacent to any one of $\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$, which is a contradiction no graph exists. If G does not contain a clique K on $n-6$ vertices, then it can be verified that no new graph exists.

Case (iii) Let $\gamma_{2}(G)=n-2$ and $\chi(G)=n-5$. Since $\chi=n-5, G$ contains a clique K on $n-5$ vertices. Let $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \in V-S$. Let $\langle S\rangle=K_{5}, \bar{K}_{5}, P_{5}, K_{4} \cup K_{1}, P_{3} \cup K_{2}$, $K_{1,4}, P_{4} \cup K_{1}, K_{2,3}, K_{3} \cup K_{2}$. If $\langle S\rangle=K_{5}, P_{5}, K_{4} \cup K_{1}, K_{2,3}$, then in all the cases no graph exists.

Subcase (a) Let $\langle S\rangle=\bar{K}_{5}$, since G is connected. There exists a vertex u_{i} in K_{n-5} which is adjacent to all the vertices of S (or) four vertices of S (or) three vertices of S (or) two vertices of S (or) one vertex of S. Then in all the cases, $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, u_{i}\right.$, $\left.u_{j}\right\}$ for $i \neq j$ is a γ_{2} set, so that $n=9$. Hence $K=K_{4}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of
K_{4}. If u_{1} is adjacent to all the vertices of S and if $d\left(x_{1}\right)=d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(x_{4}\right)=d\left(x_{5}\right)$ $=1$, then $G \cong K_{4}(5,0,0,0)$. If u_{1} is adjacent to four vertices of S and fifth one is adjacent to u_{2}, and if $d\left(x_{1}\right)=d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(x_{4}\right)=d\left(x_{5}\right)=1$, then $G \cong K_{4}(4,1,0,0)$. If u_{1} is adjacent to three vertices of S and remaining two is adjacent to u_{2}, and if $d\left(x_{1}\right)$ $=d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(x_{4}\right)=d\left(x_{5}\right)=1$, then $G \cong K_{4}(3,2,0,0)$.

Subcase (b) Let $\langle S\rangle=P_{3} \cup K_{2}$. Let $P_{3}=\left(x_{1}, x_{2}, x_{3}\right)$ and let x_{4}, x_{5} be the vertices of K_{2}, since G is connected. There exists a vertex say \underline{u}_{i} in K_{n-5} which is adjacent to x_{1}. Again since G is connected we consider the following two situations: (i) the vertex u_{i} is adjacent to x_{1} (or equivalently x_{3}) or x_{4}. (ii) There exists a vertex u_{i} in K_{n-5} such that u_{i} is adjacent to x_{2} and x_{4} (or) the vertex u_{i} is adjacent to x_{1} and u_{j} for $i \neq j$ is adjacent to x_{5}. Then in all the cases, $\left\{x_{1}, x_{3}, x_{5}, u_{i}, u_{j}\right\}$ for $i \neq j$ is a y_{2} set, so that $n=7$. Hence $K=$ K_{2}. Let u, v be the vertices of K_{2}. Let u be adjacent to x_{1} (or equivalently x_{3}) and x_{4} (or) let u be adjacent to x_{2} and x_{4} (or equivalently x_{5}) (or) let u be adjacent to x_{2} and v is adjacent to x_{4} (or equivalently x_{5}) Then in all the cases, $G \cong G_{l}, G_{2}, G_{3}$. Let u be adjacent to x_{l} (or equivalently x_{3}) and v be adjacent to x_{4} (or equivalently x_{5}), which is a contradiction. Hence no graph exists.

Subcase (c) Let $\langle S\rangle=K_{3} \cup K_{2}$, since G is connected. Let x_{1}, x_{2}, x_{3} be the vertices of K_{3} and x_{4}, x_{5} be the vertices of K_{2}. There exists a vertex u_{i} in K_{n-5} is adjacent to x_{1} and x_{4} (or equivalently x_{5}) (or) u_{i} is adjacent to x_{1} and u_{j} for $i \neq \dot{\neq}$ is adjacent to x_{4} (or equivalently x_{5}). Then in both the cases, $\left\{x_{1}, x_{2}, x_{5}, u_{i}, u_{j}\right\}$ for $i \neq j$ is a γ_{2} set of G, so that $n=7$. Hence $K=K_{2}$. Let u, v be the vertices of K_{2}. Let u be adjacent to x_{1} and x_{4} (or equivalently x_{5}) then $G \cong G_{4}$. If u is adjacent to x_{I} and v is adjacent to x_{4} (or equivalently x_{5}) then $\gamma_{2}=4$, which is a contradiction. Hence no graph exists.

Subcase (d) Let $\langle S\rangle=P_{4} \cup K_{1}$, since G is connected. Let $P_{4}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and x_{5} be the vertex of K_{l}. There exists a vertex u_{i} in K_{n-5} is adjacent to x_{l} (or equivalently x_{4}) and x_{5} (or) If u_{i} is adjacent to x_{1} and u_{j} for $i \neq j$ is adjacent to x_{5}. In both the cases $\left\{x_{2}\right.$, $\left.x_{4}, x_{5}, u_{i}, u_{j}\right\}$ is a γ_{2} set, so that $n=7$. Hence $K=K_{2}$. Let u, v be the vertices of K_{2}. Let u be adjacent to x_{1} (or equivalently x_{4}) and x_{5}, Hence $G \cong G_{5}$. Let u be adjacent to x_{2} (or equivalently x_{3}) and x_{5}. Hence $G \cong G_{6}$. Let u be adjacent to x_{2} (or equivalently x_{3}) and v be adjacent to x_{5}. Hence $G \cong G_{7}$. If u_{i} be adjacent to x_{2} (or equivalently x_{3}) and x_{5},
then $\left\{x_{1}, x_{3}, x_{4}, x_{5}, u_{i}, u_{j}\right\}$ for $i \neq j$ is a γ_{2} set, so that $n=8$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. If u_{1} is adjacent to x_{2} (or equivalently x_{3}) and x_{5}, then $G \cong G_{8}$.

Subcase (e) Let $\langle S\rangle=K_{1,4}$. Since G is connected, the vertex x_{1} be adjacent to x_{2}, x_{3}, x_{4}, x_{5}. There exists a vertex u_{i} in K_{n-5}, which is adjacent to x_{1} or any one of $\left\{x_{2}, x_{3}, x_{4}\right.$, $\left.x_{5}\right\}$. Then $\left\{x_{2}, x_{3}, x_{4}, x_{5}, u_{i}, u_{j}\right\}$ for $i \neq j$ is a γ_{2} set, so that $n=8$. Hence $K=K_{3}$. If u_{1} is adjacent to x_{1}, then $G \cong G_{9}$. If u is adjacent to x_{5}, then $G \cong G_{10}$.

For all the remaining cases, no new graph exists.
If G does not contain a clique K on $n-5$ vertices, then it can be verified that no new graph exists.

Case (iv) Let $\gamma_{2}(G)=n-3$ and $\chi(G)=n-4$. Since $\chi=n-4, G$ contains a clique K on n 4 vertices or does not contain a clique K on $n-4$ vertices. Let $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \in V$ S. Let $\langle S\rangle=K_{4}, \quad \bar{K}_{4}, P_{4}, K_{3} \cup K_{1}, K_{1,3}, K_{2} \cup K_{2}, P_{3} \cup K_{1}$.
If $\langle S\rangle=K_{4}$, then no graph exists.
Subcase (a) Let $\langle S\rangle=\bar{K}_{4}$. Since G is connected, one of the vertices of K_{n-4} say u_{i} is adjacent to all the vertices of S (or) three vertices of S (or) two vertices of S (or) one vertex of S. In all the cases, $\left\{x_{1}, x_{2}, x_{3}, x_{4}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=9$. Hence $K=K_{5}$. Let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ be the vertices of K_{5}. If all the vertices of S are adjacent to u_{1} and $d\left(x_{1}\right)=d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(x_{4}\right)=d\left(x_{5}\right)=1$, then $G \cong K_{5}(4,0,0,0,0)$. If three vertices of S are adjacent to u_{1} and the fourth one is adjacent to u_{2} and $d\left(x_{1}\right)=$ $d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(x_{4}\right)=d\left(x_{5}\right)=1$, then $G \cong K_{5}(3,1,0,0,0)$. If two vertices of S are adjacent to u_{1} and the remaining two vertices are adjacent to u_{2} and $d\left(x_{1}\right)=d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(x_{4}\right)=d\left(x_{5}\right)=1$, then $G \cong K_{5}(2,2,0,0,0)$.

Subcase (b) Let $\langle S\rangle=P_{4}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Since G is connected, there exists a vertex say u_{i} in K_{n-4} which is adjacent to x_{1} (or equivalently x_{4}) (or) x_{2} (or equivalently $\left.x_{3}\right)$. Let u_{i} be adjacent to x_{1} then $\left\{x_{2}, x_{4}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=6$. Hence K $=K_{2}=u v$. If x_{1} is adjacent to u, then $G \cong P_{6}$. Let u_{i} be adjacent to x_{2} then $\left\{x_{1}, x_{3}, x_{4}\right.$, $\left.u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=7$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. If x_{1} of S is adjacent to u_{1}, then $G \cong K_{3}\left(P_{5}\right)$. If x_{2} is adjacent to u_{1}, then no graph exists. Let u_{i} be adjacent to x_{2} then $\left\{x_{1}, x_{3}, x_{4}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=8$.

Hence $K=K_{4}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of K_{4}. If x_{2} of S is adjacent to u_{1}, then $G \cong G_{I I}$.

Subcase (c) Let $\langle S\rangle=K_{l, 3}$. Let the vertex x_{1} be adjacent to x_{2}, x_{3}, x_{4}. Since G is connected, there exists a vertex u_{i} in K_{n-4} which is adjacent to x_{1} or any one of (x_{2}, x_{3}, $\left.x_{4}\right)$. In all the cases, $\left\{x_{2}, x_{3}, x_{4}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=8$. Hence $K=K_{4}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of K_{4}. If u_{1} is adjacent to x_{1}, then $G \cong G_{12}$. If u_{1} is adjacent to x_{4}, then $G \cong G_{13}$.

Subcase (d) Let $\langle S\rangle=P_{3} \cup K_{1}$. Let $P_{3}=\left(x_{2}, x_{3}, x_{4}\right)$ since G is connected, there exists a vertex say u_{i} in K_{n-4} which is adjacent to x_{1}. Again since G is connected we consider the following two situations: (i) The vertex u_{i} is adjacent to x_{2} (or equivalently x_{4}) or x_{3}. (ii)There exists a vertex u_{j} for $i \neq$ in K_{n-4} such that u_{j} is adjacent to x_{2} (or equivalently x_{4}) or x_{3}. In all the cases, $\left\{x_{1}, x_{2}, x_{4}, u_{i}, u_{j}\right\}$ for $i \neq$ is a y_{2} set, so that $n=8$. Hence $K=K_{4}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of K_{4}. Let u_{1} be adjacent to x_{1} and x_{2} (or equivalently x_{3}) and let u_{1} be adjacent to x_{1} and u_{2} be adjacent to x_{2} (or equivalently x_{3}). In all the cases, $G \cong K_{4}\left(P_{2}, P_{4}, 0,0\right), G_{14}, G_{15}$.

Subcase (e) Let $\langle S\rangle=K_{2} \cup K_{2}$. Let $x_{1} x_{2}$ and $x_{3} x_{4}$ be the edges in $\langle S\rangle$. Since G is connected, there exists a vertex u_{i} in K_{n-4} which is adjacent to x_{l} and x_{3} in S (or) u_{i} is adjacent to x_{I} and u_{j} is adjacent to x_{3} for $i \neq j$ in K_{n-4}. In both the cases, $\left\{x_{2}, x_{4}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, hence $\gamma_{2}=4$, so that $n=7$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. If u_{1} is adjacent to x_{1} and x_{3}, then $G \cong K_{3}\left(P_{3}, P_{3}, 0\right)$. If u_{1} is adjacent to x_{1} and u_{2} is adjacent to x_{3}, then $G \cong K_{3}\left(P_{3}, P_{3}, 0\right)$.

Subcase (f) Let $\langle S\rangle=K_{3} \cup K_{l}$. Since G is connected, there exists a vertex u_{i} in K_{n-4} which is adjacent to x_{I} and x_{4} (or) u_{i} is adjacent to x_{I} and u_{j} for $i \neq j$ is adjacent to x_{4}. In both the cases, $\left\{x_{2}, x_{3}, x_{4}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set of G, so that $\gamma_{2}=5$. Hence $n=8$, since $\chi=n-4=3$. Hence $K=K_{4}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of K_{4}. If u_{1} is adjacent to x_{1} and x_{4}, then $G \cong G_{16}$. If u_{1} is adjacent to x_{1} and u_{2} is adjacent to x_{4}, then $G \cong G_{17}$.

If G does not contain a clique K on $n-4$ vertices, then it can be verified that no new graph exists.

Case (v) Let $\gamma_{2}=n-4$ and $\chi=n-3$. Since G is connected. Since $\chi=n-3, G$ contains a clique K on $n-3$ vertices or does not contain a clique K on $n-3$ vertices. Let $S=\left\{x_{1}, x_{2}\right.$, $\left.x_{3}\right\} \in V$-S. Let $\langle S\rangle=K_{3}, \bar{K}_{3}, P_{3}, K_{2} \cup K_{1}$.

Subcase (a) Let $\langle S\rangle=K_{3}$. Since G is connected, let x_{1} be adjacent to u_{i} for some i in K_{n-3}. Then $\left\{x_{2}, x_{3}, u_{i}, u_{j}\right\}$ for $i \neq j$ is a γ_{2} set, so that $n=8$. Hence $K=K_{5}$. Let u_{1}, u_{2}, u_{3}, u_{4}, u_{5} be the vertices of K_{5}. If u_{1} is adjacent to x_{1}, then $G \cong G_{18}$.

Subcase (b) Let $\langle S\rangle=\bar{K}_{3}$. Since G is connected, one of the vertices of K_{n-3}, say u_{i} is adjacent to all the vertices of S (or) two vertices of S (or) one vertex of S. In all the cases, $\left\{x_{1}, x_{2}, x_{3}, u_{i}, u_{j}\right\}$ for $\mathrm{i} \neq \dot{j}$ is a γ_{2} set, so that $n=9$. Hence $K=K_{6}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$, u_{5}, u_{6} be the vertices of K_{6}, without loss of generality, u_{1} is adjacent to all the vertices of S and $d\left(x_{1}\right)=d\left(x_{2}\right)=d\left(x_{3}\right)=1$, hence $G \cong K_{6}(3,0,0,0,0,0)$. If u_{1} is adjacent to x_{1}, x_{2} and u_{2} is adjacent to x_{3} and $d\left(x_{1}\right)=d\left(x_{2}\right)=d\left(x_{3}\right)=1$, then $G \cong K_{6}(2,1,0,0,0$, 0). If u_{1} is adjacent to x_{1} and u_{2} is adjacent to x_{2} and u_{3} is adjacent to x_{3}, then $G \cong K_{6}$ (1, 1, 1, 0, 0, 0).

Subcase (c) Let $\langle S\rangle=P_{3}=\left(x_{1}, x_{2}, x_{3}\right)$. Since G is connected, there exists a vertex u_{i} in K_{n-3} is adjacent to x_{1} (or equivalently x_{3}) (or) u_{i} is adjacent to x_{2}. In both the cases, $\left\{x_{1}, x_{3}, u_{i}, u_{j}\right\}$ for $\mathrm{i} \neq$ is a γ_{2} set, so that $n=8$. Hence $K=K_{5}$. Let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ be the vertices of K_{5}. If u_{1} is adjacent to x_{1}, then $G \cong K_{5}\left(P_{4}\right)$. If u_{1} is adjacent to x_{2}, then $G \cong G_{19}$.

Subcase (d) Let $\langle S\rangle=K_{2} \cup K_{1}$. Let $x_{1} x_{2}$ be the edge in K_{2}. Since G is connected. There exists an u_{i} in K_{n-3} is adjacent to x_{I} and x_{3} (or) u_{i} is adjacent to x_{I} and u_{j} for $i \neq j$ is adjacent to x_{3}. In both the cases, $\left\{x_{2}, x_{3}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=8$ and hence $K=K_{5}$. Let $\mathbf{u}_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ be the vertices of K_{5}. If u_{1} is adjacent to x_{1} and x_{3}, then $G \cong K_{5}\left(P_{3}, P_{2}, 0,0,0\right)$. If u_{1} is adjacent to x_{1} and u_{2} is adjacent to x_{3}, then $G \cong K_{5}$ ($P_{3}, P_{2}, 0,0,0$).

If G does not contain a clique K on $n-3$ vertices, then it can be verified that no new graph exists.

Case (vi) Let $\gamma_{2}=n-5$ and $\chi=n-2$. Since $\chi=n-2, G$ contains a clique K on $n-2$ vertices or does not contain a clique K on $n-2$ vertices. If G contains a clique K on $n-2$ vertices, then $S=\left\{x_{1}, x_{2}\right\} \in V-S$. Then $\langle S\rangle=K_{2}$ or \bar{K}_{2}.

Subcase (a) Let $\langle S\rangle=K_{2}$. Since G is connected, there exists a vertex u_{i} in K_{n-2} is adjacent to x_{1}. Then $\left\{x_{2}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=8$. Hence $K=K_{6}$. Let u_{1}, $u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ be the vertices of K_{6}. If u_{1} is adjacent to x_{1}, then $G \cong K_{6}\left(P_{3}\right)$.

Subcase (b) Let $\langle S\rangle=\bar{K}_{2}$. Since G is connected, there exists a vertex u_{i} in K_{n-2} is adjacent to x_{1} and x_{2} (or) if u_{i} is adjacent to x_{1} and u_{j} for $i \neq j$ is adjacent to x_{2}. In both the cases, $\left\{x_{1}, x_{2}, u_{i}, u_{j}\right\}$ for $i \neq$ is a γ_{2} set, so that $n=9$. Hence $K=K_{7}$. Let u_{1}, u_{2}, u_{3}, $u_{4}, u_{5}, u_{6}, u_{7}$ be the vertices of K_{7}. If x_{1} and x_{2} be adjacent to u_{1}, then $G \cong K_{7}$ $(2,0,0,0,0,0,0)$. If x_{1} is adjacent to u_{1} and x_{2} is adjacent to u_{2}, then $G \cong$ $K_{7}(1,1,0,0,0,0,0)$.

If G does not contain a clique K on $n-2$ vertices, then it can be verified that no new graph exists.

Case (vii) Let $\gamma_{2}=n-6$ and $\chi=n-1$. Since $\chi=n-1, G$ contains a clique K on $n-1$ vertices or does not contain a clique K on $n-1$ vertices. If G contains a clique K on $n-1$ vertices, then there exists a vertex u_{i} in K_{n-l} adjacent to x. Hence $\left\{x, u_{i}, u_{j}\right\}$ for $i \neq j$ is a γ_{2} set, so that $n=9$. Hence $K=K_{8}$. Let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}$ be the vertices of K_{8}. If u_{1} is adjacent to x, then $G \cong K_{8}(1,0,0,0,0,0,0,0)$.

If G does not contain a clique K on $n-1$ vertices, then it can be verified that no new graph exists.

Case (viii) Let $\gamma_{2}=n-7$ and $\chi=n$. Since $\chi=n$, we have $G=K_{n}$. But for $K_{n}, \gamma_{2}=2$, so that $n=9$.

Hence $G \cong K_{g}$.

References

[1] F. Harary, Graph Theory, Addison Wesley Reading Mass, 1972.
[2] Haynes, W. Teresa W. (2000): Paired domination in graphs, Congr. Number 150, 2000.
[3] Haynes, Teresa W, Induced-Paired domination in graphs, Ars Combin. 57(2001), 111-128.
[4] Teresa W .Haynes, T. Stephen T. Hedemiemi and Peter J .Slater (1998), Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[5] F.Harary, T.W.Haynes, Double domination in Graphs, Ars Combin., 55(2000) 201-213.
[6] G. Mahadevan, A. Mydeenbibi, Double domination number and Chromatic number of a graph, Narosa publications, India,(2007), 182-190.
[7] G. Mahadevan, A. Mydeenbibi, Characterization of Two domination number and Chromatic number of a graph, International Journal of Computational Science and Mathematics, Vol 3, No. 2(2011), 245-254.
[8] G. Mahadevan, On Domination theory and related concepts in graphs, Ph.D., thesis (2005), Manonmaniam Sundaranar University, Tirunelveli, India.
[9] G. Mahadevan, J. Paulraj Joseph, Complementary connected domination number and chromatic number of a graph, Allied publications, India. 56(2003), 342-349.
[10] G. Mahadevan, A. Selvam, J. Paulraj Joseph, Extended results on Complementary connected domination number and chromatic number of a graph, Proceedings of the SACOEFERENCE, Dr. Sivanthi Aditanar College of Engineering, (2005), 438-441.
[11] J. Paulraj Joseph, G. Mahadevan, On Complementary perfect domination number of a graph, Acta Cienia Indica, Vol. XXXI M, No. 2(2006), 847
[12] J. Paulraj Joseph, S. Arumugam, Domination and connectivity in graphs, International Journal of Management and systems, Vol. 8, No 3(1992), 233-236.
[13] J. Paulraj Joseph, S. Arumugam, Domination and Colouring in graphs, International Journal of management and systems, Vol.15, No.1(1999), 37-44.

