International Journal of Mathematics and Soft Computing Vol.1, No.1 (2011), 69 - 76

Equality of strong domination and chromatic strong domination in graphs

S.Balamurugan

Department of Mathematics, Sethupathy Government Arts College Ramanathapuram, Tamilnadu, India. E-mail: balapoojaa2009@gmail.com

A. Wilson Baskar, V. Swaminathan

Ramanujan Research Center, Saraswathi Narayanan College Madurai 625 022, Tamilnadu, India. E-mail: arwilvic@yahoo.com, sulanesri@yahoo.com

Abstract

A subset D of a vertex set V of a graph G is a chromatic strong dominating set if D is a strong dominating set and $\chi(\langle D \rangle) = \chi(G)$. The minimum cardinality of chromatic strong dominating set is called chromatic strong domination number of G and is denoted by $\gamma_s^c(G)$. In this paper we study relationship between strong domination and chromatic strong domination of a graph.

Keywords: Domination, Strong domination, Chromatic strong domination, Strong domination number, Chromatic number.

AMS Subject Classification(2010): 05C69.

1 Introduction

Let G = (V, E) be finite simple, undirected graph. For $D \subseteq V$, the subgraph induced by D is denoted by $\langle D \rangle$. The degree of a vertex v in a graph G is the number of edges of G incident with v and is denoted by deg(v). The maximum and the minimum degrees of the vertices of G are respectively denoted by $\Delta(G)$ and $\delta(G)$. A vertex of degree 0 in G is called an isolated vertex, and a vertex of degree 1 is called a pendant vertex or an end vertex of G. Any vertex adjacent to a pendent vertex is called a support. A subset $D \subseteq V$ is said to be a strong dominating set if for every vertex $v \in V - D$, there exists a vertex $u \in D$ such that $uv \in E$ and $deg(u) \geq deg(v)$. The minimum cardinality of a strong dominating set is called the strong domination number of G and is denoted by $\gamma_s(G)$. The strong dominating set of cardinality $\gamma_s(G)$ is denoted by γ_s -set of G. A colouring of a graph G is an assignment of colours to all its vertices. A proper colouring is a colouring in which adjacent vertices are assigned different colours. The chromatic number $\chi(G)$ is the minimum number of colors necessary to give a proper colouring of G. A set $D \subseteq V$ is said to be a chromatic strong dominating set if D is a strong dominating set and $\chi(\langle D \rangle) = \chi(G)$. The minimum cardinality of a chromatic strong dominating set is called the chromatic strong domination number of G and is denoted by $\gamma_s^c(G)$. The chromatic strong dominating set of cardinality $\gamma_s^c(G)$ is denoted by γ_s^c -set of G. By the definition, every chromatic strong dominating set is a strong dominating set. But the converse is not true. In some graphs, every γ_s -set is a chromatic strong dominating set and some γ_s -set is not a chromatic strong. dominating set while in some graphs no γ_s -set is a Chromatic Strong dominating set.

By observing these graphs with these properties, we wish to classify all graphs with these properties. By the motivation of these observative, we define that, a graph G is in $(\gamma_s \equiv \gamma_s^c)$ -class if every γ_s -set is a chromatic strong dominating set. If some γ_s -set is a chromatic strong dominating set and some γ_s -set is not a chromatic strong dominating set, we say that G is in $(\gamma_s \cong \gamma_s^c)$ -class. If no γ_s -set is a chromatic strong dominating set, we say that G is in $(\gamma_s \neq \gamma_s^c)$ -class. For example, $K_{n,n}$ is in $(\gamma_s \equiv \gamma_s^c)$ -class, $K_{m,n}$, $(m \neq n)$ is in $(\gamma_s \cong \gamma_s^c)$ -class and subdivision graph of $K_{1,n}$ is in $(\gamma_s \neq \gamma_s^c)$ -class.

2 Equality of sets

Definition 2.1. A graph G is said to be in $(\gamma_s \equiv \gamma_s^c)$ -class if every γ_s -set is a chromatic strong dominating set.

Definition 2.2. A graph G is said to be in $(\gamma_s \cong \gamma_s^c)$ -class if some γ_s -sets are chromatic strong dominating set and some γ_s -sets are not chromatic strong dominating set.

Definition 2.3. A graph G is said to be in $(\gamma_s \neq \gamma_s^c)$ -class if no γ_s -set is chromatic strong dominating set.

Remark 2.4. Let G be a χ -critical graph with |V(G)| > 1. Then G is in $(\gamma_s \neq \gamma_s^c)$ class. (Since for such graphs $\gamma_s(G) < n$ and $\gamma_s^c(G) = n$) **Theorem 2.5.** Let P_n be a path on n vertices. Then

- 1. The path P_n belongs to $(\gamma_s \neq \gamma_s^c)$ -class if and only if $n \equiv 0$ or $2 \pmod{3}$.
- 2. The path P_n belongs to $(\gamma_s \cong \gamma_s^c)$ -class if and only if $n \equiv 1 \pmod{3}$

Proof. Let $P_n : u_1, u_2, ..., u_n$ be a path on n vertices. Case(i) Let n = 3k.

Then $\gamma_s(P_{3k}) = k$ and it has a unique γ_s -set $D = \{u_2, u_5, u_8, ..., u_{3k-1}\}$. Since D is independent, $\chi(\langle D \rangle) = 1$. But $\chi(G) = 2$. Therefore D is not a chromatic strong dominating set. Hence P_{3k} belongs to $(\gamma_s \neq \gamma_s^c)$ -class.

Case(ii) Let $n \equiv 1 \pmod{3}$. Let n = 3k + 1. Then $\gamma_s(P_{3k+1}) = k + 1$. Let $D_1 = \{u_2, u_5, u_8, ..., u_{3k-1}, u_{3k+1}\}$ and $D_2 = \{u_2, u_5, u_8, ..., u_{3k-1}, u_{3k}\}$. Then D_1 and D_2 are γ_s - sets. But D_1 is independent and D_2 is not independent. Therefore D_1 is not a chromatic strong dominating set and D_2 is a γ_s^c - set. Thus, P_{3k+1} is in $(\gamma_s \cong \gamma_s^c)$ -class.

Case(iii) Let $n \equiv 2 \pmod{3}$. Let n = 3k + 2. Then $\gamma_s(P_{3k+2}) = k + 1$. Let D be a γ_s -set. Suppose D is not independent. Let $v_i, v_{i+1} \in D$.

Subcase (i) Let i = 3l. Consider the path $P_1 : u_1, u_2, ..., u_{3l-2}$ and the path $P_2 : u_{3l+3}, ..., u_{3k+2}$. Then $\gamma_s(P_1) = \left\lceil \frac{3l-2}{3} \right\rceil = l$ and $\gamma_s(P_2) = \left\lceil \frac{3(k-l)}{3} \right\rceil = k-l$. Therefore $\gamma_s(P_n) = \gamma_s(P_1) + 2 + \gamma_s(P_2) = l + 2 + k - l = k + 2$, which is a contradiction.

Subcase (ii) Let i = 3l + 1. Consider the path $P_1 : u_1, u_2, ..., u_{3l-1}$ and the path $P_2 : u_{3l+4}, ..., u_{3k+2}$. Then $\gamma_s(P_1) = \left\lceil \frac{3l-1}{3} \right\rceil = l$ and $\gamma_s(P_2) = \left\lceil \frac{3(k-l)-1}{3} \right\rceil = k-l$. Therefore $\gamma_s(P_n) = \gamma_s(P_1) + 2 + \gamma_s(P_2) = l + 2 + k - l = k + 2$, which is a contradiction.

Subcase (iii) Let i = 3l + 2. Consider the path $P_1 : u_1, u_2, ..., u_{3l}$ and the path $P_2 : u_{3l+5}, ..., u_{3k+2}$. Then $\gamma_s(P_1) = \left\lceil \frac{3l}{3} \right\rceil = l$ and $\gamma_s(P_2) = \left\lceil \frac{3(k-l)-2}{3} \right\rceil = k - l$. Therefore $\gamma_s(P_n) = \gamma_s(P_1) + 2 + \gamma_s(P_2) = l + 2 + k - l = k + 2$, which is a contradiction. Therefore D is independent. Hence, D is not chromatic strong dominating set. Therefore P_{3k+2} belongs to $(\gamma_s \neq \gamma_s^c)$ - class. Hence, the theorem.

Theorem 2.6. The cycle C_n of $(\gamma_s \neq \gamma_s^c)$ -class if and only if n is odd or $n \equiv 0$ or $2 \pmod{3}$, when n is even.

Proof. Let $C_n : u_1, u_2, u_3, ..., u_n$ be a cycle on *n*-vertices.

Case(i) Let *n* be odd. $\gamma_s(C_n) = \left\lceil \frac{n}{3} \right\rceil < n = \gamma_s^c(C_n)$ when *n* is odd. Thus, no γ_s -set is a chromatic strong dominating set. Hence C_n of $(\gamma_s \neq \gamma_s^c)$ -class.

Cass(ii): Let n be even and $n \equiv 0 \pmod{3}$. Let n = 3k, let D be a γ_s -set. Then $D_1 = \{u_2, u_5, u_8, \dots, u_{3k-1}\}, D_2 = \{u_3, u_6, u_9, \dots, u_{3k}\}$ and $D_3 = \{u_1, u_4, u_7, \dots, u_{3k-2}\}$ are the only γ_s -sets. But all D'_i are independent. Therefore $\chi(\langle D_i \rangle) = 1 \neq 2 = \chi(C_n)$ for all i. Thus, C_n is of $(\gamma_s \neq \gamma_s^c)$ -class.

Case(iii) Let n be even and $n \equiv 2 \pmod{3}$. Let n = 3k + 2. Then $\gamma_s(C_n) = \left\lceil \frac{n}{3} \right\rceil = \left\lceil \frac{3k+2}{3} \right\rceil = k+1$. Let D be a γ_s -set. Suppose D is not independent. Let $v_i, v_{i+1} \in D$. Consider the path $P_1 : v_{i+3}, v_{i+4}, \dots, v_n, v_1, v_2, v_3, \dots, v_{i-2}$ of length n-4. Therefore $\gamma_s(P_1) = \left\lceil \frac{n-4}{3} \right\rceil = \left\lceil \frac{3k+2-4}{3} \right\rceil = \left\lceil \frac{3k-2}{3} \right\rceil = k$.

Therefore $\gamma_s(C_n) = \gamma_s(P_1) + 2 = k + 2$, which is a contradiction. Therefore D is independent. Therefore $\chi(\langle D \rangle) = 1 \neq \chi(C_n) = 2$. Therefore every γ_s -set is not a chromatic strong dominating set. Therefore C_n is in $(\gamma_s \neq \gamma_s^c)$ -class.

Case(iv) Let $n \equiv 1 \pmod{3}$. Let n = 3k + 1. Then $\gamma_s(C_{3k+1}) = k + 1$. Let $D_1 = \{u_2, u_5, u_8, ..., u_{3k-1}, u_{3k+1}\}$ and D_1 is independent.

Thus, $\chi(\langle D_1 \rangle) = 1$. But $\chi(G) = 2$. Therefore D_1 is not chromatic strong dominating set. Let $D_2 = \{u_2, u_5, ..., u_{3k-1}, u_{3k}\}$ and D_2 is not independent. Thus, $\chi(\langle D_2 \rangle) = 2$ and $\chi(G) = 2$. Therefore D_2 is a chromatic strong dominating set. Thus C_n is in $(\gamma_s \cong \gamma_s^c)$ -class.

Corollary 2.7. C_n is of $(\gamma_s \cong \gamma_s^c)$ -class if and only if n is even and $n \equiv 1 \pmod{3}$.

Proposition 2.8. Let $G = K_{m,n}$, $m \neq n$. Then G is of $(\gamma_s \neq \gamma_s^c)$ -class.

Proof. Let $G = K_{m,n}$ and m < n. Let (V_1, V_2) be the bipartition of V(G) and $|V_1| < |V_2|$. Then V_1 is the unique γ_s -set in G and V_1 is a independent. Therefore $\chi(< V_1 >) = 1 \neq \chi(G)$, which means V_1 is not a γ_s^c -set. Thus, G is in $(\gamma_s \neq \gamma_s^c)$ -class.

Proposition 2.9. Let $G = K_{n,n}$ where $m = n \ge 3$. Then G is of $(\gamma_s \equiv \gamma_s^c)$ - class.

Proof. Let $G = K_{n,n}$ where $n \ge 3$. Let (V_1, V_2) be the bipartition of V(G) where $u \in V_1$ and $v \in V_2$. Then every γ_s -set of $K_{n,n}$, $n \ge 3$ is $\{u, v\}$, where $uv \in E(K_{n,n})$. Therefore $\gamma_s = 2$ and $\chi(\langle \{u, v\} \rangle) = 2 = \chi(G)$. That is $\{u, v\}$ is a

 γ_s -set. Thus every γ_s -set is γ_s^c -set. Therefore G is in $(\gamma_s \equiv \gamma_s^c)$ -class.

Observation 2.10. Let $G = K_{1,n-1}$, $n \ge 3$ then G is in $(\gamma_s \ne \gamma_s^c)$ -class.

Proof. Let $G = K_{1,n-1}$. Then $\gamma_s(K1, n-1) = 1$. Let u be a full degree vertex of G. Then $D = \{u\}$ is a unique γ_s -set. But $\chi(\langle D \rangle) = 1 \neq 2 = \chi(G)$. Therefore D is not a chromatic strong dominating set. Therefore G is in $(\gamma_s \neq \gamma_s^c)$ -class.

Proposition 2.11. Let $G = K_n$, $n \ge 2$. Then G is in $(\gamma_s \neq \gamma_s^c)$ -class.

Proof. Let $G = K_n$, $n \ge 2$. Then $\gamma_s(K_n) = 1$. Therefore γ_s -sets are singleton sets. Therefore $\chi(\langle D \rangle) = 1 \ne n = \chi(G)$ for every γ_s -set. Thus, D is not a chromatic strong dominating set. Hence G is in $(\gamma_s \ne \gamma_s^c)$ -class.

Theorem 2.12. Let T be a tree. If there exist support vertices u, v such that $d(u_i) = 2$ for all u_i on the path joining u and v and $d(u, v) \equiv 0 \pmod{3}$. Then u, v belong to every γ_s -set of T.

Proof. Let u, v be a pair of vertices in T such that $d(u, v) \equiv 0 \pmod{3}$ and $d(u_i) = 2$ for all u_i on the path joining u and v. Suppose there is a γ_s -set D such that $u \notin D$ or $v \notin D$. Let $u \notin D$. Then N(u) has exactly one pendent vertex, say w. Then $w \in D$. Let $u = u_0, u_1, u_2, u_3, \dots, u_r = v$. Then $r \equiv 0 \pmod{3}$. Since D is a γ_s -set and $u_0 = u \notin D$, assume that $u_2, u_5, \dots, u_{r-1} \in D$. Let r = 3k. Then $|\{u_2, u_5, \dots, u_{r-1}\}| = k$. If $v \in D$, then $D_1 = (D - \{w, u_2, u_5, \dots, u_{r-1}\}) \bigcup \{u, u_3, u_6, \dots, u_{r-3}\}$ is a strong dominating set and $|D_1| = |D| - 1$, which is a contradiction. If $v \notin D$, then N(v) has exactly one pendent vertex x, and $x \in D$. $D_2 = (D - \{x, w, u_2, u_5, \dots, u_{r-1}\}) \bigcup \{u, v, u_3, u_6, \dots, u_{r-3}\}$ is a strong dominating set and $|D_2| = |D| - 1$, which is a contradiction. Hence, $u \in D$ and $v \in D$.

Proposition 2.13. Let P be the set of all pendent vertices of a tree T. If T has two vertices u, v such that $|N(u) \cap P| \ge 2$, $|N(v) \cap P| \ge 2$, and $uv \in E(T)$, Then T belongs to $(\gamma_s \equiv \gamma_s^c)$ -class.

Proof. Let $|N(u) \cap P| \ge 2$ and $|N(v) \cap P| \ge 2$. Then u, v belong to every γ_s -set D of T. Since $uv \in E(T)$, $\chi(\langle D \rangle) = 2$, D is a γ_s^c -set.

Hence T is in $(\gamma_s \equiv \gamma_s^c)$ -class.

Theorem 2.14. Let T be a tree in which $d(u, v) \equiv 0 \pmod{3}$ for some support vertices and $d(u_i) = 2$ for all u_i on the path joining u and v. If there exists a support vertex w such that $vw \in E(T)$, and either $|N(w) \cap P| \ge 2$ or for some support vertex x, $d(w, x) \equiv 0 \pmod{3}$ and $d(x_i) = 2$ for all vertices x_i on the path joining w and x, then T belongs to $(\gamma_s \equiv \gamma_s^c)$ -class.

Proof. Let T be a tree in which for some support vertices u, v and $w, d(u, v) \equiv 0 \pmod{3}, d(u_i) = 2$ for all vertices u_i on the path joining u, v and $vw \in E(T)$. Suppose that either $|N(w) \cap P| \ge 2$ or there exists a support vertex x such that $d(w, x) \equiv 0 \pmod{3}$ and $d(x_i) = 2$ for all vertices x_i on the path joining w and x. Let D be a γ_s -set. By Proposition 2.13, $u, v \in D$. If $|N(w) \cap P| \ge 2$, then $w \in D$. If there exists a support vertex x such that $d(w, x) \equiv 0 \pmod{3}$ and $d(x_i) = 2$ for all vertices x_i on the path joining w and x, then by Proposition 2.13, $w, x \in D$. Thus, in both cases, $w \in D$. Since $vw \in E(T), \chi(< D >) = 2$. Thus, D is a γ_s^c -set. Hence T is in $(\gamma_s \equiv \gamma_s^c)$ -class.

Theorem 2.15. Let D be a caterpillar. T is in $(\gamma_s \equiv \gamma_s^c)$ -class if and only if T has two support vertices u, v satisfying one of the following properties:

(i). $|N(u) \cap P| \ge 2$, $|N(v) \cap P| \ge 2$ and $uv \in E(T)$

(ii). If $d(u, v) \equiv 0 \pmod{3}$ and $d(u_i) = 2$ for all u_i on the path joining u and v, there exists a support vertex w such that $vw \in E(T)$ and $|N(w) \cap P| \ge 2$ or for some support vertex x, $d(w, x) \equiv 0 \pmod{3}$ and $d(x_i) = 2$ for all vertices x_i on the path joining w and x.

Proof. Let T be a caterpillar. Assume that T is in $(\gamma_s \equiv \gamma_s^c)$ -class. Suppose that for every pair u, v of support vertices, the given two conditions fail. Let D be a γ_s -set with minimum number of edges in $\langle D \rangle$. Since D is in $(\gamma_s \equiv \gamma_s^c)$ -class, $\chi(\langle D \rangle) = 2$. Therefore there exist $u, v \in D$ such that $uv \in E(T)$. Then $u, v \in V(T) - P$. Since $uv \in E(T)$ and since (i) is not true, $|N(u) \cap P| \leq 1$ or $|N(v) \cap P| \leq 1$.

Case (i) Let $N(u) \cap P = \phi$. Since D is a γ_s -set and $uv \in E(T)$, $u \notin P$. Since T is a caterpillar and $N(u) \cap P = \phi$, d(u) = 2. Let $x \in N(u) - \{v\}$. Since D is a γ_s -set and $u, v \in D$, $(N(x) - \{u\}) \cap D = \phi$. Then $D_1 = (D - \{u\}) \bigcup \{x\}$ is a

 γ_s -set and $|E(\langle D_1 \rangle)| = |E(\langle D \rangle)| - 1$ which is a contradiction to the fact that D is a γ_s -set with minimum number of edges in $\langle D \rangle$.

Case (ii) Let $N(u) \cap P = \{x\}$ and $N(v) \cap P = \{y\}$. If $(N(u) - \{v\}) \cap D \neq \phi$, then $D_2 = (D - \{u\}) \bigcup \{x\}$ is a γ_s -set with $|E(\langle D_2 \rangle)| = |E(\langle D \rangle)| - 1$ which is a contradiction. Let $(N(u) - \{v\}) \cap D = \phi$ and $(N(v) - \{u\}) \cap D = \phi$. Let $w_1 \neq v$ be a support vertex such that $d(u, w_1)$ is minimum and $d(u_i) = 2$ for all vertices u_i on the path joining u and w. Let $w_2 \neq u$ be a support vertex such that $d(v, w_2)$ is minimum and $d(v_i) = 2$ for all vertices v_i on the path joining v and w. Let $d(u, w_1) \equiv 0 \pmod{3}$. Since $uv \in E(T)$, by our assumption, $d(v, w_2) \equiv 1 \pmod{3}$. Let $v = v_0, v_1, v_2, \cdots, v_r = w_2$ and $d(v_i) = 2$ for all $i = 1, 2, \dots, r-1$. Then r = 3k + 1 or 3k + 2. Since D is a γ_s set and $v \in D$ we can assume that $v_3, v_6, v_9, \cdots, v_{r-1} \in D$ if r = 3k + 1or $v_3, v_6, \dots, v_{r-2} \in D$ if r = 3k + 2. Let $w_2 \in D$. If r = 3k + 1, then $D_3 = (D - \{v, v_3, v_6, \cdots, v_{r-1}\}) \bigcup \{v_2, v_5, \cdots, v_{r-2}\}$ is a γ_s -set. But $|E| < D_3 > D_3$ $|| = |E(\langle D \rangle)| - 2$, which is a contradiction. If r = 3k + 2, then $D_4 = (D - D_4)$ $\{v, v_3, v_6, \cdots, v_{r-2}\} \bigcup \{y, v_2, v_5, \cdots, v_{r-3}\}$ is a γ_s -set. But $|E(\langle D_4 \rangle)| = |E(\langle D_4 \rangle)| = |E(\langle D_4 \rangle)|$ |D>||-1, which is a contradiction. If $w_2 \notin (D)$, then $N(w_2) \bigcap P = \{z\}$ and $z \in \mathbb{C}$ D. If r = 3k+1, then $D_5 = (D - \{v, z, v_3, v_6, \cdots, v_{r-1}\}) \bigcup \{y, w_2, v_2, v_5, \cdots, v_{r-2}\}$ is a γ_s -set and $|E(\langle D_5 \rangle)| = |E(\langle D \rangle)| - 1$, which is a contradiction. If r = 3k + 2, then $D_6 = (D - \{v, z, v_3, v_6, \cdots, v_{r-2}\}) \bigcup \{y, w_2, v_2, v_5, \cdots, v_{r-3}\}$ is a γ_s -set and $|E(\langle D_6 \rangle)| = |E(\langle D \rangle)| - 1$, which is a contradiction. Thus in all cases, we get contradictions. Hence one of the two conditions (i), (ii) holds. Conversely, assume that T has two support vertices u, v satisfying one of the given two conditions. By proposition 2.13, and by theorem 2.14, T is in $(\gamma_s \equiv \gamma_s^c)$ -

References

class.

- [1] S. Balamurugan, V. Swaminathan , *On chromatic strong dominating sets in graphs*, International Journal of Engineering Science, Advanced Computing and Bio Technology Submited.
- [2] Diet Gernert, *Inequality between domination number and chromatic number of a graph*, Discrete Math . 76 (1989), 151-153.
- [3] F. Harary, *Graph Theory*, Addison Wesley, Reading Mass(1972).

- [4] T.W.Haynes ,S.T. Hedetniemi, P.J. Slater, *Fundamentals of domination in graphs*, Marcel Decker Inc.. New york, 1998.
- [5] E. Sampathkumar, L. Pushpalatha *Strong weak domination and domination balance in a graph*, Discrete Math . 161 (1996), 235-242.
- [6] V. Swaminathan, S. Balamurugan, A. Wilson Baskar, G. Prabakaran, *Chromatic strong dominating sets in bipartiate graphs* Preprint.
- [7] P. Thangaraju, *Studies in domination in graphs and degree sequences*, Ph. D. Thesis, Kadurai Kamaraj University, November(2001).