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Abstract

E.Sampathkumar et al introduced [7] the concept of point set domination

number of a graph. A setD ⊆ V (G) is said to be a point set dominating

set (psd set), if for everyS ⊆ V − D there exists a vertexu ∈ D such that

the subgraph〈S ∪ {u}〉 induced byS ∪ {u} is connected. The minimum

cardinality of a psd set is called the point set domination number ofG and

is denoted byγp(G).In this paper psd sets are analysed with respect to the

strong [9] domination parameter for separable graphs. The characterization of

separale graphs with equal psd number and spsd number is derived.
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1 Introduction

A set D ⊆ V (G) is said to be a strong point set dominating set (spsd set), if for

everyS ⊆ V − D there exists a vertexu ∈ D such that the subgraph〈S ∪ {u}〉
induced byS ∪ {u} is connected andd(u) ≥ d(s) for all s ∈ S whered(u) denote

the degree of the vertexu. The minimum cardinality of an spsd set is called the

strong point set domination number ofG and is denoted byγsp(G). A connected

graph with atleast one cut vertex is called a separable graph. IfB is a block of a

separable graphG with psd setB′, then(V −B)∪B′ is a psd set ofG but need not

be an spsd set ofG as seen in the following discussion. Hence the spsd sets ofG are

characterized first and then analysed with reference to the spsd sets of the blocks of

G. The characterization of separale graphs with equal psd number and spsd number

is derived. In the following discussion, a graphG always means a connected graph.
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2 Main Results

Definition 2.1. A set D ⊂ V (G) is said to be a strong point set dominating set (spsd
set) of G if for every S ⊆ V −D there exists a vertex u ∈ D such that the subgraph
〈S ∪ {u}〉 induced by S ∪ {u} is connected and d(u) ≥ d(s) for all s ∈ S where
d(u) denote the degree of the vertex u.
The minimum cardinality of an spsd set is called the strong point set domination
number of G and is denoted by γsp(G).

Proposition 2.2.A subset D of V is an spsd set if and only if for every independent
set S ⊆ V − D there exists u ∈ D such that S ⊆ N(u) and d(u) ≥ d(s) for all
s ∈ S

Proof. If D is an spsd set ofG, then the condition follows from the definition ofD.

Conversely, suppose the given condition is satisfied. LetS ⊆ V −D be any set. IfS

is independent, then by the given condition there existsu ∈ D such that〈S ∪ {u}〉
is connected andd(u) ≥ d(s) for all s ∈ S. If S is not independent, then let

S = S1 ∪ S2 whereS1 is a maximal independent subset ofS. Let s′ ∈ S be such

thatd(s′) = Maxs∈S {d(s)}.
Case (i)s′ ∈ S1.

S1is a maximal independent subset ofS implies there existsu ∈ D such thatS1 ⊆
N(u) andd(u) ≥ d(s) for all s ∈ S1. Therefore,d(u) ≥ d(s′). S1 is maximal

independent subset ofS implies every vertex ofS2 is adjacent to at least one vertex

in S1. Hence〈S1 ∪ S2 ∪ {u}〉 is connected. Alsod(u) ≥ d(s′) implies d(u) ≥
d(s′) ≥ d(s) for all s ∈ S. Hence〈S ∪ {u}〉 is connected andd(u) ≥ d(s) for all

s ∈ S.

Case (ii)s′ ∈ S2.

s′ ∈ S2 implies thats′ is adjacent to at least one vertex inS1.

(ii) - (a): s′ is adjacent to all vertices inS1.

Every vertex ofS2 is adjacent to at least one vertex ofS1. Therefore,〈S1 ∪ S2〉 is

connected. Alsos′ ∈ V −D implies there existsu ∈ D such thatus′ ∈ E(G) and

d(u) ≥ d(s′). Therefore,〈S ∪ {u}〉 is connected andd(u) ≥ d(s′) ≥ d(s) for all

s ∈ S.

(ii) - (b): There are vertices inS1 which are not adjacent tos′.

Let A = {s ∈ S1/s /∈ N(s′)} ∪ {s′}
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ThenA is independent and therefore there existsu ∈ D such that〈A ∪ {u}〉 is

connected andd(u) ≥ d(a) for all a ∈ A. By the definition ofA, s′ ∈ A. Therefore,

〈S ∪ {u}〉 is connected andd(u) ≥ d(s′) ≥ d(s) for all s ∈ S. HenceD is an spsd

set ofG.

Remark 2.3.In the remaining discussion of this paper, a graph G always means a
separable graph.

Observation 2.4.If B is a block with spsd set B′, then (V − B) ∪ B′ need not be
an spsd set of G.

Proof. Consider the following figure:
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Figure 1

B′ = {3, 5} is an spsd set ofB. Then(V − B) ∪ B′ = {1, 3, 5} is a psd set ofG

but not an spsd set ofG sinced(2) > d(1), d(3), d(5).

Remark 2.5.If a block B has an spsd set B′ containing all cut vertices belonging
to B, then (V −B) ∪B′ is an spsd set of G.

Proof. Let S ⊆ V − [(V − B) ∪ B′] be independent. ThenS ⊆ B − B′. B′ is an

spsd set ofB implies there existsu ∈ B′ such thatS ⊆ NB(u) anddB(u) ≥ dB(s)

for all s ∈ S. SinceB′ contain all cut vertices belonging toB, dB(s) = dG(s) for

all s ∈ S. HencedG(u) ≥ dB(u) ≥ dB(s) = d(s) for all s ∈ S. That is,S ⊆ N(u)

anddG(u) ≥ dG(s) for all s ∈ S. Therefore,(V −B) ∪B′ is an spsd set ofG.

Therefore, separable graphs in which every block has aγsp set containing all cut

vertices belonging toB are considered in the following discussion.

Definition 2.6.ksp = MaxB∈BG
{|B| − γsp(B)} where BG denote the set of all

blocks of G.
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Remark 2.7.

(i) γsp(G) ≤ n− ksp.

(ii) γsp(G) ≤ n−∆.

Proof.

(i) : (V −B) ∪B′ is an spsd set ofG impliesγsp(G) ≤ n− (|B −B′|). Choose a

blockB for which |B −B′| = ksp. Henceγsp(G) ≤ n− ksp.

(ii) : D = V (G)−N(u) whered(u) = ∆ is an spsd set ofG and henceγsp(G) ≤
n−∆.

Remark 2.8.If D is an γsp set of a separable graph G, then there are three cases:

(i) V −D contain vertices of different blocks.

(ii) V −D ⊂ B.

(iii) V −D = B for some block B.

Definition 2.9. When V −D ⊂ B, define
P (B, D) = {u ∈ V −D/N(u) ∩ (B ∩D) = φ}.

Remark 2.10.If P (B, D) 6= φ, then γsp(G) = n−∆.

Remark 2.11.B ∩D is an spsd set of B − P (B, D).

Proof. Let S ⊆ B−P (B, D)−B∩D be an independent subset. ThenS ⊆ V −D.

Therefore, there existsu ∈ D such thatT ⊆ N(u) andd(u) ≥ d(s) for all s ∈ S.

S is an independent subset impliesu is adjacent to more than one vertex inB and

henceu ∈ B ∩D.

Case (i)u is not a cut vertex.

ThendG(u) = dB(u). HencedB(u) = dG(u) ≥ dG(s) ≥ dB(s) for all s ∈ S. That

is, there existsu ∈ B ∩ D such thatS ⊆ N(u) anddB(u) ≥ dB(s) for all s ∈ S.

That is,B ∩D is an spsd set ofB − P (B, D).

Case(ii)u is a cut vertex.

Then every path connecting a point ofV −D to a point ofD−B ∩D must contain

u. HenceN(s)∩ (D−B ∩D) = φ for all s ∈ S. Therefore,dG(s) = dB(s) for all

s ∈ S. If there exists nox ∈ B∩D such thatS ⊆ N(x) with dB(x) ≥ dB(s) for all
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s ∈ S, then asN(s)∩ (D−B ∩D) = φ there exists nox ∈ D such thatS ⊆ N(x)

anddG(x) ≥ dB(x) ≥ dB(s) = dG(s) for all s ∈ S which is a contradiction to the

fact thatD is an spsd set ofG.

Hence there existsx ∈ B ∩ D such thatS ⊆ N(x) anddB(x) ≥ dB(s) for all

s ∈ S. That is,B ∩D is an spsd set ofB − P (B, D).

Remark 2.12.If P (B, D) = φ, then B ∩D is an spsd set of B.

Remark 2.13.If P (B, D) = φ, then γsp(G) = n− ksp.

Proof. P (B, D) = φ implies B ∩ D is an spsd set ofB and henceγsp(B) ≤
|B ∩D|. Also γsp(B) ≥ |B ∩D|. For, if γsp(B) > |B ∩D|, then(V − B) ∪ B′

is an spsd set ofG where|B′| = γsp(B). Then |D| = |(V −B) ∪ (B ∩D)| >

|(V −B) ∪B′|. That is, there exists an spsd set(V −B)∪B′ of G with cardinality

less than|D| which is a contradiction. Henceγsp(B) ≥ |B ∩D|.
Therefore,γsp(B) = |B ∩D|. Hence,γsp(G) = |D| = |(V −B) ∪ (B ∩D)| =

|(V −B) ∪B′| ≥ n− ksp. Therefore,γsp(G) = n− ksp.

Remark 2.14.If V −D = B for some block B, then γsp(G) = n−∆.

Proof. V − D = B implies 〈V −D〉 is complete. Therefore,d(u) ≥ |V −D|
and hence|D| ≥ n − d(u) ≥ n − ∆ for any vertexu ∈ V − D. Therefore,

γsp(G) = n−∆.

Theorem 2.15.If G is a connected graph with cut vertices, then
γsp(G) = Min {n−∆, n− ksp}

Proof. Let D be a minimum spsd set ofG. Then|D| = γsp(G).

Case (i)V −D contain vertices of different blocks.

ThenV − D ⊆ N(w). d(w) ≥ |V −D| implies |D| ≥ n − d(w) ≥ n − ∆.

Hence|D| ≥ n − ∆. Therefore,|D| = n − ∆. That is,γsp(G) = n − ∆. Hence

n−∆ = γsp(G) ≤ n− ksp. That is,γsp(G) = Min {n−∆, n− ksp}.
Case (ii)V −D ⊂ B for some blockB.

Then ifP (B, D) 6= φ, thenγsp(G) = n−∆. Hencen−∆ = γsp(G) ≤ n− ksp.

That is,γsp(G) = Min {n−∆, n− ksp}.
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If P (B, D) = φ, thenγsp(G) = n− ksp.

Hencen− ksp = γsp(G) ≤ n−∆. That is,γsp(G) = Min {n−∆, n− ksp}.
Case (iii)V −D = B for some blockB.

Thenγsp(G) = n − ∆. Hencen − ∆ = γsp(G) ≤ n − ksp. That is,γsp(G) =

Min {n−∆, n− ksp}. Hence in all cases

γsp(G) = Min {n−∆, n− ksp}.

Theorem 2.16.k = ksp if and only if there exists a block B such that k = |B| −
γp(B) and γp(B) = γsp(B).

Proof. Let k = ksp.

If B is a block withksp = |B| − γsp(B), thenγp(B) = γsp(B). For, if γp(B) 6=
γsp(B), thenγp(B) < γsp(B). Therefore,ksp = |B| − γsp(B) < |B| − γp(B) ≤ k.

This impliesksp < k which is a contradictsk = ksp). Hence for any blockB

for which ksp = |B| − γsp(B), γp(B) = γsp(B). If k = ksp, thenk = |B| −
γsp(B) = |B| − γp(B). Hence there exists a block for whichk = |B| − γp(B) and

γp(B) = γsp(B).

Conversely, let there exists a blockB such thatk = |B| − γp(B) andγp(B) =

γsp(B), k = |B| − γp(B) = |B| − γsp(B) ≤ ksp. Hencek ≤ ksp,. . . ,(1). For any

blockB, γp(B) ≤ γsp(B).

This impliesk = (|B| − γp(B)) ≥ |B| − γsp(B). Choose a blockB for which

ksp = |B|−γsp(B). Thenk = |B|−γp(B) = ksp,. . . ,(2). (1) and(2) together give

k = ksp.

Notation 2.17.

(i) Dsp(G) denotes the set of all spsd sets of G.

(ii) Dsp(G; X1) denotes the set of all spsd sets D of G with V − D ⊂ B and
P (B, D) = φ for some B ∈ BG.

(iii) Dsp(G; X1) denotes the set of all spsd sets D of G with V − D ⊂ B and
P (B, D) 6= φ for some B ∈ BG.

(iv) Dsp(G; X1) denotes the set of all spsd sets D of G with V −D = B.

Theorem 2.18.For any separable graph Dsp(G; X1) 6= φ.
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Proof. For every blockB there exists aγsp setB′ containing all cut vertices belong-

ing toB. Let D = (V − B) ∪ B′. ThenV −D = B − B′ ⊂ B andB ∩D = B′.

D ∈ Dsp(G) andB −B′ has no cut vertices. Therefore,N(u) ∩ (D− (B ∩D)) =

N(u) ∩ (V − B) = φ for all u ∈ B − B′. HenceN(u) ∩ (D − B′) = φ and

N(u) ∩ (B ∩D) = N(u) ∩ B′ 6= φ for all u ∈ V −D. Therefore,P (B, D) = φ.

HenceV − D ⊂ B with P (B, D) = φ. That is,D ∈ Dsp(G; X1). Therefore,

Dsp(G; X1) 6= φ.

Theorem 2.19.Dsp(G; X2) 6= φ if and only if there exists B ∈ BG such that B

can be partitioned into three non empty sets V1, V2 and V3 satisfying the following
conditions:

(a) 〈V1〉 is complete, N(x) ∩ V2 = V2, N(x) ∩ V3 = φ and there exists u ∈
N(x) ∩ (V −B) with dG(u) ≥ dG(x), for each x ∈ V1.

(b) V1 ∪ V2 ∪ V3 = B.

(c) dB(v) = dG(v) for all v ∈ V2.

(d) V3 ∈ Dsp(V2 ∪ V3).

Proof. (a): Let D ∈ Dsp(G; X2).

Then there existsB ∈ BG such thatV − D ⊂ B andP (B, D) 6= φ. Therefore,

(V − D) − P (B, D) 6= φ andB ∩ D 6= φ. Now, letV1 = P (B, D). Then〈V1〉 is

complete. LetV2 = (V −D)− P (B, D) andV3 = B ∩D. Then for eachx ∈ V1,

N(x)∩V2 = V2, N(x)∩V3 = φ and there existsu ∈ D− (B ∩D)(= V −B) such

thatux ∈ E(G) anddG(u) ≥ dG(x).

(b): V1 ∪ V2 ∪ V3 = P (B, D) ∪ [(V −D)− P (B, D)] ∪ (B ∩D) = B.

(c): P (B, D) 6= φ implies there existsu ∈ P (B, D). ThenN(u) ∩ (B ∩ D) = φ

andN(u) ∩ (D − (B ∩D)) 6= φ. That is,u is a cut vertex.

Hence every path connecting a point ofB and a point ofD− (B ∩D) must contain

u. Therefore, for everyv ∈ (V −D)− P (B, D) = V2, N(v) ∩ (D −B ∩D) = φ.

That is,v is not a cut vertex. HencedB(v) = dG(v) for all v ∈ V2.

(d): Let S ⊂ (V2 ∪ V3) − V3 be independent. ThenS ⊂ (V2 ∪ V3) − V3 =

V2 = V − P (B, D)−D = (B − B ∩D)− P (B, D) ⊂ B − P (B, D). B ∩D ∈
Dsp(B−P (B, D)) implies there existsu ∈ B∩D such that〈S ∪ {u}〉 is connected

anddB(u) ≥ dB(s) for all s ∈ S. s ∈ S ⊂ V2 impliesdB(s) = dG(s) for all s ∈ S
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(by (c)). Hence〈S ∪ {u}〉 is connected anddG(u) ≥ dB(u) ≥ dB(s) = dG(s) for

all s ∈ S.

Conversely, suppose there existsB ∈ BG satisfying(a), (b), (c) and(d). Then,

let D = V − V1 ∪ V2 = (V −B) ∪ V3.

V −D = B ∩ (V − V3) = V1 ∪ V2 ⊂ B.

P (B, D) = {u ∈ V −D/N(u) ∩ (B ∩D) = φ}.
By condition(a) P (B, D) 6= φ andV1 ⊆ P (B, D).

By condition(b) P (B, D) ∩ V2 = φ. P (B, D) ⊆ V −D = V1 ∪ V2,

P (B, D) = V1.

Claim: D ∈ Dsp(G).

Let W ⊂ V − D be independent. IfW ∩ P (B, D) 6= φ andW = {w}, then

w ∈ P (B, D). By condition(a) there existsu ∈ N(w) ∩ (V − B) with dG(u) ≥
dG(w). That is, there existsu ∈ D such thatw ∈ N(u) anddG(u) ≥ dG(w). If

W ∩ P (B, D) = φ, thenW ⊂ V2 = (V −D)− V1, V3 ∈ Dsp(V2 ∪ V3). Therefore,

there existsu ∈ V3 such thatW ⊆ N(u) anddB(u) ≥ dB(v) for all v ∈ W .

W ⊂ V2 impliesN(v) ∩ (V − B) = φ for all v ∈ W . Therefore,dG(v) = dB(v)

by condition(d) and hencedG(u) ≥ dB(u) ≥ dB(v) = dG(v). HenceD ∈ Dsp(G)

with V −D ⊂ B andP (B, D) 6= φ. This impliesD ∈ Dsp(G; X2).

Observation 2.20.The partition of B in the above theorem is unique.

Proof. For if, there exists another partitionB1, B2, B3 such that

(a) 〈B1〉 is complete, for eachx ∈ B1, N(x)∩B2 = B2, N(x)∩B3 = φ and there

existsu ∈ V −B such thatux ∈ E(G) anddG(u) ≥ dG(x).

(b) B1 ∪B2 ∪B3 = B.

(c) dB(v) = dG(v) for all v ∈ B2.

(d) B3 ∈ Dsp(B2 ∪ B3). D = V3 ∪ (V − B) = (V − B) ∪ B3. Therefore,

V3 = B3. If there existsu ∈ V1 such thatu /∈ B1, then there existsd ∈ B3 such

thatud ∈ E(G). HenceN(u) ∩ B3 6= φ which impliesN(x) ∩ V3 6= φ which is

a contradiction. HenceV1 ⊆ B1. If there existsu ∈ B1 such thatu /∈ V1, then

there existsd ∈ V3 such thatud ∈ E(G). HenceN(u) ∩ V3 6= φ which implies

N(u) ∩ B3 6= φ with u ∈ B1 which is a contradiction. HenceB1 = V1. Therefore,

B2 = V2. That is, the partition is unique.
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Theorem 2.21.Dsp(G; Y ) 6= φ if and only if there exists B ∈ BG such that the
following conditions are satisfied:

(a) 〈B〉 is complete.

(b) For each x ∈ B, there exists u ∈ N(x) ∩ (V −B) with dG(u) ≥ |B|.

Proof. Let D ∈ Dsp(G; Y ). Then there existsB ∈ BG with V − D = B. That is,

B∩D = φ. HenceN(x)∩(B∩D) = φ for everyx ∈ V −D. D ∈ Dsp(G) implies

for everyx ∈ V − D(= B) there existsu ∈ N(x) ∩ D. Therefore,P (B, D) =

V −D = B and hence〈B〉 = 〈P (B, D)〉 is complete. HencedG(x) ≥ |B|.
Conversely, suppose the above two conditions are satisfied. LetD = V − B. Then

V −D = B = P (B, D). Therefore,D ∈ Dsp(G; Y ).

Observation 2.22.Dsp(G; Z) 6= φ if G has a cut vertex w with d(w) ≥ d(v) for all
v ∈ N(w).

Proof. If D = V −N(w), thenV −D = N(w) contain vertices of different blocks,

andD ∈ Dsp(G). HenceD ∈ Dsp(G; Z).

Observation 2.23.If ∆ > ksp, then there exists a vertex u of degree ∆ such that
N(u) is not contained in a single block.

Proof. If for every vertexu of degree∆ there exists a blockB such thatN(u) ⊂ B,

then∆ > ksp > 1 implies N [u] ⊂ B. Therefore,u ∈ B. HenceB − N(u) ∈
Dsp(B). But thenγsp(B) ≤ |B| − |N(u)|. That is,|N(u)| ≤ |B| − γsp(B) ≤ ksp.

That is,∆ ≤ ksp which is a contradiction. Hence if∆ > ksp there exists a vertexu

of degree∆ such thatN(u) is not contained in a single block.

Notation 2.24.

(i) Do
sp(G) - denote the set of all minimum spsd sets of G.

(ii) Do
sp(G; X1) = Do

sp(G) ∩ Dsp(G; X1).

(iii) Do
sp(G; X2) = Do

sp(G) ∩ Dsp(G; X2).

(iv) Do
sp(G; Y ) = Do

sp(G) ∩ Dsp(G; Y ).

(v) Do
sp(G; X1) = Do

sp(G) ∩ Dsp(G; Z).
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Remark 2.25.The following theorems are the immediate consequences of the pre-
vious results.

Theorem 2.26.Do
sp(G; Z) = φ if and only if one of the following two conditions is

satisfied.

(i) ∆ < ksp.

(ii) ∆ = ksp and for every vertex u of degree ∆, N(u) ⊂ B for some B ∈ BG.

Theorem 2.27.Do
sp(G; Z) 6= φ if and only if one of the following two conditions is

satisfied.

(i) ∆ > ksp. item(ii) ∆ = ksp and there exists a vertex u of degree ∆ such that
N(u) is not contained in a single block.

Theorem 2.28.Do
sp(G; X1) 6= φ if and only if ∆ ≤ ksp.

Definition 2.29.If A ⊂ V (G), then N(A) = the set of all neighbours of vertices in
A and N [A] = A ∪N(A).

Definition 2.30.For a complete block B, B+∆ is obtained by the adjunction of one
vertex each at every vertex of the block such that degrees of the adjoined vertices in
the resulting graph are ∆.

Example 2.31.
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Figure 2.

B+∆ = 〈{1, 2, 3, 4, 5, 6, 7, 8}〉.
D = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20}.
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V −D = {1, 2, 3, 4}.
V −D = B, B ∩D = φ, V −D = B = P (B, D).

Theorem 2.32.Do
sp(G; Y ) 6= φ if and only if

(i) ∆ ≥ ksp and

(ii) G has a block B which is a clique of order ∆ and 〈[N(B)]〉 = B+∆.

Theorem 2.33.Do
sp(G; Y ) 6= φ implies ∆ ≤ ksp + 1.

Remark 2.34.If Do
sp(G; Y ) 6= φ, then ksp ≤ ∆ ≤ ksp + 1.

Theorem 2.35.Do
sp(G; X2) 6= φ if and only if the following condition are satisfied.

(i) ∆ ≥ ksp.

(ii) V can be partitioned into four non empty sets V1, V2, V3 and V4 such that

(a) V1 6= φ.

(b) |V1 ∪ V2| = ∆.

(c) V1 ∪ V2 ∪ V3 = B for some B ∈ BG.

(d) V3 ∈ Dsp(V2 ∪ V3).

(e) 〈V1〉 is complete, for every x ∈ V1, N(x) ∩ V2 = V2, N(x) ∩ V3 = φ and there
exists u ∈ N(x) ∩ V4 with d(u) = ∆.

Theorem 2.36.If ∆ > ksp, then the following statements are valid.

(a) N(u) is not contained in B for any B ∈ BG for any vertex u of degree ∆.

(b) V −N(u) ∈ D0
sp(G; Z) for any vertex u of degree ∆.

(c) |N(u) ∩B| ≤ ∆− 1 for any B ∈ BG and for any vertex u of degree ∆.

(d) D0
sp(G; X1) = φ.

(e) D0
sp(G; Z) 6= φ.

Theorem 2.37.Do
sp(G; X2) 6= φ implies ∆ ≤ ksp + 1.

Observation 2.38.γsp(G) = n−∆ if and only if ∆ ≥ ksp.
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Observation 2.39.γsp(G) = n− ksp if and only if ∆ ≤ ksp.

Theorem 2.40.γp(G) = γsp(G) if and only if one of the following three conditions
is satisfied.

(i) ∆ > k.

(ii) ∆ = k and G has a cut vertex with d(u) = ∆.

(iii) ∆ ≤ k and k = ksp.

Proof. Let γp(G) = γsp(G). If γp(G) = n−∆, thenγsp(G) = n−∆. Then one of

the two conditions(i) (or) (ii) is satisfied. Ifγp(G) = n− k, thenγsp(G) = n− k.

Case (i)γsp(G) = n−∆.

γp(G) = n − k = n − ∆ = γsp(G), then∆ = k and has a cut vertexu with

d(u) = ∆.

Case (ii)γsp(G) = n− ksp.

Thenγp(G) = n − k andγp(G) = γsp(G) impliesn − k = γp(G) = n − ksp =

γsp(G). Therefore,k = ksp andγp(G) = n − k impliesn − k ≤ n − ∆. That is,

k ≥ ∆.

Conversely, If(i) is satisfied, thenn − ∆ < n − k. Henceγp(G) = n − ∆.

n−∆ = γp(G) ≤ γsp(G). Therefore,γsp(G) = n−∆. Therefore,γp(G) = γsp(G).

If (ii) is satisfied, thenγp(G) = n − ∆ and henceγsp(G) = n − ∆. That is,

γp(G) = γsp(G).

If (iii) is satisfied, then∆ ≥ k impliesn − ∆ ≤ n − k and henceγp(G) = n − k.

Therefore,γp(G) = n − k = n − ksp. Hencen − ksp = γp(G) ≤ γsp(G). That is,

γsp(G) = n− ksp. Therefore,γp(G) = γsp(G).
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