Some new graceful graphs

${ }^{1}$ S.K.Vaidya
Saurashtra University, Rajkot - 360005,Gujarat, India.
E-mail: samirkvaidya@yahoo.co.in
\section*{Lekha Bijukumar}
Shanker Sinh Vaghela Bapu Institute of Technology, E-mail: dbijuin@yahoo.co.in

Abstract

In this paper we show that the graphs obtained by duplication of an arbitrary vertex in cycle C_{n} as well as duplication of an arbitrary edge in even cycle C_{n} are graceful graphs. In addition, we derive that the joint sum of two copies of cycle C_{n} admits graceful labeling.

Keywords: Graceful graphs, Duplication of a vertex, Joint sum.
AMS Subject Classification(2010): 05C78.

1 Introduction

We begin with simple, finite, connected and undirected graph $G=(V, E)$ with p vertices and q edges. For all other standard terminology and notations we follow Harary[6]. We give a brief summary of definitions and other information which are useful for the present investigations.

Definition 1.1. If the vertices are assigned values subject to certain conditions then it is known as graph labeling.

For a dynamic survey on graph labeling we refer to Gallian[4]. A systematic study of various applications of graph labeling is carried out in Bloom and Golomb[2].

Definition 1.2. A function f is called graceful labeling of a graph G if $f: V \rightarrow$ $\{0,1, \ldots, q\}$ is injective and the induced function $f^{*}: E \rightarrow\{1, \ldots, q\}$ defined as $f^{*}(e=u v)=|f(u)-f(v)|$ is bijective. A graph which admits graceful labeling is called a graceful graph.

[^0]Rosa[7] introduced such labeling in 1967 and named it as a β - valuation of graph while Golomb[5] independently introduced such labeling and called it as graceful labeling. Acharya[1] has constructed certain infinite families of graceful graphs from a given graceful graph while Rosa[7] and Golomb[5] have discussed gracefulness of complete bipartite graphs and Eulerian graphs. Gracefulness of union of two path graphs with grid graphs and complete bipartite graphs are discussed in [9] by Vaidya et al. Sekar[8] has proved that the splitting graph (the graph obtained by duplicating the vertices of a given graph altogether) of C_{n} admits graceful labeling for $n \equiv 1,2(\bmod 4)$ while we prove the duplication of an arbitrary vertex in C_{n} produces a graceful graph for all n. Moreover the gracefulness of joint sum of graceful trees is discussed by Jin et al.[3] while we investigate graceful labeling for the joint sum of two copies of cycle C_{n}.

Definition 1.3. Duplication of a vertex v_{k} of a graph G produces a new graph G_{1} by adding a new vertex v_{k}^{\prime} in such a way that $N\left(v_{k}\right)=N\left(v_{k}^{\prime}\right)$.

Definition 1.4. Duplication of an edge $v_{i} v_{i+1}$ of a graph G produces a new graph G_{1} by adding a new edge $v_{i}^{\prime} v_{i+1}^{\prime}$ in such a way that $N\left(v_{i}^{\prime}\right)=N\left(v_{i}\right) \bigcup\left\{v_{i+1}^{\prime}\right\}-\left\{v_{i+1}\right\}$ and $N\left(v_{i+1}^{\prime}\right)=N\left(v_{i+1}\right) \bigcup\left\{v_{i}^{\prime}\right\}-\left\{v_{i}\right\}$.

Definition 1.5. Consider two copies of C_{n}, connect a vertex of the first copy to a vertex of second copy with a new edge, the new graph obtained is called the joint sum of C_{n}.

2 Main Results

Theorem 2.1. Duplication of an arbitrary vertex of C_{n} produces a graceful graph.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} and G be the graph obtained by duplicating an arbitrary vertex of C_{n}. Without loss of generality let this vertex be v_{1} and the newly added vertex be v_{1}^{\prime}. To define $f: V \rightarrow\{0,1, \ldots, q\}$ following four cases are to be considered.

Case $(\mathbf{i}) n \equiv 0(\bmod 4) ; n \neq 4$
$f\left(v_{1}^{\prime}\right)=0$
$f\left(v_{1}\right)=\frac{n}{2}+1$

For $2 \leq i \leq \frac{n}{2}+2$
$f\left(v_{i}\right)=(n+2)-\left(\frac{i-2}{2}\right) ; \quad$ when i is even.

$$
=\frac{i-1}{2} ; \quad \text { when } i \text { is odd. }
$$

For $\frac{n}{2}+3 \leq i \leq n$
$f\left(v_{i}\right)=(n+2)-\left(\frac{i-1}{2}\right) ; \quad$ when i is odd.

$$
=\frac{i-2}{2} ; \quad \text { when } i \text { is even. }
$$

The case when $n=4$ is to be dealt separately and the graph is labeled as shown in Figure 1.

Figure 1: Duplication of a vertex in C_{4} and its graceful labeling
Case $(\mathbf{i i}) n \equiv 1(\bmod 4)$
$f\left(v_{1}^{\prime}\right)=0$
$f\left(v_{1}\right)=\frac{n+1}{2}$
For $2 \leq i \leq \frac{n+1}{2}$
$\overline{f\left(v_{i}\right)=(n+2)}-\left(\frac{i-2}{2}\right) ; \quad$ when i is even.
$=\frac{i-1}{2} ; \quad$ when i is odd.
$\frac{\text { For } \frac{n+3}{2} \leq i \leq n}{f\left(v_{i}\right)=i}$

$$
=(n+2)-\left(\frac{i-1}{2}\right) ; \quad \text { when } i \text { is odd. }
$$

Case (iii) $n \equiv 2(\bmod 4) ; n \neq 6$
$f\left(v_{1}^{\prime}\right)=0$
$f\left(v_{1}\right)=\frac{n}{2}+3$
For $2 \leq \mathrm{i} \leq \frac{n+4}{2}$
$f\left(v_{i}\right)=(n+2)-\left(\frac{i-2}{2}\right) ; \quad$ when i is even.
$=\frac{i-1}{2} ; \quad$ when i is odd.
$f\left(v_{i}\right)=\frac{i}{2} ;$ for $i=\frac{n+4}{2}+1$
For $\frac{n+8}{2} \leq i \leq n$

$$
\begin{aligned}
f\left(v_{i}\right) & =(n+2)-\left(\frac{i-3}{2}\right) ; & & \text { when } i \text { is odd. } \\
& =\frac{i+2}{2} ; & & \text { when } i \text { is even. }
\end{aligned}
$$

For $n=6$; the corresponding graph and its graceful labeling is shown in Figure 2.

Figure 2: Duplication of a vertex in C_{6} and its graceful labeling
Case $(\mathbf{i v}) n \equiv 3(\bmod 4)$
$f\left(v_{1}^{\prime}\right)=0$
$f\left(v_{1}\right)=\frac{n+1}{2}$
For $2 \leq \mathrm{i} \leq \frac{n+1}{2}$
$f\left(v_{i}\right)=(n+2)-\left(\frac{i-2}{2}\right) ; \quad$ when i is even.
$=\frac{i-1}{2} ; \quad$ when i is odd.
$\frac{\text { For } \frac{n+3}{2} \leq i \leq n}{f\left(v_{i}\right)=(n+2)}-\left(\frac{i-1}{2}\right) ; \quad$ when i is odd.
$=\frac{i}{2} ; \quad$ when i is even.
In view of the above defined labeling pattern f is a graceful labeling for the graph obtained by the duplication of an arbitrary vertex in cycle C_{n}.

Illustration 2.2. The graph obtained by duplicating the vertex v_{1} of cycle C_{9} is shown in Figure 3.

Figure 3: The graceful labeling of duplication of a vertex in C_{9}

Theorem 2.3. Duplication of an edge in cycles of even order admits graceful labeling.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} where n is even and G be the graph obtained by duplicating an arbitrary edge of C_{n}. Without loss of generality we may assume that $e^{\prime}=v_{1}^{\prime} v_{2}^{\prime}$ be the newly added edge to duplicate the edge $e=v_{1} v_{2}$ in C_{n}. To define $f: V \rightarrow\{0,1, \ldots, q\}$ following two cases are to be considered.
Case $(\mathbf{i}) n \equiv 0(\bmod 4) ; n \neq 4, n \neq 8$
$f\left(v_{1}^{\prime}\right)=\frac{n}{2}+4$
$f\left(v_{2}^{\prime}\right)=\frac{n}{2}$
For $1 \leq i \leq \frac{n}{2}+2$
$f\left(v_{i}\right)=(n+3)-\frac{i-1}{2} ; \quad$ when i is odd.
$=\frac{i-2}{2} ; \quad$ when i is even.
$f\left(v_{i}\right)=\frac{i-1}{2} ; \quad$ for $i=\frac{n}{2}+3$
For $\frac{n}{2}+4 \leq i \leq n-1$
$f\left(v_{i}\right)=(n+3)-\frac{i}{2} ; \quad$ when i is even.
$=\frac{i-1}{2} ; \quad$ when i is odd.
$f\left(v_{n}\right)=\frac{n}{2}+2$
The labeling for the graphs corresponding to C_{4} and C_{8} are to be dealt separately. The labeling pattern is provided in Figure 4.

Figure 4: Graceful labeling of edge duplication in C_{4} and C_{8}
Case $(\mathbf{i i}) n \equiv 2(\bmod 4)$
$f\left(v_{1}^{\prime}\right)=\frac{n}{2}-1$
$f\left(v_{2}^{\prime}\right)=\frac{n}{2}$

For $1 \leq i \leq \frac{n}{2}+2$
$f\left(v_{i}\right)=(n+3)-\frac{i-1}{2} ; \quad$ when i is odd.
$=\frac{i-2}{2} ; \quad$ when i is even.
$\frac{\text { For } \frac{n}{2}+3 \leq i \leq n}{f\left(v_{i}\right)=(n+3)-\frac{i+2}{2}} ; \quad$ when i is even.

$$
=\frac{i-3}{2} ; \quad \text { when } i \text { is odd. }
$$

The above defined function f provides graceful labeling for the graph obtained by the duplication of an edge in cycle C_{n}.

Illustration 2.4. Consider the graph obtained by duplicating an edge $v_{1} v_{2}$ in C_{10}. The corresponding graceful labeling is shown in Figure 5.

Figure 5: Edge duplication in C_{10} and its graceful labeling

Theorem 2.5. The joint sum of two copies of cycle C_{n} admits graceful labeling.

Proof. We denote the vertices of first copy of C_{n} by $v_{1}, v_{2}, \ldots . v_{n}$ and second copy by $v_{n+1}, v_{n+2}, v_{n+3}, \ldots . v_{2 n}$. Join the two copies of C_{n} with a new edge and G be the resultant graph. Without loss of generality we assume that the new edge be $v_{n} v_{n+1}$, so that $v_{1}, v_{2}, \ldots . v_{n} ; v_{n+1}, v_{n+2}, \ldots . v_{2 n}$ will form a spanning path in G. To define $f: \mathrm{V}$ $\rightarrow\{0,1,2, \ldots . q\}$ the following four cases are to be considered.

Case $(\mathbf{i}) n \equiv 0(\bmod 4)$
For $i \leq \frac{n}{2}-1$
$f\left(v_{i}\right)=\frac{n+i+1}{2}$;
when i is odd
$=\frac{3}{2} n-\left(\frac{i}{2}-1\right) ; \quad$ when i is even
$\frac{\text { For } \frac{n}{2} \leq \mathbf{i} \leq n-1}{f\left(v_{i}\right)=\frac{3}{2} n-\frac{i}{2} ;}$
when i is even

$$
=\frac{n+i+1}{2} ; \quad \text { when } i \text { is odd }
$$

For $i=n ; f\left(v_{i}\right)=0$

$$
\begin{array}{ll}
\text { For } n+1 \leq i \leq \frac{3}{2} n \\
\begin{aligned}
f\left(v_{i}\right) & =(2 n+1)-\left(\frac{i-n}{2}\right) ; \\
& =\frac{i-n}{2} ;
\end{aligned} & \\
\begin{array}{rlrl}
\text { For } \frac{3 n+2}{2} \leq i \leq 2 n \\
f\left(v_{i}\right) & =(2 n+1)-\left(\frac{i-n+1}{2}\right) ; & & \text { when } i \text { is odd } \\
& =\frac{i-n}{2} ; & & \text { when } i \text { is even } i \text { is odd }
\end{array} \\
& \\
\text { when } i \text { is even }
\end{array}
$$

Case (ii) $n \equiv 1(\bmod 4)$
$f\left(v_{1}\right)=0$
$\frac{\text { For } 2 \leq \mathrm{i} \leq \frac{n-1}{2}}{f\left(v_{i}\right)=n+\left(\frac{i+1}{2}\right) ; \quad \text { when } i \text { is odd }}$
$=(n+1)-\left(\frac{i}{2}\right) ; \quad$ when i is even

$$
\begin{array}{cl}
\text { For } \frac{n+1}{2} \leq i \leq n-1 \\
\begin{array}{rlr}
f\left(v_{i}\right)=(n+1)-\left(\frac{i+1}{2}\right) ; & & \text { when } i \text { is odd } \\
=n+\left(\frac{i+2}{2}\right) ; & & \text { when } i \text { is even }
\end{array}
\end{array}
$$

For $n \leq i \leq 2 n$

$$
\begin{aligned}
f\left(v_{i}\right) & =(2 n+1)-\left(\frac{i-n}{2}\right) ; & & \text { when } i \text { is odd } \\
& =\frac{i+1-n}{2} ; & & \text { when } i \text { is even }
\end{aligned}
$$

Case (iii) $n \equiv 2(\bmod 4)$
For $1 \leq i \leq n-2$

$$
f\left(v_{i}\right)=\frac{i}{2} ; \quad \text { when } i \text { is even }
$$

$=(2 n+1)-\left(\frac{i-1}{2}\right) ; \quad$ when i is odd
$f\left(v_{n-1}\right)=f\left(v_{n-3}\right)-f\left(v_{n-2}\right)-1$
$f\left(v_{n}\right)=0$
$\frac{\text { For } n+1 \leq i \leq \frac{3 n}{2}-1}{f\left(v_{i}\right)=\frac{i-1}{2} ;}$ when i is odd
$=(2 n+1)-\left(\frac{i-4}{2}\right) ; \quad$ when i is even
$f\left(v_{i}\right)=\frac{i+1}{2}$; for $i=\frac{3 n}{2}$
$\frac{\text { For } \frac{3 n}{2}+1 \leq i \leq \frac{3 n}{2}+2}{f\left(v_{i}\right)=\frac{i+2}{2} ;}$
when i is even
$=(2 n+1)-\left(\frac{i-5}{2}\right) ; \quad$ when i is odd

$$
\begin{aligned}
\frac{\text { For } \frac{3 n}{2}+3 \leq i \leq 2 n}{f\left(v_{i}\right)}= & (2 n+1)-\left(\frac{i-5}{2}\right) ; & & \text { when } i \text { is odd } \\
& =\frac{i+4}{2} ; & & \text { when } i \text { is even }
\end{aligned}
$$

Case $(\mathbf{i v}) n \equiv 3(\bmod 4)$

$$
\begin{aligned}
& \frac{1 \leq i \leq \frac{n-1}{2}}{f\left(v_{i}\right)=} \begin{array}{l}
\frac{3(n+1)}{2} \\
=\frac{n+i+1}{2} ;
\end{array},\left(\frac{i+1}{2}\right) ;
\end{aligned}
$$

$$
\text { when } i \text { is odd }
$$

$$
\text { when } i \text { is even }
$$

$$
\begin{aligned}
& \text { For } \frac{n+1}{2} \leq i \leq n-2 \\
& f\left(v_{i}\right)=\frac{3(n+1)}{2}-\left(\frac{i+2}{2}\right) ; \quad \text { when } i \text { is even } \\
& n+i+2 .
\end{aligned}
$$

$$
=\frac{n+i+2}{2} ; \quad \text { when } i \text { is odd }
$$

$$
f\left(v_{n-1}\right)=0
$$

$$
\text { For } n \leq i \leq 2 n
$$

$$
f\left(v_{i}\right)=(2 n+1)-\left(\frac{i-n}{2}\right) ; \quad \text { when } i \text { is odd }
$$

$$
=\frac{i+1-n}{2} ; \quad \text { when } i \text { is even }
$$

In the above four cases it is possible to assign labels in such a way that it provides graceful labeling for the joint sum of two copies of cycle C_{n}.

Illustration 2.6. The joint sum of two copies of C_{13} is as shown in Figure 6.

Figure 6: Graceful labeling of the joint sum of two copies of C_{13}

Acknowledgement

The authors are thankful to the anonymous referee for valuable comments and suggestions.

References

[1] B. D. Acharya, Construction of certain infinite families of graceful graphs from a given graceful graph, Def. Sci.J., 32(3)(1982), 231-236.
[2] G. S. Bloom, S. W. Golomb, Applications of numbered undirected graphs, Proceeding of IEEE,65(4)(1977), 562-570.
[3] D. Jin, S. Liu, S. Lee, H. Liu, X. Lu, D. Zhang, The joint sum of graceful trees, Computers Math. Applic., 26(10)(1993), 83-87.
[4] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 17(2010) $\sharp D S 6$.
[5] S. W. Golomb, How to number a graph, in Graph theory and Computing, R.C.Read,ed., Academic Press, New York(1972), 23-37.
[6] F. Harary, Graph theory, Addison Wesley, Reading, Massachusetts, 1972.
[7] A. Rosa, On certain valuations of the vertices of a graph,Theory of graphs,International Symposium, Rome, July (1966), Gordon and Breach, New York and Dunod Paris(1967), 349-355.
[8] C.Sekar, Studies in Graph Theory, Ph.D Thesis, Madurai Kamaraj University, 2002.
[9] S. K. Vaidya, V. J. Kaneria, Sweta Srivastav, N. A. Dani, Gracefulness of union of two path graphs with grid graph and complete bipartite graph,Proceedings of the Interanational Conference on Emerging Technologies and Applications in Engineering and Science, 13-14 Jan 2008, Vol. 1, 616-619.

[^0]: ${ }^{1}$ Corresponding author

