International Journal of Mathematics and Soft Computing Vol.1, No.1 (2011), 25 - 36

Hamiltonian partition coloring

Sr. Kulrekha, R. Sundareswaran, V. Swaminathan

Ramanujan Research Center in Mathematics Saraswathi Narayanan College,Madurai, India E-mail: pkulrekha@yahoo.com, neyamsundar@yahoo.com sulanesri@yahoo.com

Abstract

The hamiltonian coloring of a connected graph G introduced by Chartrand et al [1] is different from hamiltonian partition coloring. In this paper, we characterize graphs which has a hamiltonian partition. Also, we give example of graphs having prescribed chromatic numbers and hamiltonian partition numbers. We derive results connecting the hamiltonian chromatic number of $G_1 \cup G_2$ and $G_1 + G_2$.

Key words: Hamiltonian partition, Hamiltonian partition number.

AMS Subject Classification(2010): 05C15.

1 Introduction

Prof. E. Sampathkumar and Dr. V. N. Bhave [6] have defined partition graph of a graph as follows:

Given a graph G = (V, E) and a partition $P = \{V_1, V_2, \dots, V_s\}$ of V(G). The partition graph P(G) of P has P as it point set and V_i and V_j are adjacent if and only if there exists $v_i \in V_i$ and $v_j \in V_j$ such that v_i and v_j are adjacent in G. P(G) is a homomorphic image of G if every set in P is independent in G. P(G)is a contraction of G if every set in P induces a connected subgraph in G. In the first case P is called a homomorphism and in the second case P is called a contraction. A partition P of V(G) is said to be n-complete if $P(G) = K_n$. It is easily seen that the chromatic number $\chi(G)$ is the minimum n for which G has an n-complete homomorphic partition in which every element of P is independent and the achromatic number $\psi(G)$ is the maximum number n for which G has an n-complete homomorphic partition in which every element of P is independent.

2 Main Results

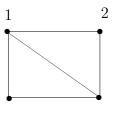
Definition 2.1. A partition P of V(G) is called proper color partition if every element of P is an independent set of G.

Definition 2.2. A proper color partition P of V(G) is called a hamiltonian partition if P(G) is hamiltonian.

Remark 2.3. Every Chromatic as well as achromatic partition of G of cardinality ≥ 3 is a hamiltonian partition. The converse is not true.

For example, consider $K_4 - \{e\}$.

Example 2.4.



The partition $\{\{1\}, \{2\}, \{3\}, \{4\}\}$ of $K_4 - \{e\}$ is a hamiltonian partition but is neither a chromatic partition nor an achromatic partition.

Definition 2.5. The maximum cardinality of a hamiltonian partition coloring of G is called the hamiltonian partition achromatic number of G and is denoted by $\chi_h(G)$.

Remark 2.6. $\chi(G) \leq \psi(G) \leq \chi_h(G)$.

Observation 2.7. Any partition graph of $K_{1,n}$ is a star.

Observation 2.8. Let G be a connected graph which does not contain any subgraph isomorphic to P_4 or C_3 . Then G is a star.

Observation 2.9. For a given positive integer k there exist graphs G for which $\chi_h(G) - \chi(G) = k$.

Proof. Let G be a path of order k + 3. Then $\chi(G) = 2$ and $\chi_h(G) = k + 2$.

Observation 2.10. *G* is a hamiltonian graph if and only if $\chi_h(G) = n$.

Theorem 2.11. Let G be a graph without isolates. Then $\chi_h(G) = n - 1$ if and only if G is not hamiltonian but has a hamiltonian path.

Proof. If G has a hamiltonian path say $u_1u_2\cdots u_n$, then

 $V_1 = \{u_1, u_n\}, V_2 = \{u_2\}, \dots, V_{n-1} = \{u_{n-1}\}$ is a cyclic partition of G. Therefore, $\chi_h(G) \ge n-1$. Since G is not hamiltonian $\chi_h(G) \le n-1$. Therefore, $\chi_h(G) = n-1$.

Conversely, suppose $\chi_h(G) = n - 1$. Then there exists a partition of V(G) into V_1, \dots, V_{n-1} such that the partition graph of $\{V_1, V_2, \dots, V_{n-1}\}$ is hamiltonian. Since |V(G)| = n, exactly one V_i has two elements and all others are singletons. Let $V(G) = \{u_1, u_2, \dots, u_n\}$. Let without loss of generality $V_1 = \{u_1, u_n\}, V_2 = \{u_2\}, \dots, V_{n-1} = \{u_{n-1}\}$. Since the partition graph is hamiltonian without loss of generality it can be assumed that u_i is adjacent to u_{i-1}, u_{i+1} ; $2 \le i \le n - 3$, u_1 is adjacent to u_2 or u_n is adjacent to u_2 ; u_{n-1} is adjacent to u_1 or u_n .

Case (i) u_{n-1} is adjacent to u_1 and u_1 is adjacent with u_2 . Since u_n is not an isolate, u_n is adjacent to some u_i , $1 \le i \le n-1$. Then $u_n u_i u_{i+1} \cdots u_{n-1} u_1 u_2 \cdots u_{i-1}$ is a hamiltonian path.

Case (ii) u_{n-1} is adjacent to u_n and u_1 is adjacent with u_2 . Then we have the path $u_1u_2\cdots u_{n-1}u_n$.

Since $\chi_h(G) = n - 1$, G is not hamiltonian.

Case (iii) u_{n-1} is adjacent with u_1 and u_n is adjacent with u_2 . Then $u_n u_2 \cdots u_{n-1} u_1$ is a hamiltonian path.

Since $\chi_h(G) = n - 1$, G is not hamiltonian.

Case (iv) u_{n-1} is adjacent with u_n and u_n is adjacent with u_2 . u_n being a nonisolate is adjacent with some u_j , $1 \le j \le n-1$. Then $u_1u_j \cdots u_{n-1}u_nu_2u_3$

 $\cdots u_{j-1}$ is a hamiltonian path.

Since $\chi_h(G) = n - 1$, G is not hamiltonian.

Observation 2.12. Let G be a graph with t isolates say u_1, u_2, \dots, u_t . Then $\chi_h(G) = \chi_h(G - \{u_1, \dots, u_t\})$.

Theorem 2.13. Let G be a simple connected graph. Then G has a hamiltonian partition if and only if G is not a star.

Proof. Let G be a simple connected graph. To prove the theorem it is enough to show that G has a hamiltonian partition if and only if G has a subgraph isomorphic to P_4 or C_3 . For:

 \mathcal{A} : Suppose G has a subgraph isomorphic to P_4 . Let u_1, u_2, u_3, u_4 be the vertices in

G where $u_1u_2, u_2u_3, u_3u_4 \in E(G)$.

Case (1) u_1 is adjacent to u_4 .

Then take $V_1 = \{u_1\}, V_2 = \{u_2\}, V_3 = \{u_3\}, V_4 = \{u_4\}.$

Let $H = G - \{u_1, u_2, u_3, u_4\}$. Let $P = \{U_1, \dots, U_{\chi(H)}\}$ be a chromatic partition of H.

Subcase (i) $\chi(H) \geq 3$.

Subsubcase (i) Suppose the subgraph induced by u_1, u_2, u_3, u_4 is a component of G. If $\chi(H) = 3$, then the three classes of P can be merged with V_1, V_2, V_3 and V_4 . If $\chi(H) \ge 4$ then V_1, V_2, V_3 and V_4 can be merged with elements of P.

Subsubcase (ii) Suppose the subgraph induced by u_1, u_2, u_3, u_4 is not a component of G. Let without loss of generality u_4 is adjacent to some vertex say w in U_1 . If u_1 is adjacent to some class $U_i, i \neq 1$, then $\{u_4\}U_1, \cdots U_i \cdots U_{\chi}\hat{U}_i$

 ${u_1}{u_2}{u_3}{u_4}$ is a cycle.

If u_1 is adjacent to U_1 and u_1 is not adjacent to any $U_i(2 \le i \le \chi)$, then add u_1 with U_2 . Then $\{u_4\}U_1\hat{U}_2\cdots U_{\chi}U_2\{u_2\}\{u_3\}\{u_4\}$ is a cycle.

Subcase (ii) $\chi(H) \leq 2$. The arguments given in the subcase (i) can be repeated.

Case (2) Suppose u_1 is adjacent to u_3

Subcase (i) Suppose the subgraph induced by u_1, u_2, u_3, u_4 is a component of *G*. Let $V_1 = \{u_1u_4\}, V_2 = \{u_2\}, V_3 = \{u_3\}.$

If $\chi(H) \ge 3$, then V_1, V_2, V_3 can be merged with elements of P. If $\chi(H) = 2$, then $U_1 \cup V_1, U_2 \cup V_2, V_3$ is a cycle. If $\chi(H) = 1$, then $U_1 \cup V_1, V_2, V_3$ is a cycle.

Subcase (ii) The subgraph induced by u_1, u_2, u_3, u_4 is not a component of G. Let $\chi(H) \ge 3$.

A: u_4 is adjacent to a vertex say w in U_1 .

 A_1 : If u_1 is adjacent to some U_i , $i \neq 1$, then $\{u_4\}U_1 \cdots, \hat{U}_i, \cdots, U_{\chi}U_i$ $\{u_1\}\{u_2\}\{u_3\}\{u_4\}$ is a cycle.

 A_2 : If u_1 is adjacent to U_1 and is not adjacent to any U_i , then add u_1 to U_{χ} giving U'_{χ} . Now $\{u_4\}U_1\cdots U'_{\chi}\{u_2\}\{u_3\}\{u_4\}$ is a cycle.

B: u_4 is not adjacent to any U_i , $1 \le i \le \chi$. Then u_1 or u_2 or u_3 is adjacent to some U_i .

 B_1 : Let u_1 is adjacent to say U_1 , add u_4 with U_{χ} giving U'_{χ} . Then $\{u_1\}U_1\cdots U'_{\chi}\{u_3\}\{u_2\}\{u_1\}$ is a cycle.

 B_2 : If u_2 is adjacent to say U_1 , then $\{u_2\}U_1 \cdots U_{\chi}^1\{u_3\}\{u_1\}\{u_2\}$ is a cycle. B_3 : u_3 is adjacent to say U_1 .

28

 B_{3_1} : u_1 is adjacent to some U_i , $i \neq 1$. Add u_4 to U_{χ} giving U'_{χ} . Then $\{u_3\}U_1\cdots \hat{U}_i \cdots U^1_{\chi}U_i\{u_1\}\{u_2\}\{u_3\}$ is a cycle.

 B_{3_2} : u_1 is adjacent to U_1 and u_1 is not adjacent to any U_i , $2 \le i \le \chi$. Add u_1, u_4 with U_{χ} giving U''_{χ} . Then $\{u_3\}U_1 \cdots U''_{\chi}\{u_2\}\{u_3\}$ is a cycle. Let $\chi(H) = 2$. $A': u_4$ is adjacent to U_1 .

 $A'_1: u_1$ is adjacent to U_2 then $\{u_4\}U_1U_2\{u_1\}\{u_2\}\{u_3\}\{u_4\}$ is a cycle.

 $A'_2: u_1$ is adjacent to U_1 but not adjacent to U_2 . Add u_1 with U_2 giving U'_2 . Then $\{u_4\}U_1U'_2\{u_2\}\{u_3\}\{u_4\}$ is a cycle.

 $B': u_4$ is adjacent not adjacent to U_1, U_2 .

 $B'_1: u_1$ is adjacent to U_1 . Add u_4 with U_2 giving U'_2 .

Then $\{u_1\}U_1U_2'\{u_3\}\{u_2\}\{u_1\}$ is a cycle.

 $B'_2: u_2$ is adjacent to U_1 . Add u_4 with U_2 giving U'_2 .

Then $\{u_2\}U_1U_2'\{u_3\}\{u_1\}\{u_2\}$ is a cycle.

 $B'_3: u_3$ is adjacent to U_1 . Add u_4 with U_2 giving U_2^1 .

 $B'_{3_1}: u_1$ is adjacent to U_2 . Then $\{u_3\}U_1U'_2\{u_1\}\{u_2\}\{u_3\}$ is a cycle.

 $B'_{3_2}: u_1$ is not adjacent to U_2 . Add u_1, u_4 with U_2 giving U''_2 .

Then $\{u_3\}U_1U_2''\{u_2\}\{u_3\}$ is a cycle.

Let $\chi(H) = 1$.

 $A'': u_4$ is adjacent to U_1 .

 $A_1'': u_1$ is adjacent to U_1 . Then $\{u_4\}U_1\{u_1\}\{u_2\}\{u_3\}\{u_4\}$ is a cycle.

 $A_2'': u_1$ is not adjacent to U_1 . Add u_1 with U_1 giving U_1' .

Then $\{u_4\}U'_1\{u_2\}\{u_3\}\{u_4\}$ is a cycle.

 $B'': u_4$ is not adjacent to U_1 . Add u_4 with U_1 giving U'_1 .

 $B_1'': u_1$ is adjacent to U_1 . Then $U_1'\{u_1\}\{u_2\}\{u_3\}U_1'$ is a cycle.

 $B_2^{\prime\prime}: u_2$ is adjacent to U_1 . Then $U_1^{\prime}\{u_2\}\{u_1\}\{u_3\}U_1^{\prime}$ is a cycle.

 $B_3'': u_3$ is adjacent to U_1 .

 $B_{3_1}^{''}: u_1$ is adjacent to U_1 . Then $U_1^{'}\{u_1\}\{u_2\}\{u_3\}U_1^{'}$ is a cycle.

 $B_{3_2}'': u_1$ is not adjacent to U_1 . Add u_1, u_4 with U_1 giving U_1'' . Then $\{u_3\}U_1''\{u_2\}\{u_3\}$ is a cycle.

 \mathcal{B} : Suppose G contains a cycle C_3 . This case is similar to Case(1) of \mathcal{A} and the result follows.

Conversely, suppose G has a hamiltonian partition and G is connected. Suppose G has no subgraph isomorphic to P_4 or C_3 . Then G is $K_{1,n}$ for some $n \ge 1$. By observation, any partition of $K_{1,n}$ is a star, a contradiction. Therefore, G has a

subgraph isomorphic to P_4 or C_3 .

Remark 2.14. If G is disconnected, then the converse of the theorem need not be true. That is, a disconnected graph may have a hamiltonian partition though it contains no subgraph isomorphic to P_4 or C_3 .

Example 2.15.

$$\begin{array}{c}1\\2\end{array}$$
 $\begin{array}{c}3\\4\\5\end{array}$

Let $\pi = \{\{1, 3\}, \{4\}, \{2, 5\}\}$. Then π is a hamiltonian partition.

Theorem 2.16. Let G be a disconnected graph. Let $|E(G)| \ge 3$ and $G \ne K_{1,n} \cup tK_1$, $t \ge 1$, $n \ge 3$, then G has a hamiltonian partition.

Proof. If G has a subgraph isomorphic to P_4 or C_3 then G has a hamiltonian partition. Suppose G does not contain any subgraph isomorphic to P_4 or C_3 . Let $|E(G)| \ge 3$ and $G \ne K_{1,n} \cup tK_1, t \ge 1$.

Let G_1, G_2, \dots, G_k be the components of G. Then by hypothesis each G_i is a star. Since $|E(G)| \ge 3$, and $G \ne K_{1,n} \cup tK_1$, G contains either $3K_2$ or $K_2 \cup K_{1,2}$ or $K_{1,n} \cup K_{1,t}$ $(n \ge 3, t \ge 1)$.

Case (i) G contains $3K_2$. Let $V = \{1, 2, 3, 4, 5, 6\}$ be the vertex set of $3K_2$ with 1 adjacent with 2,3 adjacent with 4 and 5 adjacent with 6. Let $V_1 = \{1, 6\}, V_2 = \{2, 3\}, V_3 = \{4, 5\}$. Other components can be suitably merged with V_1 and V_2 . Let V'_1, V'_2 and V'_3 be the resulting partition of V(G). Then V'_1 is adjacent with V'_2 (1 is adjacent with 2), V'_2 is adjacent with V'_3 (3 is adjacent with 4) and V'_3 is adjacent with V'_1 (5 is adjacent with 6). Hence G contains a hamiltonian partition.

Case (ii) G contains $K_2 \cup K_{1,2}$. Let $V = \{1, 2, 3, 4, 5\}$ be the vertex set of $K_2 \cup K_{1,2}$ with 1 adjacent to 2, 3 adjacent with 4 and 5. Let $V_1 = \{1, 4\}$, $V_2 = \{3\}$, $V_3 = \{2, 5\}$. Other components can be suitably merged with V_1 and V_2 . Let V'_1 , V'_2 and V'_3 be the resulting partition of V(G). Then V'_1 is adjacent with V'_2 (4 is adjacent with 3), V'_2 is adjacent with V'_3 (3 is adjacent with 5) and V'_3 is adjacent with V'_1 (2 is adjacent with 1). Hence G contains a hamiltonian partition.

Case (iii) G contains $K_{1,n} \cup K_{1,t}$, $(n \ge 3, t \ge 1)$.

Let $V = \{v, u_1, u_2, u_3, \dots, u_n\}$ be the vertex set of $K_{1,n}$ with v adjacent with

 $u_1, u_2, u_3, \cdots, u_n$ and $V' = \{w, x_1, \cdots, x_t\}$ be the vertex set of $K_{1,t}$ with w adjacent with x_1, \cdots, x_t . Let $V_1 = \{v\}, V_2 = \{u_1, w\}, V_3 = \{u_2, \cdots, u_n, x_1, \cdots, x_t\}$. Other components can be suitably merged with V_1 and V_2 . Let V'_1, V'_2 and V'_3 be the resulting partition of V(G). Then V'_1 is adjacent with V'_2 (v is adjacent with u_1), V'_2 is adjacent with V'_3 (w is adjacent with x_1) and V'_3 is adjacent with V'_1 (u₂ is adjacent with v).

Hence G contains a hamiltonian partition.

The preceding theorems and observations lead to the following theorem.

Theorem 2.17. Let G be a simple graph. G has a hamiltonian partition if and only if $G \neq K_{1,n} \cup tK_1$ $(n \ge 0, t \ge 0)$, $2K_2 \cup tK_1$ $(t \ge 0)$.

Theorem 2.18. For every two positive integers a and b with $3 \le a < b - 1$ there exists a graph G with $\chi(G) = a$ and $\chi_h(G) = b$.

Proof. Let $r = b - a + 1 \ge 3$. Let $G = K_a \cup rK_2$. Then $\chi(G) = a$. Consider the partition $\pi = \{\{u_1, v'_r\}, \{u_2\}, \cdots, \{u_a, v_1\}, \{v_2, v'_1\}, \{v_3, v'_2\}, \cdots, \{v_r, v'_{r-1}\}\}$ where $V(K_a) = \{u_1, \cdots, u_a\}$ and $V(rK_2) = \{v_1, v'_1, v_2, v'_2, \cdots, v_r, v'_r\}$ where v_i is adjacent with v'_i , $1 \le i \le r$. Clearly, π is a hamiltonian partition. Therefore, $\chi_h(G) \ge a + r - 1$, $\chi_h(K_a) = a$ and $\chi_h(rK_2) = r$. Each partite set of rK_2 is a doubleton set. Hence at most a + r - 1 partite classes may exist in $K_a \cup rK_2$ forming a hamiltonian cycle. Therefore, $\chi_h(K_a \cup rK_2) \le a + r - 1$. Thus $\chi_h(K_a \cup rK_2) = a + r - 1 = b$.

Remark 2.19. If $3 \le a < b - 1$, there exists a graph G with $\psi(G) = a$ and $\chi_h(G) = b$ (The graph in the above theorem serves the purpose).

Definition 2.20. Let G be a graph for which the partition graph has a spanning path. The maximum order of a partition graph of G which has a spanning path is called the hamiltonian path partition of G and is denoted by $\chi_{hp}(G)$.

Theorem 2.21. Let G be a graph having hamiltonian partition. Then $\chi_h(G) \leq \chi_{hp}(G) \leq \chi_h(G) + 1.$

Proof. Let $\chi_h(G) = k$ and $\chi_{hp}(G) = l$. Therefore, $l \ge k$. suppose $l \ge k + 2$. Let $\{V_1, \dots, V_l\}$ be a maximum hamiltonian path partition of G. Suppose there exists an edge between V_1 and V_l . Then there is a hamiltonian partition of cardinality l. Therefore, $k = \chi_h(G) \ge l \ge k + 2$, a contradiction. Therefore, there exists no edge between V_1 and V_l . Let $V'_1 = V_1 \cup V_l$. Then $\{V'_1, V'_2, \dots, V'_{l-1}\}$ is a hamiltonian partition. Therefore, $k = \chi_h(G) \ge l - 1 \ge k + 1$, a contradiction. Therefore, $l \le k + 1$ and hence $\chi_h(G) \le \chi_{hp}(G) \le \chi_h(G) + 1$.

Remark 2.22. (i) If $G = P_4$, then $\chi_h(G) = 3$, $\chi_{hp}(G) = 4$. (ii) If $G = K_n$, $\chi_h(G) = n = \chi_{hp}(G)$.

Result 2.23. $\chi_h(G_1 \cup G_2) \le \chi_h(G_1) + \chi_h(G_2) \le \chi_h(G_1 \cup G_2) + 2.$

Proof. Let $\chi_h(G_1 \cup G_2) = t$. Let $\{V_1, V_2, \dots, V_t\}$ be the maximum hamiltonian partition of $G_1 \cup G_2$. There are t edges in a hamiltonian cycle of the partition graph formed by V_1, V_2, \dots, V_t . Of the t edges, let x be the number of edges in G_1 and y be the number of edges in G_2 . Therefore, x + y = t. Therefore, $V(G_1)$ can be partitioned into x + 1 classes such that the partition graph of this partition has a hamiltonian path. Likewise, $V(G_2)$ can be partitioned into y + 1 classes such that the partition graph of this partition has a hamiltonian path. Likewise, $V(G_2)$ can be partitioned into y + 1 classes such that the partition graph of this partition has a hamiltonian path. If there exists a hamiltonian path partition in G_1 of order $s \ge x+2$, then $\chi_h(G_1 \cup G_2) \ge x+1+y = t+1$, a contradiction. A similar argument shows that there cannot be a hamiltonian path partition in G_2 of order $\ge y+2$. Therefore, $\chi_{hp}(G_1) = x+1$, $\chi_{hp}(G_2) = y+1$ and hence $\chi_h(G_1) = x$ (or) x + 1, $\chi_h(G_2) = y$ (or) y + 1. Therefore, $\chi_h(G_1) + \chi_h(G_2) = x + y$ or x + y + 1 or x + y + 2. Thus $\chi_h(G_1) + \chi_h(G_2) = t$ or t + 1 or t + 2.

Theorem 2.24. Let G_1 and G_2 be two vertex disjoint graphs with hamiltonian partitions. Suppose there exists a hamiltonian partition of maximum cardinality in G_2 say $\{W_1, \dots, W_{\chi_h(G_2)}\}$ satisfying the following:

- (i) There exists two edges between W_i and W_{i+1} , $1 \le i \le \chi_h(G_2) 1$.
- (ii) If x_1y_1 and x_2y_2 are the edges between W_i and W_{i+1} , then
 - (a) If $y_1 \neq y_2$, then there exists an edge uv from W_{i-1} to W_i with $u \in W_{i-1}$, $v \neq x_1, x_2$.

(b) If $y_1 = y_2$ then there exists an edge uv between W_{i+1} and W_{i+2} such that $u \in W_{i+1}$ and $u \neq y_1$.

Then $\chi_h(G_1 \cup G_2) = \chi_h(G_1) + \chi_h(G_2).$

Proof. Suppose the conditions in the theorem are satisfied. Let $\{V_1, V_2, \cdots, V_n\}$

 $V_{\chi_h(G_1)}$ } be a hamiltonian partition of maximum cardinality in G_1 . Let x_1y_1 and x_2y_2 be two edges between W_i and W_{i+1} (x_1 may be equal to x_2 or y_1 may be equal to y_2).

Case (i) Suppose $y_1 \neq y_2$. Add y_1 with $V_{\chi_h(G_1)}$. By (ii) (a) there exists an edge uv from W_{i-1} to W_i with $v \neq x_1, x_2$. Add v with V_1 . Then,

 $\pi = \{V_1, V_2, \cdots, V_{\chi_h(G_1)}, W_i, W_{i+1}, \cdots, W_{i-1}\}$ is a hamiltonian partition of $G_1 \cup G_2$.

Case (ii) Suppose $y_1 = y_2$. Add x_1 with $V_{\chi_h(G_1)}$. Consider the partition $\pi_1 = \{V_1, V_2, \dots, V_{\chi_h(G_1)}, W_{i+1}, W_i, W_{i-1}, \dots, W_{i+2}\}$. By (ii) (b) there exists an edge uv between W_{i+1} and W_{i+2} such that $u \in W_{i+1}$ and $u \neq y_1$. Add u with V_1 . Then π_1 is a hamiltonian partition in $G_1 \cup G_2$. Thus in either case, $\chi_h(G_1 \cup G_2) \ge \chi_h(G_1) + \chi_h(G_2)$. But $\chi_h(G_1 \cup G_2) \le \chi_h(G_1) + \chi_h(G_2)$. Therefore, $\chi_h(G_1 \cup G_2) = \chi_h(G_1) + \chi_h(G_2)$.

Observation 2.25. $\chi_h(G_1 \cup G_2) \ge \chi_h(G_1) + \chi_h(G_2) - 2.$

For:

Let $\pi_1 = \{S_1, \dots, S_{\chi_h(G_1)}\}$ be a χ_h -partition of G_1 and $\pi_2 = \{T_1, \dots, T_{\chi_h(G_2)}\}$ be a χ_h -partition of G_2 . Then $\pi_3 = \{S_1 \cup T_{\chi_h(G_2)}, S_2, \dots, S_{\chi_h(G_1)} \cup T_1, \dots, T_{\chi_h(G_2)-1}\}$ is a hamiltonian partition of $G_1 \cup G_2$. Therefore, $\chi_h(G_1 \cup G_2) \ge \chi_h(G_1) + \chi_h(G_2) - 2$.

Theorem 2.26. Let G_1 and G_2 be two vertex disjoint simple graphs with hamiltonian partitions. Suppose for any hamiltonian partition $\pi_1 = \{V_1, V_2, \cdots, V_{\chi_h(G_1)}\}$ of G_1 and $\pi_2 = \{W_1, W_2, \cdots, W_{\chi_h(G_2)}\}$ of G_2 there exists exactly one edge between V_i and V_{i+1} , $1 \le i \le \chi_h(G_1)$ and W_j and W_{j+1} , $1 \le j \le \chi_h(G_2)$.

(a) Suppose the edge joining V₁ and V₂ and the edge joining V_{χh(G1)} and V₁ are not adjacent or a similar condition holds in π₂. Then χ_h(G₁ ∪ G₂) = χ_h(G₁) + χ_h(G₂) - 1.

(b) Suppose the edge joining V_1 and V_2 and the edge joining $V_{\chi_h(G_1)}$ and V_1 are adjacent and the similar conditions hold in π_2 also. Then $\chi_h(G_1 \cup G_2) = \chi_h(G_1) + \chi_h(G_2) - 2$.

Proof. (a) Let v_1v_2 be the edge between V_1 and V_2 ($v_1 \in V_1, v_2 \in V_2$). Let v_tv_s be the edge between $V_{\chi_h(G_1)}$ and V_1 where $v_t \in V_{\chi_h(G_1)}$ and $v_s \neq v_1$. Then join v_1 with $W_{\chi_h(G_2)}$ and v_s with W_1 . Add v_1 with $W_{\chi_h(G_2)}$ resulting in $W'_{\chi_h(G_2)}$. Consider $\pi_3 = \{W_1, W_2, \cdots, W'_{\chi_h(G_2)}, V_2, \cdots, V_{\chi_h(G_1)}\}$. π_3 is a hamiltonian partition of $G_1 \cup G_2$. Therefore, $\chi_h(G_1 \cup G_2) \geq \chi_h(G_1) + \chi_h(G_2) - 1$. By the condition

tition of $G_1 \cup G_2$. Therefore, $\chi_h(G_1 \cup G_2) \ge \chi_h(G_1) + \chi_h(G_2) - 1$. By the condition in (a) of the theorem, $\chi_h(G_1 \cup G_2) < \chi_h(G_1) + \chi_h(G_2)$. Therefore, $\chi_h(G_1 \cup G_2) = \chi_h(G_1) + \chi_h(G_2) - 1$.

(b) Let v_1v_2 be the edge between V_1 and V_2 ($v_1 \in V_1, v_2 \in V_2$). By the condition in (b), the edge from $V_{\chi_h(G_1)}$ to V_1 is incident with v_1 . Add every vertex of $V_{\chi_h(G_1)}$ with W_1 resulting in W'_1 . Then $\pi_4 = \{W'_1, \dots, W_{\chi_h(G_2)}, V_2, V_3, \dots, \}$

 $V_{\chi_h(G_1)-1}$ } is a hamiltonian partition of $G_1 \cup G_2$. Therefore, $\chi_h(G_1 \cup G_2) \ge \chi_h(G_1) + \chi_h(G_2) - 2$. By the condition in (b) of the theorem, $\chi_h(G_1 \cup G_2) < \chi_h(G_1) + \chi_h(G_2) - 1$.

Therefore, $\chi_h(G_1 \cup G_2) = \chi_h(G_1) + \chi_h(G_2) - 2.$

Theorem 2.27. Let G be a graph with hamiltonian partition. Let $\pi = \{S_1, \dots, S_k\}$ be a χ_h -partition of G. Let the edge from S_1 to S_2 used in the hamiltonian cycle be u_1u_2 . Attach pendent vertices u_{k+1}, u_{k+2} at u_1, u_2 respectively. Let H be the resulting graph. Then $\chi_h(H) = \chi_h(G) + 1$.

Proof. Let $\pi_1 = \{S_1, S'_1, S_2, \dots, S_k\}$ where $S'_1 = \{u_{k+1}, u_{k+2}\}$. Then π_1 is hamiltonian partition of H. Therefore, $\chi_h(H) \ge \chi_h(G) + 1$. Suppose $\chi_h(H) \ge \chi_h(G) + 2$. Let $\pi_2 = \{T_1, \dots, T_l\}$ be a χ_h -partition of H. Then $l \ge \chi_h(G) + 2$. Suppose u_{k+1} and u_{k+2} belong to different sets of π_2 . Since u_{k+1} and u_{k+2} have degree one, none of them can be used in the hamiltonian cycle. Hence the vertices used to form the hamiltonian cycle will be from G. Therefore, $\chi_h(G) \ge l \ge \chi_h(G) + 2$, a contradiction. If u_{k+1} and u_{k+2} are in the same set of π_2 and if both are used in the hamiltonian cycle, then $\chi_h(H) = \chi_h(G) + 1$.

Theorem 2.28. Let $|V(G_1)| = n$, $|V(G_2)| = m$ and let $n \ge m$. Then $\chi_h(G_1 + G_2) = 2|V(G_2)| + t - 1$ where t is the maximum of hamiltonian path partition of

subgraphs of G_1 of order n - m + 1.

Proof. Let $V(G_1) = \{u_1, \dots, u_n\}$ and $V(G_2) = \{v_1, \dots, v_m\}$. Let $\pi = \{S_1, S_2, \dots, S_{2m}\}$ where $S_1 = \{u_1\}, S_2 = \{v_1\}, \dots, S_{2m} = \{v_m\}$. Then π is a hamiltonian partition of $G_1 + G_2$. Let t be the maximum of hamiltonian path partition of subgraphs of G_1 of ordern n - m + 1. Let H be such a subgraph and let $V(H) = \{x_1, x_2, \dots, x_{n-m+1}\}$. Let $\pi_1 = \{T_1, T_2, \dots, T_t\}$ be a χ_{hp} -partition of H. Let $V(G_1) - V(H) = \{y_1, y_2, \dots, y_{m-1}\}$.

Let $\pi_2 = \{T_1, T_2, \cdots, T_t, \{v_1\}, \{y_1\}, \cdots, \{v_{m-1}\}, \cdots, \{v_m\}\}$. Then π_2 is a hamiltonian partition of $G_1 + G_2$. $|\pi_2| = t + 2m - 1 = 2 |V(G_2)| + t - 1$. Therefore, $\chi_h(G_1 + G_2) \ge 2 |V(G_2)| + t - 1$. Let $\pi_3 = \{W_1, W_2, \cdots, W_s\}$ be a χ_h - partition of $G_1 + G_2$. Then $|\pi_3| \ge 2m$. Further the sets in π_3 which are not singleton must form a hamiltonian path. Suppose there are 2m singleton sets in π_3 and the remaining sets are without loss of generality $W_1, W_2, \cdots, W_{s-2m}$. Therefore, $\pi_3 = \{W_1, W_2, \cdots, W_{s-2m}, \{v_1\}, \{y_1\}, \cdots, \{v_m\}, \{y_m\}\}$ where $\{y_1, \cdots, y_m\} = V(G_1) - (W_1 \cup W_2 \cdots \cup W_{s-2m})$. Then $\{y_m\}W_1W_2 \cdots, W_{s-2m}$ is a hamiltonian path in a subgraph of G_1 of order s - 2m + 1. $s - 2m + 1 = \chi_h(G_1 + G_2) - 2m + 1$. But $s - 2m + 1 \le t$. Therefore, $\chi_h(G_1 + G_2) - 2m + 1 \le t$. Hence $\chi_h(G_1 + G_2) \le 2m + t - 1$. Thus $\chi_h(G_1 + G_2) = 2m + t - 1 = 2 |V(G_2)| + t - 1$.

Observation 2.29. Let $\pi_1 = \{S_1, S_2, \dots, S_k\}$ be a hamiltonian partition of G and let there exist two edges $e_1 = u_1v_1$ and $e_2 = u_2v_2$ between S_{i-1} and S_i (for some $i, 2 \le i \le k$) such that $v_1 \ne v_2$ (u_1 may be equal to u_2) and there exists an edge v_1y or v_2y from S_i to S_{i+1} . Let there exists an edge w_1w_2 from S_{i-2} to S_{i-1} with $w_2 \ne u_1, u_2$. Then there exists a hamiltonian partition π_2 of G such that $|\pi_2| > |\pi_1|$.

Proof. Let $T_1 = \{u_1, u_2\}$. Let $\pi_2 = \{T_1, S_i, S_{i+1}, \cdots, (S_{i-1} - \{u_1, u_2\}) \cup \{v_\alpha\}\}$. where $\alpha = \begin{cases} 1 & \text{if } T_2 = \{v_2\} \\ 2 & \text{if } T_2 = \{v_1\} \end{cases}$ Then π_2 is a hamiltonian partition of G (Since there exists an edge from S_{i-2} to $(S_{i-1} - \{u_1, u_2\}) \cup \{v_\alpha\}$) and $|\pi_2| = |\pi_1| + 1$.

References

[1] G. Chartrand , L. Nebesky, P. Zhang , *Hamiltoinan colorings of graphs*, Discrete Appl. Math. , 146, 2005, 257 - 272.

- [2] R.P.Gupta, Bounds on the chromatic and achromatic numbers of complementary graphs, Recent Progress in Combinatorics, Academic Press, New York, 1969.
- [3] F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969.
- [4] F. Harary, S. Hedetniemi, *Achromatic number of a graph*, J.Combin. Theory 8(1970), 154 161.
- [5] F. Harary, S. Hedetniemi, G. Prins, *An interpolation theorem for graphical homomorgpisms*, Portugal, Math, 26(1967), 453 462.
- [6] E.Sampath Kumar, V. N. Bhave , *Partition graphs and coloring Numbers of a graph*, Discrete Mathematics, 16(1976), 57-60.