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Abstract

The hamiltonian coloring of a connected graglintroduced by Chartrand
et al [1] is different from hamiltonian partition coloring. In this paper, we
characterize graphs which has a hamiltonian partition. Also, we give exam-
ple of graphs having prescribed chromatic numbers and hamiltonian partition
numbers. We derive results connecting the hamiltonian chromatic number of
G1 UGy andGq + Gs.

Key words: Hamiltonian partition, Hamiltonian partition number.

AMS Subject Classification(2010):05C15.

1 Introduction

Prof. E. Sampathkumar and Dr. V. N. Bhave [6] have defined partition graph of a
graph as follows:

Given a graphG = (V, E) and a partition? = {V3,V5,---,Vi} of V(G).
The partition graphP(G) of P hasP as it point set and; andV; are adjacent if
and only if there exist®; € V; andv; € V; such thaty; andv, are adjacent in
G. P(G) is ahomomorphic image @ if every setinP is independent id=. P(G)
is a contraction ofGG if every set inP induces a connected subgraphdn In
the first caseP is called a homomorphism and in the second cBsis called a
contraction. A partition” of V(G) is said to ben-complete if P(G) = K,,. It
is easily seen that the chromatic numR€iG) is the minimumn for which G has
ann-complete homomorphic partition in which every elemenfaf independent
and the achromatic numbeér(G) is the maximum numbet for which G has an
n-complete homomorphic partition in which every elemenf’at independent.

2 Main Results

Definition 2.1. A partition P of V (G) is called proper color partition if every ele-

ment of P is an independent set of G.
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Definition 2.2. A proper color partition P of V (G) is called a hamiltonian partition
if P(G) is hamiltonian.

Remark 2.3. Every Chromatic as well as achromatic partition of GG of cardinality

> 3 is a hamiltonian partition. The converse is not true.
For example, considek, - {e}.

Example 2.4.

4 3
The partition{{1},{2},{3},{4}} of Ky — {e}is a hamiltonian partition but is
neither a chromatic partition nor an achromatic partition.

Definition 2.5. The maximum cardinality of a hamiltonian partition coloring of G is

called the hamiltonian partition achromatic number of G and is denoted by x, (G).
Remark 2.6.x (G) < ¢ (G) < xi (G).
Observation 2.7.Any partition graph of K ,, is a star.

Observation 2.8.Let GG be a connected graph which does not contain any subgraph

isomorphic to Py or C3. Then G is a star.

Observation 2.9.For a given positive integer k there exist graphs G for which
xn(G) = x(G) = k.

Proof. Let G be a path of ordek + 3. Theny(G) =2 andx,(G) = k + 2. |
Observation 2.10.G is a hamiltonian graph if and only if x;(G) = n.

Theorem 2.11.Let G be a graph without isolates. Then x,(G) = n — 1 if and only

if G is not hamiltonian but has a hamiltonian path.
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Proof. If G has a hamiltonian path sayus, - - - u,, then

Vi ={u,un}, Vo ={ugt, -+ ,\Vo1 = {u,_1} is a cyclic partition ofG. Therefore,
Xn(G) > n — 1. SinceG is not hamiltoniany,(G) < n — 1. Thereforex,(G) =
n— 1.

Conversely, supposg,(G) = n — 1. Then there exists a partition &f(G) into
Vi,--+,V,_1 such that the partition graph d¢f\;, V5, -+, V,_1} is hamiltonian.
Since|V(G)| = n, exactly onel; has two elements and all others are singletons.
Let V(G) = {uy,us, -+ ,u,}. Let without loss of generality; = {uy,u,},Vo =
{us}, -+, Viuy = {u,_1}. Since the partition graph is hamiltonian without loss of
generality it can be assumed thatis adjacent tay; _1,u; 11 ;2 <i <n—3,u;is
adjacent tau, or u,, is adjacent tas,; u,,_; is adjacent ta:; or u,,.

Case (i)u,,_1 is adjacent ta;; andu; is adjacent withu,. Sinceu,, is not an isolate,
u, is adjacentto some;, 1 <i <n — 1. Thenu,u;u; 1 - Up_1U1Usg - - -

u;_1 1S @ hamiltonian path .

Case (ii) u,_1 is adjacent tas,, andu; is adjacent withui;. Then we have the path
UTU * * * Upy—1 Uy, -

Sincex,(G) = n — 1, G is not hamiltonian.

Case (iii)u,,_; is adjacent withi; andu,, is adjacent withu,. Thenu,us - - - u,_1uq

is a hamiltonian path.

Sincey;,(G) = n — 1, G is not hamiltonian.

Case (iv) u,_; is adjacent withu,, andu, is adjacent withu,. u, being a non-
isolate is adjacent with somg, 1 < j <n — 1. Thenuju; - - - tp—1Unusus

-+ -u;_1 IS @ hamiltonian path.

Sincex,(G) = n — 1, G is not hamiltonian. [

Observation 2.12.Let G be a graph with t isolates say uy, us, - - - ,u;. Then x;(G)
=Xh(G - {uh T 7ut})'

Theorem 2.13.Let G be a simple connected graph. Then G has a hamiltonian

partition if and only if G is not a star.

Proof. Let G be a simple connected graph. To prove the theorem it is enough to
show thatG has a hamiltonian partition if and onlyd has a subgraph isomorphic

to P, or Cs. For:

A: Supposé= has a subgraph isomorphic K. Letuy, us, us, uy be the vertices in
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G whereuug, ugus, usuy € FE (G).
Case (1)u, is adjacent tau,.
Then takeV; = {u}, Vo ={ua}, Vs ={us}, Vi = {us}.
Let H = G — {w1,us, uz, us}. Let P = {Uy, -+, Uy } be a chromatic partition
of H.
Subcase (i) (H) > 3.
Subsubcase (iSuppose the subgraph inducedayus, us, uy is @ component of
G. If x (H) = 3, then the three classes Bfcan be merged witlv;, V5, V3 and V.
If x (H) > 4 thenVy, V;, V3 andV, can be merged with elements Bf
Subsubcase (iiSuppose the subgraph inducediyus, us, u4 is not a component
of G. Let without loss of generality, is adjacent to some vertex say wii. If u,
is adjacent to some clasg, i # 1, then{u,}Uy,---U; - -- UXUZ-

{uy H{us HusH{us} is a cycle.
If u; is adjacent td/; andu; is not adjacent to any/;(2 < i < x), then add; with
Uy, . Then{u,}U,Us - - - U, Uy {ug }{usHus } is a cycle.
Subcase (ii)y (H) < 2. The arguments given in the subcase (i) can be repeated.
Case (2)Suppose:, is adjacent taz
Subcase (i)Suppose the subgraph inducedyus, us, vy iS @ component ofs.
Let Vi = {ujug}, Vo = {us}, V3 = {us}.
If x (H) > 3, thenV;, V5, V5 can be merged with elements Bf If x (H) = 2, then
Uy UV, U UV, Vaisacycle. Ify (H) =1, thenU; U Vi, Vs, Vs is a cycle.
Subcase (ii)The subgraph induced by, us, us, uy4 is not a component off. Let
X(H)>3.
A: uy is adjacent to a vertex say w ln,.

Ay 1 If uy is adjacent to somE;, ¢ # 1, then{uy}U; - - U, - ,UU;
{uy Hug H{usHuy} is acycle.

Ay If uy is adjacent td/; and is not adjacent to arty;, then add:, to U,, giving
U,. Now {ug}Uy - - - U, {up }{us}{us} is a cycle.
B: u4 is not adjacent to any/;, 1 < i < x. Thenu; oruy or uz is adjacent to some
U;.

By: Letu, is adjacent to say/;, addu, with U, giving U>/<- Then
{u1}Uy - - - U {us}{uz }{u} is a cycle.

By: If uy is adjacent to sayy, then{u,}U; - - - U {us}{u1 }{uz} is a cycle.

Bs: ug is adjacent to say/; .
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Bs, : w; is adjacent to somé/;, i # 1. Add u, to U, giving U;. Then
{us}Uy -+ U; -+ ULU{us Huo Hus } is a cycle.

Bs, : u, is adjacent td/; andw; is not adjacent to any/;, 2 < i < x. Add
uy, ug With U, giving U, . Then{uz}U; - - - U, {us}{us} is a cycle. Lety (H) = 2.

A’ - uy is adjacent td/;.

Ay is adjacent td/, then{uy } U, Us{uy }Hus }{us} {uy} is a cycle.

A, - u, is adjacent td/; but not adjacent t&,. Add u; with U, giving U,. Then
{ug YU Uy {us Hus }H{uy} is a cycle.

B’ : u, is adjacent not adjacent i@, U.

B; : uy is adjacent td/;. Add uy with U, giving U,.

Then{u, }U,Uy{us}{us}{u, } is a cycle.

B, : uy is adjacent td/;. Add uy with U, giving U,.

Then{u, YU, Uy {us}{u, }Hus ) is a cycle.

B; - ug is adjacent td/;. Add u, with U, giving U,

By, - uy is adjacent tdl,. Then{uz}U Uy{us H{us}{us} is a cycle.

By, : uy is not adjacent td/,. Add uy, us With Us giving U, .
Then{us}U,U, {us}{us} is a cycle.
Letx(H) = 1.

A" - uy is adjacent tdJ;.

Al :uy is adjacent td/;. Then{u,} U {u; }{us H{us}Hus} is a cycle.

A :uy is not adjacent té/,. Add v, with U, giving U.
Then{u, }U, {us}{us}{u,} is a cycle.

B" : uy is not adjacent td/,. Add u, with U; giving U,.

B| : wuy is adjacent td/;. ThenU, {u, }{u, }{us}U, is a cycle.

B, : uy is adjacent td/,. ThenU, {uy }{u; }{us}U, is a cycle.

B; : us is adjacent td/; .

By, : uy is adjacent td/;. ThenU; {u; }{us}{us}U; is a cycle.

By, : uy is not adjacent td/;. Add uy, us With Uy giving U .
Then{us}U, {us}{us} is a cycle.
B: Suppose contains a cycle€’;. This case is similar to Case(1) gf and the
result follows.

Conversely, supposg has a hamiltonian partition arte is connected. Suppose
G has no subgraph isomorphic 1 or Cs;. ThenG'is K, ,, for somen > 1. By
observation, any partition ok’ ,, is a star, a contradiction. Therefor€, has a
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subgraph isomorphic t&; or Cs. [

Remark 2.14.1f G is disconnected, then the converse of the theorem need not be
true. That is, a disconnected graph may have a hamiltonian partition though it

contains no subgraph isomorphic to P, or Cs.

Example 2.15.

5
Letw = {{1,3},{4},{2,5}}. Thenr is a hamiltonian partition.

Theorem 2.16.Let G be a disconnected graph. Let |[E(G)| > 3 and G # Ky, U
tKy,t > 1,n > 3, then G has a hamiltonian partition.

Proof. If G has a subgraph isomorphic i or C5 thenG has a hamiltonian par-
tition. Suppose does not contain any subgraph isomorphicRoor C5. Let
|E(G)| > 3andG # K, UtK,,t > 1.

LetGy, Gy, - -+, Gy, be the components @f. Then by hypothesis each; is a star.
Since|E(G)| > 3, andG # K;, UtK,, G contains eitheBK, or Ky U K5 Or
Kin UKy, (n>3t>1).

Case ()G contains3K,. LetV = {1,2,3,4,5,6} be the vertex set 0§ K, with
1 adjacent with 2,3 adjacent with 4 and 5 adjacent with 6. et {1,6},1, =
{2,3},V3 = {4,5}. Other components can be suitably merged witlandV,. Let
Vi, V, andV; be the resulting partition df (G'). ThenV/] is adjacent with/, ( 1
is adjacent with 2}/, is adjacent with/; ( 3 is adjacent with 4 )anl; is adjacent
with V; (5 is adjacent with 6 ). Henc@ contains a hamiltonian partition.

Case (ii) G containsK, UK ». LetV = {1,2,3,4,5} be the vertex set K, UK, »
with 1 adjacent to 2, 3 adjacent with 4 and 5. Let= {1,4},V>, = {3} ,V5 =
{2,5}. Other components can be suitably merged Witland V5. LetV;, V, and
V, be the resulting partition of (G). ThenV; is adjacent withl/, (4 is adjacent
with 3),V, is adjacent with/; ( 3 is adjacent with 5 )antf; is adjacent with/; (2
is adjacent with 1 ). Henc@' contains a hamiltonian partition.

Case (iii) G containsk; , U K14, (n > 3,t > 1).

Let V. = {v,uy,us,us, -+ ,u,} be the vertex set of(;,, with v adjacent with
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Uy, U, Us, -+, u, aNdV' = {w,zy, - -, z,} be the vertex set ok, ; with w adja-
cent withzy, -+ ,x,. LetVy = {v}, Vo = {uy,w}, Vs ={ug, -+ ,up, 1, -+, 24}

Other components can be suitably merged Wittand V,. Let V;,V, andV; be
the resulting partition of/(G). ThenV] is adjacent withl/, (v is adjacent with
uy),V, is adjacent with; (w is adjacent withr; )andV; is adjacent withl; ( u

is adjacent with v ).

HenceG contains a hamiltonian partition. [ |

The preceding theorems and observations lead to the following theorem.

Theorem 2.17.Let G be a simple graph. G has a hamiltonian partition if and only
ifG# Ky, UtK; (n>0,t>0),2K, UtK, (¢t > 0).

Theorem 2.18.For every two positive integers a and b with 3 < a < b — 1 there
exists a graph G with x(G) = a and x,(G) = b.

Proof. Letr = b—a+1 > 3. LetG = K,UrK,. Theny(G) = a. Consider the par-
tition = {{ui, v}, {ua}, -+, {ua, 1}, {va, v}, {vs, 05}, -+, {vr,v,_ } } where
V(K,) = {u1, - ,u.} andV (rky) = {Ul,U;,UQ,U/Q, . ,vr,v;} wherev; is ad-
jacent withv;, 1 < i < r. Clearly, 7 is a hamiltonian partition. Therefore,
Xn(G) > a+r —1, xp(K,) = aandx,(rKy) = r. Each partite set of K, is
a doubleton set. Hence at mast- » — 1 partite classes may exist il§, U r K,
forming a hamiltonian cycle. Thereforgy,(K, U rK;) < a + r — 1. Thus
Xn(K,UrKs)=a+r—1=hb. [ ]

Remark 2.19.1f 3 < a < b — 1, there exists a graph G with {)(G) = a and
Xn(G) = b (The graph in the above theorem serves the purpose).

Definition 2.20. Let G be a graph for which the partition graph has a spanning path.
The maximum order of a partition graph of G which has a spanning path is called

the hamiltonian path partition of G and is denoted by x,(G).

Theorem 2.21.Let G be a graph having hamiltonian partition. Then x,(G) <

Xip(G)
< Xh(G) + 1.
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Proof. Let x,(G) = k andx,(G) = . Therefore] > k. supposé > k + 2. Let
{V1,---,V;} be a maximum hamiltonian path partition Gf Suppose there exists
an edge betweeh; andV,. Then there is a hamiltonian partition of cardinality
Therefore, k =x,(G) > 1 > k + 2, a contradiction. Therefore, there exists no edge
betweenV; andV,. LetV, =V, UV, Then{V;,V;,---,V, ,} is a hamiltonian
partition. Thereforek = x,(G) > 1 — 1 > k + 1, a contradiction. Thereforé,

< k + 1and hence,(G) < xnp(G) < xa(G) + 1. n

Remark 2.22.(i) If G = Pjy,then x,(G) = 3, xp,(G) =4.
(i) If G = K, xu(G) =0 = x4y (G).

Result 223Xh(Gl U GQ) < Xh(G1)+Xh(G2) < Xh(Gl U Gg) + 2.

Proof. Let x,(G1 U Gs) =t. Let{V},V5,---,V;} be the maximum hamiltonian
partition ofG; U G». There arg edges in a hamiltonian cycle of the partition graph
formed byV;, V5, - -+ | V;. Of thet edges, letr be the number of edges @; and

y be the number of edges 1,. Therefore,x + y = t. Therefore,V (G;) can

be partitioned intar + 1 classes such that the partition graph of this partition has
a hamiltonian path. Likewisé/(G,) can be partitioned into y + 1 classes such
that the partition graph of this partition has a hamiltonian path. If there exists a
hamiltonian path partition i/, of orders > x+2, theny,(G1UGs) > xz+1+y =

t + 1, a contradiction. A similar argument shows that there cannot be a hamiltonian
path partition iniz, of order> y+2. Thereforey;,(G1) = z+1, xpp(G2) = y+1

and hencey,(G1) = x (or) z + 1, xx(G2) = y (or) y + 1. Therefore,x,(G1) +
xn(Ge) =x+yorz+y+1lorx+y+ 2 Thusy,(Gi) + xn(G2) =t or t+1

or t+2. [ |

Theorem 2.24.Let G, and G5 be two vertex disjoint graphs with hamiltonian par-
titions. Suppose there exists a hamiltonian partition of maximum cardinality in G4

say {Wl, el th(Gz)} satisfying the following:
(i) There exists two edges between W; and W1, 1 <i < x5, (Gy) — 1.
(ii) If x1y; and x2y- are the edges between W; and W, 1, then

(a) Ify, # yo, then there exists an edge uv from W;_, to W, withu € W;_4,

v # X1, Ta.
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(b) Ify; =y, then there exists an edge uv between W, 1 and W; 5 such that
u € Wi+1 and u 7é Yi.

Then Xh (G1 U Gg) =Xh (Gl) + Xh (GQ)

Proof. Suppose the conditions in the theorem are satisfied{ Vef/s, - - - |
Vin(cn} be a hamiltonian partition of maximum cardinality @y. Let z,y, and
x21yo be two edges betwedlw; andW,,; ( x; may be equal ta:, or y; may be
equal toy, ).

Case (i) Supposey; # y.. Addy; with V,, . BY (i) (a) there exists an edge
from W,_; to W; with v # x1, 5. Add v with V;. Then,

m={Vi,Va, -, Vyu(c1)» Wi, Wiz, - -+, Wi_1 } is @ hamiltonian partition of/; U
Gs.

Case (ii) Supposey; = y». Add z; with V,, ). Consider the partitionr; =
{Vi, Vo, - Vi) Wisa, Wi, Wiy, -+, Wiya b By (i) (b) there exists an edge
uv betweenW,,; and W, such thatu € W;,; andu # y;. Add u with V;.
Thenm, is a hamiltonian partition iiz; U Go. Thus in either caseg, (G1 U G3) >
Xn (G1) 4+ xn (G2). Butxy, (G1 U Ga) < xi (G1) + xn (G2).

Thereforex;, (G1 U Ga) = x5 (G1) + xn (G2). n

Observation 2.25.x,(G1 U Gs) > xn(G1) + xn(G2) — 2.

For:

Letm = {Si, -, Sy.(c1)} b€ ax,-partition of G, andm, = {77, - -,

Ty, (G2} be ax,-partition of G5, Thenms = {S7 U Ty, (a), 52, Syucy) U
Tv, -+, Ty, (G)-1} IS @ hamiltonian partition of/; UG,. Thereforey,(G1UG,) >
xXn(G1) + xn(G2) — 2.

Theorem 2.26.Let GG, and G5 be two vertex disjoint simple graphs with hamilto-
nian partitions. Suppose for any hamiltonian partition m, = {V1, Vo, -+ |

Vi@t of Gy and my = {Wy, Wy, -+ | W,, (G, } of G there exists exactly one
edge between V; and Vi1, 1 <1 < x,(Gy) and W; and W1, 1 < j < x1(G2).

(a) Suppose the edge joining Vi and V, and the edge joining V., ) and V; are
not adjacent or a similar condition holds in m5. Then x,(G1 U G2) = x1(G)
+ Xh(GQ) - 1.
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(b) Suppose the edge joining V; and V5 and the edge joining V,, a,) and V; are
adjacent and the similar conditions hold in 7 also. Then x,(G1 U G2) =
Xn(G1) +xn(G2) - 2.

Proof. (a) Letv,v, be the edge betwedn andV, (v, € Vi, v9 € V5). Letww, be
the edge betweeWi,, ,) andV; wherev, € V,, ¢,) andv, # v;. Then joinv; with
W (c2) @andug with Wy . Add v, with W, , . resulting inW)’(h(GQ).

/

Considerr; = {Wl, Wa, oo s W oy Voo o ,VXh(GI)}. 73 IS @ hamiltonian par-
tition of G; UG,. Thereforey,(G1UG32) > xn(G1)+xn(G2) - 1. By the condition
in (a) of the theoremy;, (G1 U G2) < xn(G1) + xn(G2). Thereforex,(G; UG,) =
xn(G1) + xn(G2) - 1.

(b) Let v1vy be the edge betwednn andV;, (v, € Vi, vy € 13). By the con-
dition in (b), the edge fronV,, ,) to V; is incident withv;. Add every vertex of
Vi (Gr) With Wy resulting inWy. Thenmy = {Wy, -+, Wy, G, Va, Va, -+
VinG)-1} is a hamiltonian partition ofy; U G,. Therefore,x, (G U G3) >
xn(G1)+x1(G2) - 2. By the condition in (b) of the theoreny, (G1UG,) < x»(G1)
+ xn(Gs) - 1.

Thereforex,(G1 U G2) = xn(G1) + xn(Gs2) - 2. [ |

Theorem 2.27.Let G be a graph with hamiltonian partition. Let m = {Sy,- -+ , Sk}
be a yy-partition of G. Let the edge from S, to S, used in the hamiltonian cycle
be uqyuy. Attach pendent vertices uy. 1, Ugyo at uq,uy respectively. Let H be the

resulting graph. Then x,(H) = x»(G) + 1.

Proof. Letm, = {51, 5], S, , Sk} whereS, = {ug,1, urs2}. Thenr, is hamil-
tonian partition ofH. Therefore,x,(H) > xn(G)+ 1. Suppose,(H) > xn(G)+

2. Letmy, = {T,--- ,T;} be ay,-partition of H. Thenl > x,(G)+ 2. Suppose

ur41 anduy o belong to different sets of,. Sinceu,; andu, ., have degree one,
none of them can be used in the hamiltonian cycle. Hence the vertices used to form
the hamiltonian cycle will be frond:. Thereforeyx,(G) > 1 > x,(G) + 2, a con-
tradiction. If u,,; andu, o are in the same set af, and if both are used in the
hamiltonian cycle, then,(H) = x»(G) + 1. n

Theorem 2.28.Let |V (G,)| = n, |V(G2)| = m and let n > m. Then x,(Gy +
Gs) = 2|V (Gs)| +t — 1 where t is the maximum of hamiltonian path partition of
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subgraphs of G| of ordern — m + 1.

Proof. LetV(Gy) = {uy, -+ ,u,} andV (Gy) = {vy, - , v, }. Letm = {5}, S5,

< Som} whereS; = {ui}, Sy = {v1}, -+, S, = {vn}. Thenr is a hamil-
tonian partition ofG; + G,. Lett be the maximum of hamiltonian path parti-
tion of subgraphs ofs; of ordernn — m + 1. Let H be such a subgraph and let
V(H) ={z1,22, -+, Tp_ms1}. Letm = {11, T, --- ,T;} be ay,,-partition of H.
LetV(G1) = V(H) ={y1,y2,- -+, Ym—1}-

Letmy = {13, 1o, -+ , T, {va}, {on }, - s {vm-1}, -+, {vm}}. Thenm, is a hamil-
tonian partition ofG; + Gs. |m| =t +2m — 1 = 2|V (Gs)| + ¢t — 1. Therefore,
xn(G1 + Ga) > 2|V(Gy)| +t — 1. Letms = {Wy,Ws,--- ,W,} be ay, - par-
tition of G; + G5. Then|ws| > 2m. Further the sets i3 which are not single-
ton must form a hamiltonian path. Suppose there2atesingleton sets inr; and
the remaining sets are without loss of generality, W5, --- | W,_o,,. Therefore,
m3 =AW, Wa, -+, Wogm, {vi} {mn}, -+ {om}, {ym}} where{y, -y} =
V(G1) — (Wi UWy---UWs_g). Then{y, W Wy - W_o,, is a hamiltonian
path in a subgraph @f, of orders —2m+1. s—2m+1 = x,(G1 + G2) —2m+ 1.
Buts—2m+1 < t. Thereforex,(G1+ Gs) —2m+1 < t. Hencey,(G; + G2) <
2m 4+t — 1. Thusy, (G + Go) =2m +t — 1 =2|V(Gy)| +t — 1. n

Observation 2.29.Let m; = {51, 52, -, Sk} be a hamiltonian partition of G and
let there exist two edges e; = uyv; and e; = u9vy between S;_1 and S; ( for some
1,2 < 1 < k) such that vy # vy (u; may be equal to us ) and there exists an edge
v1y or vey from S; to S;1 1. Let there exists an edge w,wy from S;_5 toS;_; with

wy # Uy, uy. Then there exists a hamiltonian partition 7o of G such that |m5| > |m].

Proof. Let T, = {Ul, Ug}. Letmy = {Tl, Si, Si+1, ceey (Si,1 — {ul, Ug}) U {'Ua}}.

1 |f T2 = {UQ} . . . . .
wherea = Thenm, is a hamiltonian partition off (Since there
2 if TQ = {Ul}
exists an edge from;_, to (S;—1 — {u, us}) U {v.}) and|me| = |m| + 1. [
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