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Abstract

The hamiltonian coloring of a connected graphG introduced by Chartrand

et al [1] is different from hamiltonian partition coloring. In this paper, we

characterize graphs which has a hamiltonian partition. Also, we give exam-

ple of graphs having prescribed chromatic numbers and hamiltonian partition

numbers. We derive results connecting the hamiltonian chromatic number of

G1 ∪G2 andG1 + G2.
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1 Introduction

Prof. E. Sampathkumar and Dr. V. N. Bhave [6] have defined partition graph of a

graph as follows:

Given a graphG = (V,E) and a partitionP = {V1, V2, · · · , Vs} of V (G).

The partition graphP (G) of P hasP as it point set andVi andVj are adjacent if

and only if there existsvi ∈ Vi andvj ∈ Vj such thatvi andvj are adjacent in

G. P (G) is a homomorphic image ofG if every set inP is independent inG. P (G)

is a contraction ofG if every set inP induces a connected subgraph inG. In

the first caseP is called a homomorphism and in the second caseP is called a

contraction. A partitionP of V (G) is said to ben-complete ifP (G) = Kn. It

is easily seen that the chromatic numberχ (G) is the minimumn for whichG has

ann-complete homomorphic partition in which every element ofP is independent

and the achromatic numberψ (G) is the maximum numbern for whichG has an

n-complete homomorphic partition in which every element ofP is independent.

2 Main Results

Definition 2.1. A partition P of V (G) is called proper color partition if every ele-
ment of P is an independent set of G.

25



26 Sr. Kulrekha, R. Sundareswaran,V. Swaminathan

Definition 2.2. A proper color partition P of V (G) is called a hamiltonian partition
if P (G) is hamiltonian.

Remark 2.3.Every Chromatic as well as achromatic partition of G of cardinality
≥ 3 is a hamiltonian partition. The converse is not true.

For example, considerK4 - {e}.

Example 2.4.
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The partition{{1} , {2} , {3} , {4}} of K4 − {e}is a hamiltonian partition but is

neither a chromatic partition nor an achromatic partition.

Definition 2.5. The maximum cardinality of a hamiltonian partition coloring ofG is
called the hamiltonian partition achromatic number of G and is denoted by χh (G).

Remark 2.6.χ (G) ≤ ψ (G) ≤ χh (G).

Observation 2.7.Any partition graph of K1,n is a star.

Observation 2.8.Let G be a connected graph which does not contain any subgraph
isomorphic to P4 or C3. Then G is a star.

Observation 2.9.For a given positive integer k there exist graphs G for which
χh(G)− χ(G) = k.

Proof. LetG be a path of orderk + 3. Thenχ(G) = 2 andχh(G) = k + 2.

Observation 2.10.G is a hamiltonian graph if and only if χh(G) = n.

Theorem 2.11.Let G be a graph without isolates. Then χh(G) = n− 1 if and only
if G is not hamiltonian but has a hamiltonian path.
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Proof. If G has a hamiltonian path sayu1u2 · · ·un, then

V1 = {u1, un}, V2 = {u2},· · · ,Vn−1 = {un−1} is a cyclic partition ofG. Therefore,

χh(G) ≥ n − 1. SinceG is not hamiltonianχh(G) ≤ n − 1. Therefore,χh(G) =

n− 1.

Conversely, supposeχh(G) = n − 1. Then there exists a partition ofV (G) into

V1, · · · , Vn−1 such that the partition graph of{V1, V2, · · · , Vn−1} is hamiltonian.

Since|V (G)| = n, exactly oneVi has two elements and all others are singletons.

Let V(G) = {u1, u2, · · · , un}. Let without loss of generalityV1 = {u1, un},V2 =

{u2}, · · · , Vn−1 = {un−1}. Since the partition graph is hamiltonian without loss of

generality it can be assumed thatui is adjacent toui−1,ui+1 ; 2 ≤ i ≤ n − 3, u1 is

adjacent tou2 or un is adjacent tou2; un−1 is adjacent tou1 or un.

Case (i)un−1 is adjacent tou1 andu1 is adjacent withu2. Sinceun is not an isolate,

un is adjacent to someui, 1 ≤ i ≤ n− 1. Thenunuiui+1 · · ·un−1u1u2 · · ·
ui−1 is a hamiltonian path .

Case (ii) un−1 is adjacent toun andu1 is adjacent withu2. Then we have the path

u1u2 · · ·un−1un.

Sinceχh(G) = n− 1,G is not hamiltonian.

Case (iii)un−1 is adjacent withu1 andun is adjacent withu2. Thenunu2 · · ·un−1u1

is a hamiltonian path.

Sinceχh(G) = n− 1,G is not hamiltonian.

Case (iv) un−1 is adjacent withun andun is adjacent withu2. un being a non-

isolate is adjacent with someuj, 1 ≤ j ≤ n− 1. Thenu1uj · · ·un−1unu2u3

· · ·uj−1 is a hamiltonian path.

Sinceχh(G) = n− 1,G is not hamiltonian.

Observation 2.12.Let G be a graph with t isolates say u1, u2, · · · , ut. Then χh(G)

= χh(G− {u1, · · · , ut}).

Theorem 2.13.Let G be a simple connected graph. Then G has a hamiltonian
partition if and only if G is not a star.

Proof. Let G be a simple connected graph. To prove the theorem it is enough to

show thatG has a hamiltonian partition if and only ifG has a subgraph isomorphic

to P4 orC3. For:

A: SupposeG has a subgraph isomorphic toP4. Letu1, u2, u3, u4 be the vertices in
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G whereu1u2, u2u3, u3u4 ∈ E (G).

Case (1)u1 is adjacent tou4.

Then takeV1 = {u1}, V2 = {u2}, V3 = {u3}, V4 = {u4}.

LetH = G − {u1, u2, u3, u4}. LetP =
{
U1, · · · , Uχ(H)

}
be a chromatic partition

of H.

Subcase (i)χ (H) ≥ 3.

Subsubcase (i)Suppose the subgraph induced byu1, u2, u3, u4 is a component of

G. If χ (H) = 3, then the three classes ofP can be merged withV1, V2, V3 andV4.

If χ (H) ≥ 4 thenV1, V2, V3 andV4 can be merged with elements ofP .

Subsubcase (ii)Suppose the subgraph induced byu1, u2, u3, u4 is not a component

of G. Let without loss of generalityu4 is adjacent to some vertex say w inU1. If u1

is adjacent to some classUi, i 6= 1, then{u4}U1, · · ·Ui · · ·UχÛi

{u1}{u2}{u3}{u4} is a cycle.

If u1 is adjacent toU1 andu1 is not adjacent to anyUi(2 ≤ i ≤ χ), then addu1 with

U2 . Then{u4}U1Û2 · · ·UχU2{u2}{u3}{u4} is a cycle.

Subcase (ii)χ (H) ≤ 2. The arguments given in the subcase (i) can be repeated.

Case (2)Supposeu1 is adjacent tou3

Subcase (i)Suppose the subgraph induced byu1, u2, u3, u4 is a component ofG.

Let V1 = {u1u4}, V2 = {u2}, V3 = {u3}.

If χ (H) ≥ 3, thenV1, V2, V3 can be merged with elements ofP . If χ (H) = 2, then

U1 ∪ V1, U2 ∪ V2, V3 is a cycle. Ifχ (H) = 1, thenU1 ∪ V1, V2, V3 is a cycle.

Subcase (ii)The subgraph induced byu1, u2, u3, u4 is not a component ofG. Let

χ (H) ≥ 3 .

A: u4 is adjacent to a vertex say w inU1.

A1 : If u1 is adjacent to someUi, i 6= 1 , then{u4}U1 · · · , Ûi, · · · , UχUi

{u1}{u2}{u3}{u4} is a cycle.

A2: If u1 is adjacent toU1 and is not adjacent to anyUi, then addu1 toUχ giving

U
′
χ. Now {u4}U1 · · ·U

′
χ{u2}{u3}{u4} is a cycle.

B: u4 is not adjacent to anyUi, 1 ≤ i ≤ χ. Thenu1 or u2 or u3 is adjacent to some

Ui.

B1: Let u1 is adjacent to sayU1, addu4 with Uχ givingU
′
χ. Then

{u1}U1 · · ·U
′
χ{u3}{u2}{u1} is a cycle.

B2: If u2 is adjacent to sayU1, then{u2}U1 · · ·U1
χ{u3}{u1}{u2} is a cycle.

B3: u3 is adjacent to sayU1.
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B31 : u1 is adjacent to someUi, i 6= 1. Add u4 to Uχ giving U
′
χ. Then

{u3}U1 · · · Ûi · · ·U1
χUi{u1}{u2}{u3} is a cycle.

B32 : u1 is adjacent toU1 andu1 is not adjacent to anyUi, 2 ≤ i ≤ χ. Add

u1, u4 with Uχ givingU
′′
χ . Then{u3}U1 · · ·U

′′
χ{u2}{u3} is a cycle. Letχ (H) = 2.

A
′
: u4 is adjacent toU1.

A
′
1 : u1 is adjacent toU2 then{u4}U1U2{u1}{u2}{u3}{u4} is a cycle.

A
′
2 : u1 is adjacent toU1 but not adjacent toU2. Addu1 with U2 givingU

′
2. Then

{u4}U1U
′
2{u2}{u3}{u4} is a cycle.

B
′
: u4 is adjacent not adjacent toU1, U2.

B
′
1 : u1 is adjacent toU1. Addu4 with U2 givingU

′
2.

Then{u1}U1U
′
2{u3}{u2}{u1} is a cycle.

B
′
2 : u2 is adjacent toU1. Addu4 with U2 givingU

′
2.

Then{u2}U1U
′
2{u3}{u1}{u2} is a cycle.

B
′
3 : u3 is adjacent toU1. Addu4 with U2 givingU1

2 .

B
′
31

: u1 is adjacent toU2. Then{u3}U1U
′
2{u1}{u2}{u3} is a cycle.

B
′
32

: u1 is not adjacent toU2. Addu1, u4 with U2 givingU
′′
2 .

Then{u3}U1U
′′
2 {u2}{u3} is a cycle.

Let χ(H) = 1.

A
′′

: u4 is adjacent toU1.

A
′′
1 : u1 is adjacent toU1. Then{u4}U1{u1}{u2}{u3}{u4} is a cycle.

A
′′
2 : u1 is not adjacent toU1. Addu1 with U1 givingU

′
1.

Then{u4}U
′
1{u2}{u3}{u4} is a cycle.

B
′′

: u4 is not adjacent toU1. Addu4 with U1 givingU
′
1.

B
′′
1 : u1 is adjacent toU1. ThenU

′
1{u1}{u2}{u3}U

′
1 is a cycle.

B
′′
2 : u2 is adjacent toU1. ThenU

′
1{u2}{u1}{u3}U

′
1 is a cycle.

B
′′
3 : u3 is adjacent toU1.

B
′′
31

: u1 is adjacent toU1. ThenU
′
1{u1}{u2}{u3}U

′
1 is a cycle.

B
′′
32

: u1 is not adjacent toU1. Addu1, u4 with U1 givingU
′′
1 .

Then{u3}U
′′
1 {u2}{u3} is a cycle.

B: SupposeG contains a cycleC3. This case is similar to Case(1) ofA and the

result follows.

Conversely, supposeG has a hamiltonian partition andG is connected. Suppose

G has no subgraph isomorphic toP4 or C3. ThenG is K1,n for somen ≥ 1. By

observation, any partition ofK1,n is a star, a contradiction. Therefore,G has a
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subgraph isomorphic toP4 orC3.

Remark 2.14.If G is disconnected, then the converse of the theorem need not be
true. That is, a disconnected graph may have a hamiltonian partition though it
contains no subgraph isomorphic to P4 or C3.

Example 2.15.
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Let π = {{1, 3} , {4} , {2, 5}}. Thenπ is a hamiltonian partition.

Theorem 2.16.Let G be a disconnected graph. Let |E(G)| ≥ 3 and G 6= K1,n ∪
tK1, t ≥ 1, n ≥ 3, then G has a hamiltonian partition.

Proof. If G has a subgraph isomorphic toP4 or C3 thenG has a hamiltonian par-

tition. SupposeG does not contain any subgraph isomorphic toP4 or C3. Let

|E(G)| ≥ 3 andG 6= K1,n ∪ tK1, t ≥ 1.

LetG1, G2, · · · , Gk be the components ofG. Then by hypothesis eachGi is a star.

Since|E(G)| ≥ 3, andG 6= K1,n ∪ tK1, G contains either3K2 or K2 ∪ K1,2 or

K1,n ∪K1,t (n ≥ 3, t ≥ 1).

Case (i)G contains3K2. Let V = {1, 2, 3, 4, 5, 6} be the vertex set of3K2 with

1 adjacent with 2,3 adjacent with 4 and 5 adjacent with 6. LetV1 = {1, 6} , V2 =

{2, 3} , V3 = {4, 5}. Other components can be suitably merged withV1 andV2. Let

V
′
1 , V

′
2 andV

′
3 be the resulting partition ofV (G). ThenV

′
1 is adjacent withV

′
2 ( 1

is adjacent with 2 ),V
′
2 is adjacent withV

′
3 ( 3 is adjacent with 4 )andV

′
3 is adjacent

with V
′
1 ( 5 is adjacent with 6 ). HenceG contains a hamiltonian partition.

Case (ii) G containsK2∪K1,2. LetV = {1, 2, 3, 4, 5} be the vertex set ofK2∪K1,2

with 1 adjacent to 2, 3 adjacent with 4 and 5. LetV1 = {1, 4} , V2 = {3} , V3 =

{2, 5}. Other components can be suitably merged withV1 andV2. Let V
′
1 , V

′
2 and

V
′
3 be the resulting partition ofV (G). ThenV

′
1 is adjacent withV

′
2 (4 is adjacent

with 3),V
′
2 is adjacent withV

′
3 ( 3 is adjacent with 5 )andV

′
3 is adjacent withV

′
1 ( 2

is adjacent with 1 ). HenceG contains a hamiltonian partition.

Case (iii) G containsK1,n ∪K1,t, (n ≥ 3, t ≥ 1).

Let V = {v, u1, u2, u3, · · · , un} be the vertex set ofK1,n with v adjacent with
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u1, u2, u3, · · · , un andV
′
= {w, x1, · · · , xt} be the vertex set ofK1,t with w adja-

cent withx1, · · · , xt. Let V1 = {v}, V2 = {u1, w}, V3 = {u2, · · · , un, x1, · · · , xt}.

Other components can be suitably merged withV1 andV2. Let V
′
1 , V

′
2 andV

′
3 be

the resulting partition ofV (G). ThenV
′
1 is adjacent withV

′
2 (v is adjacent with

u1),V
′
2 is adjacent withV

′
3 ( w is adjacent withx1 )andV

′
3 is adjacent withV

′
1 ( u2

is adjacent with v ).

HenceG contains a hamiltonian partition.

The preceding theorems and observations lead to the following theorem.

Theorem 2.17.Let G be a simple graph. G has a hamiltonian partition if and only
if G 6= K1,n ∪ tK1 (n ≥ 0, t ≥ 0), 2K2 ∪ tK1 (t ≥ 0).

Theorem 2.18.For every two positive integers a and b with 3 ≤ a < b − 1 there
exists a graph G with χ(G) = a and χh(G) = b.

Proof. Let r = b−a+1 ≥ 3. LetG = Ka∪rK2. Thenχ(G) = a. Consider the par-

tition π =
{{
u1, v

′
r

}
, {u2}, · · · , {ua, v1}, {v2, v

′
1}, {v3, v

′
2}, · · · , {vr, v

′
r−1}

}
where

V (Ka) = {u1, · · · , ua} andV (rK2) = {v1, v
′
1, v2, v

′
2, · · · , vr, v

′
r} wherevi is ad-

jacent withv
′
i, 1 ≤ i ≤ r. Clearly, π is a hamiltonian partition. Therefore,

χh(G) ≥ a + r − 1, χh(Ka) = a andχh(rK2) = r. Each partite set ofrK2 is

a doubleton set. Hence at mosta + r − 1 partite classes may exist inKa ∪ rK2

forming a hamiltonian cycle. Therefore,χh(Ka ∪ rK2) ≤ a + r − 1. Thus

χh(Ka ∪ rK2) = a+ r − 1 = b.

Remark 2.19.If 3 ≤ a < b − 1, there exists a graph G with ψ(G) = a and
χh(G) = b (The graph in the above theorem serves the purpose).

Definition 2.20.LetG be a graph for which the partition graph has a spanning path.
The maximum order of a partition graph of G which has a spanning path is called
the hamiltonian path partition of G and is denoted by χhp(G).

Theorem 2.21.Let G be a graph having hamiltonian partition. Then χh(G) ≤
χhp(G)

≤ χh(G) + 1.
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Proof. Let χh(G) = k andχhp(G) = l. Therefore,l ≥ k. supposel ≥ k + 2. Let

{V1, · · · , Vl} be a maximum hamiltonian path partition ofG. Suppose there exists

an edge betweenV1 andVl. Then there is a hamiltonian partition of cardinalityl.

Therefore, k =χh(G) ≥ l ≥ k + 2, a contradiction. Therefore, there exists no edge

betweenV1 andVl. Let V
′
1 = V1 ∪ Vl. Then{V ′

1 , V
′
2 , · · · , V

′

l−1} is a hamiltonian

partition. Therefore,k = χh(G) ≥ l − 1 ≥ k + 1, a contradiction. Therefore,l

≤ k + 1 and henceχh(G) ≤ χhp(G) ≤ χh(G) + 1.

Remark 2.22.(i) If G = P4,then χh(G) = 3, χhp(G) = 4.
(ii) If G = Kn, χh(G) = n = χhp(G).

Result 2.23.χh(G1 ∪G2) ≤ χh(G1)+χh(G2) ≤ χh(G1 ∪G2) + 2.

Proof. Let χh(G1 ∪ G2) = t. Let {V1, V2, · · · , Vt} be the maximum hamiltonian

partition ofG1 ∪G2. There aret edges in a hamiltonian cycle of the partition graph

formed byV1, V2, · · · , Vt. Of thet edges, letx be the number of edges inG1 and

y be the number of edges inG2. Therefore,x + y = t. Therefore,V (G1) can

be partitioned intox + 1 classes such that the partition graph of this partition has

a hamiltonian path. Likewise,V (G2) can be partitioned into y + 1 classes such

that the partition graph of this partition has a hamiltonian path. If there exists a

hamiltonian path partition inG1 of orders ≥ x+2, thenχh(G1∪G2) ≥ x+1+y =

t+ 1, a contradiction. A similar argument shows that there cannot be a hamiltonian

path partition inG2 of order≥ y+2. Therefore,χhp(G1) = x+1, χhp(G2) = y+1

and henceχh(G1) = x (or) x + 1, χh(G2) = y (or) y + 1. Therefore,χh(G1) +

χh(G2) = x+ y or x+ y + 1 or x+ y + 2. Thusχh(G1) + χh(G2) = t or t+ 1

or t+ 2.

Theorem 2.24.Let G1 and G2 be two vertex disjoint graphs with hamiltonian par-
titions. Suppose there exists a hamiltonian partition of maximum cardinality in G2

say
{
W1, · · · ,Wχh(G2)

}
satisfying the following:

(i) There exists two edges between Wi and Wi+1, 1 ≤ i ≤ χh (G2)− 1.

(ii) If x1y1 and x2y2 are the edges between Wi and Wi+1, then

(a) If y1 6= y2, then there exists an edge uv fromWi−1 toWi with u ∈ Wi−1,
v 6= x1, x2.



Hamiltonian partition coloring 33

(b) If y1 = y2 then there exists an edge uv between Wi+1 and Wi+2 such that
u ∈ Wi+1 and u 6= y1.

Then χh (G1 ∪G2) = χh (G1) + χh (G2).

Proof. Suppose the conditions in the theorem are satisfied. Let{V1, V2, · · · ,
Vχh(G1)} be a hamiltonian partition of maximum cardinality inG1. Let x1y1 and

x2y2 be two edges betweenWi andWi+1 ( x1 may be equal tox2 or y1 may be

equal toy2 ).

Case (i) Supposey1 6= y2. Add y1 with Vχh(G1). By (ii) (a) there exists an edgeuv

fromWi−1 toWi with v 6= x1, x2. Add v with V1. Then,

π =
{
V1, V2, · · · , Vχh(G1),Wi,Wi+1, · · · ,Wi−1

}
is a hamiltonian partition ofG1 ∪

G2.

Case (ii) Supposey1 = y2. Add x1 with Vχh(G1). Consider the partitionπ1 ={
V1, V2, · · · , Vχh(G1),Wi+1,Wi,Wi−1, · · · ,Wi+2

}
. By (ii) (b) there exists an edge

uv betweenWi+1 andWi+2 such thatu ∈ Wi+1 andu 6= y1. Add u with V1.

Thenπ1 is a hamiltonian partition inG1 ∪G2. Thus in either case,χh (G1 ∪G2) ≥
χh (G1) + χh (G2). Butχh (G1 ∪G2) ≤ χh (G1) + χh (G2).

Therefore,χh (G1 ∪G2) = χh (G1) + χh (G2).

Observation 2.25.χh(G1 ∪G2) ≥ χh(G1) + χh(G2)− 2.

For:

Let π1 = {S1, · · · , Sχh(G1)} be aχh-partition ofG1 andπ2 = {T1, · · · ,
Tχh(G2)} be aχh-partition ofG2. Thenπ3 = {S1 ∪ Tχh(G2), S2, · · · , Sχh(G1) ∪
T1, · · · , Tχh(G2)−1} is a hamiltonian partition ofG1∪G2. Therefore,χh(G1∪G2) ≥
χh(G1) + χh(G2)− 2.

Theorem 2.26.Let G1 and G2 be two vertex disjoint simple graphs with hamilto-
nian partitions. Suppose for any hamiltonian partition π1 = {V1, V2, · · · ,
Vχh(G1)} of G1 and π2 = {W1,W2, · · · ,Wχh(G2)} of G2 there exists exactly one
edge between Vi and Vi+1, 1 ≤ i ≤ χh(G1) and Wj and Wj+1, 1 ≤ j ≤ χh(G2).

(a) Suppose the edge joining V1 and V2 and the edge joining Vχh(G1) and V1 are
not adjacent or a similar condition holds in π2. Then χh(G1 ∪ G2) = χh(G1)

+ χh(G2) - 1.
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(b) Suppose the edge joining V1 and V2 and the edge joining Vχh(G1) and V1 are
adjacent and the similar conditions hold in π2 also. Then χh(G1 ∪ G2) =
χh(G1) + χh(G2) - 2.

Proof. (a) Letv1v2 be the edge betweenV1 andV2 (v1 ∈ V1, v2 ∈ V2). Let vtvs be

the edge betweenVχh(G1) andV1 wherevt ∈ Vχh(G1) andvs 6= v1. Then joinv1 with

Wχh(G2) andvs with W1 . Add v1 with Wχh(G2) resulting inW
′

χh(G2).

Considerπ3 =
{
W1,W2, · · · ,W

′

χh(G2), V2, · · · , Vχh(G1)

}
. π3 is a hamiltonian par-

tition ofG1∪G2. Therefore,χh(G1∪G2) ≥ χh(G1)+χh(G2) - 1. By the condition

in (a) of the theorem,χh(G1 ∪G2) < χh(G1) + χh(G2). Therefore,χh(G1 ∪G2) =

χh(G1) + χh(G2) - 1.

(b) Let v1v2 be the edge betweenV1 andV2 (v1 ∈ V1, v2 ∈ V2). By the con-

dition in (b), the edge fromVχh(G1) to V1 is incident withv1. Add every vertex of

Vχh(G1) with W1 resulting inW
′
1. Thenπ4 = {W ′

1, · · · ,Wχh(G2), V2, V3, · · · ,
Vχh(G1)−1} is a hamiltonian partition ofG1 ∪ G2. Therefore,χh(G1 ∪ G2) ≥
χh(G1)+χh(G2) - 2. By the condition in (b) of the theorem ,χh(G1∪G2) < χh(G1)

+ χh(G2) - 1.

Therefore,χh(G1 ∪G2) = χh(G1) + χh(G2) - 2.

Theorem 2.27.Let G be a graph with hamiltonian partition. Let π = {S1, · · · , Sk}
be a χh-partition of G. Let the edge from S1 to S2 used in the hamiltonian cycle
be u1u2. Attach pendent vertices uk+1, uk+2 at u1, u2 respectively. Let H be the
resulting graph. Then χh(H) = χh(G) + 1.

Proof. Let π1 = {S1, S
′
1, S2, · · · , Sk} whereS

′
1 = {uk+1, uk+2}. Thenπ1 is hamil-

tonian partition ofH. Therefore,χh(H) ≥ χh(G)+ 1. Supposeχh(H) ≥ χh(G)+

2. Let π2 = {T1, · · · , Tl} be aχh-partition ofH. Thenl ≥ χh(G)+ 2. Suppose

uk+1 anduk+2 belong to different sets ofπ2. Sinceuk+1 anduk+2 have degree one,

none of them can be used in the hamiltonian cycle. Hence the vertices used to form

the hamiltonian cycle will be fromG. Therefore,χh(G) ≥ l ≥ χh(G) + 2, a con-

tradiction. If uk+1 anduk+2 are in the same set ofπ2 and if both are used in the

hamiltonian cycle, thenχh(H) = χh(G) + 1.

Theorem 2.28.Let |V (G1)| = n, |V (G2)| = m and let n ≥ m. Then χh(G1 +

G2) = 2 |V (G2)| + t − 1 where t is the maximum of hamiltonian path partition of
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subgraphs of G1 of order n−m+ 1.

Proof. Let V (G1) = {u1, · · · , un} andV (G2) = {v1, · · · , vm}. Letπ = {S1, S2,

· · · , S2m} whereS1 = {u1}, S2 = {v1}, · · · , S2m = {vm}. Thenπ is a hamil-

tonian partition ofG1 + G2. Let t be the maximum of hamiltonian path parti-

tion of subgraphs ofG1 of ordernn − m + 1. Let H be such a subgraph and let

V (H) = {x1, x2, · · · , xn−m+1}. Letπ1 = {T1, T2, · · · , Tt} be aχhp-partition ofH.

Let V (G1)− V (H) = {y1, y2, · · · , ym−1}.

Let π2 = {T1, T2, · · · , Tt, {v1}, {y1}, · · · , {vm−1}, · · · , {vm}}. Thenπ2 is a hamil-

tonian partition ofG1 + G2. |π2| = t + 2m − 1 = 2 |V (G2)| + t − 1. Therefore,

χh(G1 + G2) ≥ 2 |V (G2)| + t − 1. Let π3 = {W1,W2, · · · ,Ws} be aχh - par-

tition of G1 + G2. Then|π3| ≥ 2m. Further the sets inπ3 which are not single-

ton must form a hamiltonian path. Suppose there are2m singleton sets inπ3 and

the remaining sets are without loss of generalityW1,W2, · · · ,Ws−2m. Therefore,

π3 = {W1,W2, · · · ,Ws−2m, {v1}, {y1}, · · · , {vm}, {ym}} where{y1, · · · , ym} =

V (G1) − (W1 ∪W2 · · · ∪Ws−2m). Then{ym}W1W2 · · · ,Ws−2m is a hamiltonian

path in a subgraph ofG1 of orders−2m+1. s−2m+1 = χh(G1 +G2)−2m+1.

But s−2m+1 ≤ t. Therefore,χh(G1 +G2)−2m+1 ≤ t. Henceχh(G1 +G2) ≤
2m+ t− 1. Thusχh(G1 +G2) = 2m+ t− 1 = 2 |V (G2)|+ t− 1.

Observation 2.29.Let π1 = {S1, S2, · · · , Sk} be a hamiltonian partition of G and
let there exist two edges e1 = u1v1 and e2 = u2v2 between Si−1 and Si ( for some
i, 2 ≤ i ≤ k) such that v1 6= v2 ( u1 may be equal to u2 ) and there exists an edge
v1y or v2y from Si to Si+1. Let there exists an edge w1w2 from Si−2 toSi−1 with
w2 6= u1, u2. Then there exists a hamiltonian partition π2 of G such that |π2| > |π1|.

Proof. Let T1 = {u1, u2}. Let π2 = {T1, Si, Si+1, · · · , (Si−1 − {u1, u2}) ∪ {vα}}.

whereα =

1 if T2 = {v2}

2 if T2 = {v1}
Thenπ2 is a hamiltonian partition ofG (Since there

exists an edge fromSi−2 to (Si−1 − {u1, u2}) ∪ {vα}) and|π2| = |π1|+ 1.
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