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ABSTRACT

Various analytical methods have been proposed for the transient analysis of a queueing

system in the scalar domain. In this paper, a vector domain based transient analysis is

proposed for the hysteresis queueing system with internal thresholds for the efficient

and numerically stable analysis. In this system arrival rate of customer is controlled

through the internal thresholds and the system is analyzed as a quasi-birth and death

process through matrix geometric method with the combination of vector form Runge-

Kutta numerical procedure which utilizes the special matrices. An arrival and service

process of the system follows a Markovian distribution. We analyze the mean number

of customers in the system when the system is in transient state against varying time

for a Markovian distribution. The results show that the effect of oscillation/hysteresis

depends on the difference between the two internal threshold values.
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1. INTRODUCTION

The queueing theory is the efficient way to analyze
any analog/digital communication system. The
performance of any analog / digital

communication system can be evaluated in either
continuous or discrete domain by modeling the system
through queueing system [1]. The analysis of continuous
time queueing system in which arrival rate of customers
have major impact to control the overloading or congestion
in the system can be efficiently done in vector domain as
compared to the scalar domain analysis [2].

Majorly the analysis of continuous time queueing system
is carried out in scalar domain by obtaining the Kolmogorov
differential equations for all possible system states [3].
The manipulation of Kolmogorov differential equations
to obtain the performance measures is very critical as the
system states increases and some time it becomes
impossible to find the close form solution. To avoid or
overcome this difficulty, a vector domain analysis is
efficient to solve such systems in which the system states
grows towards infinity [4]. A vector domain based
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numerical method called matrix geometric method can be
efficiently used either system states are finite or infinite
[5-6].

The steady state analysis needs that the system must be
stable or run for a long period. But it is not always
possible that the system can run for a longer period.
Accordingly, a transient analysis is most important to
analyze the system behavior as the time changes [7].
The transient analysis of such system in scalar domain
is more complicated because it involves the differential
equations and the scalar form of Runge-Kutta numerical
procedure. The matrix geometric method is efficient
method to analyze the system behavior in transient mode
by developing the Runge-Kutta numerical procedure in
vector form [8]. In this method, a whole system is
converted into a generator matrix then the system is
partitioned into boundary and repetition portions to
obtain the sub-matrices of the system [9]. These sub-
matrices are the input to the Runge-Kutta numerical
procedure for the transient analysis. This method is much
more efficient and requires less computation as compare
to the scalar method [10].

Tadi, L., et. al. [11] studied the performance of hysteretic
system in which an r-quorum queueing system with
random server capacity under N-policy discipline was
considered in scalar domain. In [12] a non-preemptive delay
priority queueing system with a hysteresis mechanism for
priority control in ATM networks was analyzed. In [13] a
threshold-based multi-server queuing model with
hysteresis is analyzed to evaluate the behavior of the voice
on demand system in the scalar form.

The hysteresis queueing model with two internal
thresholds and controlled arrival rate [14] have been solved
as a quasi birth and death process using matrix geometric
method along with vector form Runge-Kutta numerical
procedure. This system has more than two boundaries
and repeating structures in a structured Markov chain
and system is analyzed for their transient behavior.

The rest of the paper is organized as follows. Markovian
distribution, matrix geometric method and hysteresis
queueing model are discussed in Sections 2. In Section 3
matrix geometric analysis of hysteresis model with internal
thresholds and Markovian distribution is discussed. The
Sections 4 and 5 present the results of transient analysis
and conclusion respectively.

2. MODELS AND DEFINATIONS

In this section, we first describe the Markovian distribution
followed by matrix geometric method. Next, we present
hysteresis queueing model.

2.1 Markovian Distribution

A Markovian process or probability distribution is defined
as the probability distribution of the future states only
depends upon the present states not on the past states.
The Markovian distribution exhibits the memoryless
property.

2.2 Matrix Geometric Method

MGM (Matrix Geometric Method) is the analytical method
to solve the structured Markov chain in vector form. It
utilizes the special feature of the structured Markov chain
which is the repetition of the states [14]. This method
consists of different number of steps to solve the structured
Markov chain. These steps are:

(i) Develop a queueing model.

(ii) Construct a structured Markov chain.

(iii) Develop a generator matrix in lexicographical
order.

(iv) Partitioning the structured Markov chain in
boundary and repetition portions.

(v) Obtaining sub-matrices of boundary and
repetition portions.

(vi) Compute the rate matrix R.
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vii) Compute the initial probability vectors π0 and π1.

(viii) Compute the performance measures through rate
matrix and initial probability vectors.

2.3 Hysteresis Queueing Model with
Internal Thresholds and Markovian
Distribution

The hysteresis queueing model with two internal
thresholds and Markovian distribution is shown in Fig. 1.
This system handles the finite capacity of customers with
queue capacity S. The customers arrive in the system
with two different arrival rates which follows the
Markovian distribution. These arrival rates are
categorized as normal λn and reduced λr rates. The arrival
rates of the system are controlled through the two internal
thresholds (Sgo, Sstop)of the system. The customers are
served through one server in which service process is
Markovian distribution with rate μ.

Initially the customers arrive in the queue with the normal
rate λn  up to internal threshold Sstop. Once the customers
in the queue reached at second internal threshold Sstop the
arrival rate of customers will be switched from normal rate
λn  to the reduced rate λr  upto the maximum capacity of
the queue S. The arrival rate will be switched back from
reduced rate λr to the normal rate λn, when the number of
customers in the queue will reached to the first internal
threshold Sgo. The arrival rate is controlled through the
two internal thresholds to avoid the system full. The
customer service rate follows a Markovian distribution
with rate μ.

3. MATRIX GEOMETRIC ANALYSIS
OF HYSTERESIS QUEUEING
MODEL WITH INTERNAL
THRESHOLDS AND MARKOVIAN
DISTRIBUTION

The structured Markov chain of the hysteresis queueing
model with two internal thresholds is constructed as shown
in Fig. 2. The structured Markov chain of the system
becomes a quasi-birth death process and system state
space of the system is represented by the (number of
customers in the system, i.e. arrival rate). When the arrival
rate is normal λn, then the system states are represented as
(0/n), (1/n), …, (Sstop-1/n) up to second internal threshold.
When the second threshold reached, the system states
becomes (Sstop/r), (Sstop+1/r), … (S/r). The system states
(Sstop/r), (Sstop-1/r), … (Sgo/r) represented the condition when
system switched the arrival rate from reduced to normal
by reaching towards the first internal threshold. The
system states (Sstop-1/r) and (Sstop/r) represents the situation
when normal arrival rate switched to the reduced rate and
similarly (Sgo+1/r) and (Sgo/n) system states represents the
switching between reduced and normal arrival rate.  The
Fig. 2 shows the structured Markov chain for the maximum
capacity 12, first and second internal thresholds are 4 and
9 respectively.

The finitesimal generator matrix from the structured Markov
chain is represented by Equation (1) in which system state
space is arranged in lexicographical order:

FIG. 1. HYSTERESIS QUEUEING  MODEL WITH INTERNAL
THRESHOLDS AND MARKOVIAN DISTRIBUTION

0 1 2 3 5 n 5r 6 n 6r 7 n 7r 8 n 8r 9 1 0 1 1 1 2

0 −λn λn 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 μ a λn 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 μ a λn 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 μ a λn 0 0 0 0 0 0 0 0 0 0 0
4 0 0 μ a λn 0 0 0 0 0 0 0 0 0 0 0

5 n 0 0 0 0 μ a 0 λn 0 0 0 0 0 0 0 0
5r 0 0 0 0 μ 0 b λr 0 0 0 0 0 0 0 0
6 n 0 0 0 0 0 μ 0 a λr 0 0 0 0 0 0 0
6r 0 0 0 0 0 0 μ 0 b 0 λn 0 0 0 0 0
7 n 0 0 0 0 0 0 0 μ 0 a 0 λn 0 0 0 0
7r 0 0 0 0 0 0 0 0 μ 0 b 0 λr 0 0 0
8 n 0 0 0 0 0 0 0 0 0 μ 0 b λn 0 0 0
8r 0 0 0 0 0 0 0 0 0 0 μ 0 b λr 0 0
9 0 0 0 0 0 0 0 0 0 0 0 μ b λr 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 μ b λr 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 μ b λr
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 μ -μ

Q= (1)

where α = - (λn+ μ) b = - (λr+μ).
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FIG. 2. STRUCTURED MARKOV CHAIN: Sgo=4, Sstop=9 AND S=12

FIG. 3. SIMPLIFIED STRUCTURED MARKOV CHAIN

To simplify the analysis of the model, we will rearrange

the structured Markov chain into three subsystems

according to the arrival rate of the customers as shown

in Fig. 3. The first subsystem structured Markov chain

is consider from when system is idle to the first internal

threshold Sgo, where only normal arrival rate λn is

allowed. Where as the structured Markov chain of

second subsystem is considered between two internal

thresholds Sgo and Sstop, where  customers are permitted

with both arrival rates (λn, λr) depends on the thresholds.

Finally the third subsystem is consider from the second

internal threshold Sstop to the maximum capacity of

queue S, where customers are only allowed with

reduced arrival rate λr.

According to the simplification of the structured Markov

chain, the finitesimal generator matrix is partitioned into

boundary and repeating system states of each subsystem

to obtain the sub- matrices of each subsystem

(Equation(2)).

The sub-matrices of first subsystem are shown in Equation
(3), where A0, A1, A2 are sub-matrices of repeating portion.
B0, B1, B2 are initial boundary sub-matrices and B3 is the
final boundary sub-matrix.

B0 =[-λn], B1=A0=-[λn],A1=[-(λn+μ)], B2=A2=[μ] (3)

The sub-matrices of second subsystem are shown in
Equation (4). The initial and final
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boundary sub-matrices are represented by B3, B4, B5  and
B6. Where 1,0 AA and 2A are sub-matrices of repetition
portion. The boundary and repeating sub-matrices of third
subsystem are shown in Equation (5).

The transient analysis of the hysteresis model with internal

thresholds having Markovian distribution is shown in Fig.

4 for various system sizes, Sgo and Sstop thresholds.

Fig. 4 shows the mean number of customers in the system

when the system is in transient state against varying the

time for the Markovian distribution. It is observed that the

system length is zero up to time t = 10 and then there is a

sudden increase in the system length. Initially mean system

length increases to the threshold Sstop and then it falls to

reduce the mean system length towards the Sgo threshold.

Here, it is clearly seen that there is again increase in the

mean system length before reaching to the Sgo threshold.

The mean system length oscillates between the Sgo and

Sstop thresholds and system will not reach its maximum

capacity.

It is also observed that the effect of oscillation depends

on the difference between the Sgo and Sstop thresholds. The

graph clearly shows that the smaller difference between

the Sgo and Sstop thresholds have smaller oscillation and

the system will be stabilized soon and the system with

larger difference between the Sgo and Ssto thresholds have

more oscillations.

The resulting structure of block finitesimal generator matrix
(Equation (6)) is same as the structure of finite QBD
process.

4. ANALYTICAL RESULTS

An analytical program of matrix geometric method and
Runge-kutta procedure is written in visual C++ which
utilizes the sub-matrices which are obtained through matrix
geometric method.

FIG. 4. MEAN NUMBER IN THE SYSTEM: TRANSIENT
ANALYSIS WITH MARKOVIAN DISTRIBUTION λn=6, λr=01.,

μ=1, cv=,6, (SYSTEM CAPACITY, Sgo, Sstop)

Where the repeating and boundary portions sub-matrices
are 210 ,, AAA

)))
, B6, B7, B8 and B9. By substituting the sub-

matrices in the finitesimal generator matrix then the
finitesimal generator matrix becomes block finitesimal
generator matrix as shown in Equation (6).
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5. CONCLUSION

In this paper, we used MGM along with vector form Runge-
Kutta numerical procedure to evaluate the transient
behavior of the hysteresis queueing model with two
internal thresholds. MGM utilizes the special features of
the structured Markov chain to obtain the sub-matrices
for the Runge-Kutta numerical procedure for the transient
analysis.

A continuous time queueing analysis is used in contrast
with MGM and Runge-Kutta procedure to evaluate the
controlled arrival rate hysteresis queueing model with
internal thresholds for the Markovian arrival and service
processes. The results of mean number in the system by
varying the values of the internal thresholds as well as
capacity of queue in a transient state are presented.  In
terms of transient analysis of   hysteresis queueing model
with internal thresholds, MGM with Runge-Kutta vector
form procedure can be used more effectively and quickly
in solving the large systems which has more than two
boundaries in structured Markov chain and requires
solution of Kolmogrove differential equations and needs
enormous numerical methods
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