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ABSTRACT

Variousanalytical methodshavebeen proposed for thetransient analysisof aqueueing
systemin thescalar domain. In thispaper, avector domain based transient analysisis
proposed for thehyster esisqueueing system with inter nal thresholdsfor theefficient
and numerically stableanalysis. In thissystem arrival rate of customer iscontrolled
through theinter nal thresholdsand thesystem isanalyzed asa quasi-birth and death
processthrough matrix geometric method with thecombination of vector form Runge-
Kuttanumerical procedurewhich utilizesthespecial matrices. Anarrival and service
processof thesystem followsa M arkovian distribution. Weanalyzethemean number
of customersin thesystem when thesystem isin transient stateagainst varyingtime
for aMarkovian distribution. Theresultsshow that theeffect of oscillation/hysteresis

Distribution.

1 INTRODUCTION

he queueing theory isthe efficient way to analyze

any analog/digital communication system. The

performance of any analog / digital
communication system can be evaluated in either
continuous or discrete domain by modeling the system
through queueing system [1]. The analysis of continuous
time queueing system in which arrival rate of customers
have major impact to control the overloading or congestion
in the system can be efficiently done in vector domain as
compared to the scalar domain analysis|[2].

dependson thediffer encebetween thetwointernal threshold values.
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Majorly the analysis of continuous time queueing system
iscarried out in scalar domain by obtaining the K olmogorov
differential equations for all possible system states [3].
The manipulation of Kolmogorov differential equations
to obtain the performance measuresisvery critical asthe
system states increases and some time it becomes
impossible to find the close form solution. To avoid or
overcome this difficulty, a vector domain analysis is
efficient to solve such systemsin which the system states
grows towards infinity [4]. A vector domain based
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numerica method called matrix geometric method can be
efficiently used either system states are finite or infinite
[5-6].

The steady state analysis needs that the system must be
stable or run for a long period. But it is not always
possible that the system can run for a longer period.
Accordingly, a transient analysis is most important to
analyze the system behavior as the time changes [7].
The transient analysis of such system in scalar domain
ismore complicated because it involves the differential
equations and the scalar form of Runge-Kuttanumerical
procedure. The matrix geometric method is efficient
method to analyze the system behavior in transient mode
by developing the Runge-Kutta numerical procedurein
vector form [8]. In this method, a whole system is
converted into a generator matrix then the system is
partitioned into boundary and repetition portions to
obtain the sub-matrices of the system [9]. These sub-
matrices are the input to the Runge-Kutta numerical
procedure for thetransient analysis. Thismethod ismuch
more efficient and requires|ess computation as compare
to the scalar method [10].

Tedi, L., et. a. [11] studied the performance of hysteretic
system in which an r-quorum queueing system with
random server capacity under N-policy discipline was
considered inscalar domain. In[12] anon-preemptivedelay
priority queueing system with ahysteresis mechanism for
priority control in ATM networkswas analyzed. In[13] a
threshold-based multi-server queuing model with
hysteresisisanalyzed to evaluate the behavior of thevoice
on demand system in the scalar form.

The hysteresis queueing model with two internal
thresholdsand controlled arrival rate[14] have been solved
asaquasi birth and death process using matrix geometric
method along with vector form Runge-Kutta numerical
procedure. This system has more than two boundaries
and repeating structures in a structured Markov chain
and system isanalyzed for their transient behavior.

Therest of the paper is organized as follows. Markovian
distribution, matrix geometric method and hysteresis
gueueing model are discussed in Sections 2. In Section 3
matrix geometric analysisof hysteresismodel withinternal
thresholds and Markovian distribution is discussed. The
Sections 4 and 5 present the results of transient analysis
and conclusion respectively.

2. MODELSAND DEFINATIONS

Inthis section, wefirst describethe Markovian distribution
followed by matrix geometric method. Next, we present
hysteresis queueing model.

2.1 Markovian Distribution

A Markovian process or probability distributionisdefined
as the probability distribution of the future states only
depends upon the present states not on the past states.
The Markovian distribution exhibits the memoryless

property.
2.2 M atrix Geometric M ethod

MGM (Matrix Geometric Method) isthe analytical method
to solve the structured Markov chain in vector form. It
utilizesthe specia feature of the structured Markov chain
which is the repetition of the states [14]. This method
consistsof different number of stepsto solvethestructured
Markov chain. These steps are:

0] Develop aqueueing model.
(i) Construct a structured Markov chain.

(iii) Develop a generator matrix in lexicographical
order.

(iv) Partitioning the structured Markov chain in
boundary and repetition portions.

(V) Obtaining sub-matrices of boundary and
repetition portions.

(i) Computetherate matrix R.

658 MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING & TECHNOLOGY, VOLUME 30, NO. 4, OCTOBER, 2011 [ISSN 0254-7821]




TRANSIENT ANALY SIS OF HYSTERESIS QUEUEING MODEL USING MATRIX GEOMETRIC METHOD

vii) Computetheinitia probability vectorsr,and .

(viii) Computethe performance measuresthrough rate
matrix andinitial probability vectors.

2.3 Hysteresis Queueing Model with
Internal Thresholds and Markovian
Distribution

The hysteresis queueing model with two internal
thresholdsand Markovian distributionisshowninFig. 1.
Thissystem handlesthefinite capacity of customerswith
queue capacity S. The customers arrive in the system
with two different arrival rates which follows the
Markovian distribution. These arrival rates are
categorized asnormal A, and reduced 2, rates. Thearrival
rates of the system are controlled through the two internal
thresholds (Sgo, S p)of the system. The customers are
served through one server in which service process is
Markovian distribution with rate .

Initially the customersarrivein the queue with the normal
rate . uptointernal threshold S, o Once the customers
inthe queue reached at second internal threshold S sop the
arrival rate of customerswill be switched from normal rate
A, tothereduced rate A, upto the maximum capacity of
the queue S. The arrival rate will be switched back from
reduced rate A, tothenormal rate A, when the number of
customers in the queue will reached to the first internal
threshold S, The arrival rate is controlled through the
two internal thresholds to avoid the system full. The
customer service rate follows a Markovian distribution
withrate .

by
= [IINICO)—

. T S stop Sm
D E—

FIG. 1. HYSTERES'S QUEUEING MODEL WITH INTERNAL
THRESHOLDS AND MARKOVIAN DISTRIBUTION

3. MATRIX GEOMETRICANALYSIS
OF HYSTERESIS QUEUEING
MODEL WITH INTERNAL
THRESHOLDSAND MARKOVIAN
DISTRIBUTION

The structured Markov chain of the hysteresis queueing
model with two internal thresholdsisconstructed asshown
in Fig. 2. The structured Markov chain of the system
becomes a quasi-hirth death process and system state
space of the system is represented by the (number of
customersinthesystem, i.e. arrival rate). Whenthearrival
rateisnormal 2, then the system states are represented as
(O/ny, (Uny, ..., (S Smp—]]n) up to second internal threshold.
When the second threshold reached, the system states
becomes (S, /1), (S,,,+1r), ... (Sr). The system states

op op

(S Swp/r), (S Smp—]/r), e (Sgolr) represented the condition when
system switched the arrival rate from reduced to normal
by reaching towards the first internal threshold. The
systemstates (S, p—l/r) and (S, p/r) representsthesituation
when normal arrival rate switched to the reduced rate and
similarly (Sgo+1/r) and (Sgoln) system statesrepresentsthe
switching between reduced and normal arrival rate. The
Fig. 2 showsthe structured Markov chain for the maximum
capacity 12, first and second internal thresholdsare 4 and

9respectively.

Thefinitesmal generator matrix fromthestructured Markov
chainisrepresented by Equation (1) in which system state
spaceisarranged in lexicographical order:
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whereo =- (A + ) b=- (A +p).
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To simplify the analysis of the model, wewill rearrange
the structured Markov chain into three subsystems
according to the arrival rate of the customers as shown
in Fig. 3. Thefirst subsystem structured Markov chain
isconsider fromwhen systemisidleto thefirst internal
threshold Sy where only normal arrival rate A is
allowed. Where as the structured Markov chain of
second subsystem is considered between two internal
thresholds Sy and S op’ where customers are permitted
with both arrival rates (2 , A,) depends on the thresholds.
Finally the third subsystem is consider from the second
internal threshold Sstop to the maximum capacity of
queue S, where customers are only allowed with
reduced arrival rate .

According to the simplification of the structured Markov
chain, the finitesimal generator matrix is partitioned into
boundary and repeating system states of each subsystem
to obtain the sub- matrices of each subsystem
(Equation(2)).

- A’n n 0 0 0 0o 0 o 0 0 0 0 0 0 (L) 0
M a /I“ 0 0 0o 0 o 0 0 0 0 0 0 0o 0 0
0 uoa A n 0 0o 0 o 0 0 0 0 0 0 (L) 0
0 0 u a A n 0 0 o 0 0 0 0 0 0 0o 0 0
0 0 0 u a l" 0 0 0 0 0 0 0 0 0o 0 0
0 0 0 0 u a 0 /I“ 0 0 0 0 0 0 (L) 0
0 0 0 0 u 0 b 0 4 » 0 0 0 0 0 0o 0 0
0 0 0 0 0 x4 0 a 0 ln 0 0 0 0 (L) 0
Q= 0 0 0 0 0 0 u 0 b 0 A.r 0 0 0 (L) 0
00 0 0 0 0 0 x4 0 a 0 A4 0 0 0 0 0 @
00 0 0 0 0 0 0 x4 0 b 0 A4 0 0 0 0
00 0 0 0 0 0 0 0 4 0 a 0 A4 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 b 2 0 0 0
00 0 0 0 0 0 0 0 0 0 0 g b 4 0 0
00 0 0 0 0 0 0 0 0 0 0 0 x4 b A4 0
00 0 0 0 0 0 0 0 0 0 0 0 0 g b A
00 0 0 0 0 0 0 0 0 0 0 0 0 0 u —pu

The sub-matricesof first subsystem are shown in Equation
(3), whereA , A, A, are sub-matrices of repeating portion.
B, B,, B, areinitial boundary sub-matrices and B, isthe
final boundary sub-matrix.

B, =[-A], Bi=AS A LAS-( )] B=AS W (3)

The sub-matrices of second subsystem are shown in
Equation (4). Theinitial and final

First subsystem

Second subsystem

FIG. 3. SMPLIFIED STRUCTURED MARKQOV CHAIN

Third subsystem
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boundary sub-matrices are represented by B,, B,, B, and
B,. Where Ag, Ayand Agare sub-matrices of repetition
portion. The boundary and repeating sub-matrices of third
subsystem are shown in Equation (5).

{05 (o

) ) ) )
=)o =G )y = ()

Where the repeating and boundary portions sub-matrices
are A, A, A, B, B, B,and B,. By substituting the sub-
matrices in the finitesimal generator matrix then the
finitesimal generator matrix becomes block finitesimal
generator matrix asshownin Equation (6).

0 1 2 3 4 5 6 7 8 9 10 11 12
0 B, B, 0 0 0 0 0 0 0 0 0 0 0
1 B, A,A, 0 0 0 0 0 0 0 0 0 0
2 0 A, ALA 0 0 0 0 0 0 0 0 o0
3 0 0 A, A, A, 0 0 0O 0 0 0 0 0
4 0 0 0 A, BB, 06 0 0 0 0 0 0
s 0 0 0 B, A A, 0 0O 0 0 0 0

Q= 6 0 0 0 0 A, A, A, 0 0 0 0 0 0 6)

7 0 0 0 0 0 A, A A 0O 0 0 0 0
8 0 0 0 0 0 A, B, B, 0 0 0 0 0
9 6.0 0 0 0 0 0 0 B A A 0 0
10 0.0 0 0 0 0 0 0 0 A, A A 0}
1 00 0 0 0 0 0 0 0 0 A A A
12 60 0 0 0 0 0 0 0 0 0 A B,

Theresulting structure of block finitesimal generator matrix
(Equation (6)) is same as the structure of finite QBD
process.

4. ANALYTICAL RESULTS

An analytical program of matrix geometric method and
Runge-kutta procedure is written in visual C** which
utilizesthe sub-matriceswhich are obtained through matrix
geometric method.

Thetransient analysis of the hysteresismodel withinternal
thresholds having Markovian distributionisshownin Fig.

4 for various system sizes, S, and S op thresholds.

Fig. 4 showsthe mean number of customersin the system
when the system isin transient state against varying the
timefor the Markovian distribution. It isobserved that the
system length is zero up to timet = 10 and then thereisa
suddenincreaseinthe systemlength. Initially mean system
length increases to the threshold S sop and then it fallsto
reduce the mean system length towards the S, threshold.
Here, it is clearly seen that thereis again increase in the
mean system length before reaching to the Sgo threshold.
The mean system length oscillates between the Sgo and
SStop thresholds and system will not reach its maximum

capacity.

It is also observed that the effect of oscillation depends
on the difference between the Sgo and S sop thresholds. The
graph clearly shows that the smaller difference between
the S, and S| . thresholds have smaller oscillation and
the system will be stabilized soon and the system with
larger difference between the S, and S, thresholds have
more oscillations.
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FIG 4. MEAN NUMBER IN THE SYSTEM: TRANSIENT
ANALYS'S WITH MARKOVIAN DISTRIBUTION 2 =6, 2,=0L.,
p=1, c=,6, (SYSTEM CAPACITY, S, S,.)
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5. CONCLUSION

Inthis paper, weused MGM a ong with vector form Runge-
Kutta numerical procedure to evaluate the transient
behavior of the hysteresis queueing model with two
internal thresholds. MGM utilizes the special features of
the structured Markov chain to obtain the sub-matrices
for the Runge-Kuttanumerical procedurefor thetransient
analysis.

A continuous time queueing analysis is used in contrast
with MGM and Runge-Kutta procedure to evaluate the
controlled arrival rate hysteresis queueing model with
internal thresholds for the Markovian arrival and service
processes. The results of mean number in the system by
varying the values of the internal thresholds as well as
capacity of queue in atransient state are presented. In
termsof transient analysisof hysteresis queueing model
with internal thresholds, MGM with Runge-K utta vector
form procedure can be used more effectively and quickly
in solving the large systems which has more than two
boundaries in structured Markov chain and requires
solution of Kolmogrove differential equations and needs
enormous numerical methods
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