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ABSTRACT

The k-εεεεε turbulence model is adopted in this study to simulate the impact of street
canyon AR (Aspect Ratios) on heating within street canyon. The two-dimensional model
was validated for RANS (Reynolds Averaged Navier Stokes) and energy transport
equations. The validation process confirms that the results of the model for air-
temperature and wind speed could be trusted. The application of the said model is
carried out to ideal street canyons of ARs (ratio of building-height-to-street-width)
from 0.4 to 2 with the same boundary conditions. Notably, street canyon aspect ratio
was calculated by varying the street width while keeping the building height constant.
Results show that the weighted-average-air-temperature within AR 0.4 was around
0.8% (i.e. 2.4K) higher than that within AR 2.0. Conversely, there was strong correlation
(i.e., R2>0.9) between air temperature within the street canyon and street canyon AR.
Results demonstrate stronger influence of vertical velocity on heating within street
canyon. Evidently, increased vertical velocity decreased the temperatures. Conversely,
temperatures were higher along the leeward side of the canyon in lower ARs.

Key Words: Vertical Velocity, Surface Temperature, Horizontal Velocity, Model
Validation, Turbulence.
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1. INTRODUCTION

It is widely accepted that heating in urban areas causes
serious environmental problems, thermal discomfort
and increased cooling energy demand [1-4]. However,

heating within street canyon is significantly affected by
the street canyon design and weather conditions [5-10].
Although there has been a huge work on studying urban
heating effects [1, 11-19], the work carried out for
understanding the effects of man-made and environmental
impacts on transport and dispersion of heating within street
canyon is insufficient [20-26]. The insufficiency of the
work is due to the fact that few studies, as mentioned

before, have studied the impact of man-made and
environmental factors. However, this kind of study could
particularly be important as it is reported that efficient
control over thermal comfort with proper cooling method
could save around 80% energy in buildings [10]. Moreover,
few studies have adopted CFD (Computational Fluid
Dynamics) techniques for investigating the impact of
urban design and environmental parameters on urban
heating [6-9]. The aforementioned studies which have used
CFD techniques have mostly adopted k-ε turbulence
model. Recently, Memon, R.A., et. al. [6] have carried out
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similar study by simulating the effects of street canyon
AR and ambient wind speed on urban heating. However,
that study was focused on the effects of taller buildings
as the AR was calculated by varying the height of the
building with a constant street canyon width. On the other
hand, this study compares the impacts of wider streets as
the street canyon width is varied. Subsequently, this study
is carried out using RNG (Re-Normalization Group Theory)
version of k-ε turbulence model adopting enhanced wall
treatment [27]. The validation shows that the RNG version
of k-ε model would give promising results on the
temperature and wind profiles within the street canyon
[28-29]. This study simulates different building ARs (i.e.
from 0.4 to 2.0). The results for different AR were compared
to evaluate the impact of wider streets. The results of this
study could particularly be interesting to town planners,
environmentalists and HVAC Engineers [30-31].

2. NUMERICAL MODEL
The governing equations for the mathematical model, used
in this study, comprise of Equations (1-3). The Equations
(1-3) are based on the principles of conservation of mass
(Equation (1)), momentum (Equations (2)) and energy
(Equation (3)). These model governing equations include
surface pressure and shear forces in the equation of
conservation of momentum (Equations (2)) which requires
additional equations for k (kinetic energy) and ε
(dissipation rate) to address closure problem [27].
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The closure problem is addressed by using turbulent
kinetic energy (k) and turbulent dissipation rate (ε)
equations based on RNG theory. All equations are solved
with second order discretization using finite volume method
and adopted in CFD code Fluent 6.2.1 [27]. No slip
boundary condition is defined at ground and on the
building surfaces. The top of the model is defined with
symmetry boundary condition while the wall and ground
surfaces were employed with fixed temperatures (Fig. 1).
The variation of air density due to temperature has been
mulled using Boussinesq approximation that incorporates
the density variation in the momentum equation. The near
wall velocity and temperature gradients are solved using
enhanced wall treatment. The enhanced wall treatment
needs higher-resolution but can resolve the near-wall
temperature and velocity gradients efficiently. The mesh
adjacent to the wall is refined for solving the near wall
properties. Further detail of the model, and enhanced wall
treatment can be found in other studies [6,29]. The physical
model consists of seven street canyons with about 400,000
structured elements. The mesh for the model is generated
for AR1 and scaled for AR 0.4 to 2.0 in Fluent code while
the depth of free stream flow equals to thrice the height of
the street canyon (Fig. 1).

FIG. 1. MESHED PART OF COMPUTATIONAL DOMAIN
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3. VALIDATION OF MODEL

The potential temperature and horizontal velocity obtained
from the model of AR 1.0 are compared with the results
obtained from a wind tunnel experiment [28] for AR1. The
comparison of temperature and velocity profiles obtained
for validation is shown in Fig. 2. The portrayed graphs
show that the results obtained from this model give
reasonable accuracy as compared to those obtained from
the wind tunnel. The deviations in the model are evident
in particular at the middle (Z/H ~ 0.4 to 0.8) and above
street canyon (Z/H>1.0) in the case of velocity profile
(Fig. 2). On the other hand, in the case of temperature, the
deviations near roof (Z/H~ 0.8 to 1.0) are high. However,
as the model results for temperature and velocity profiles
have only been used within the street canyon the results
would be acceptable for evaluation of this study. The
differences in the trends obtained from this model and
that from wind tunnel experiment might have been due to
the differences in simulation conditions and experimental
set-up. Further detail of the validation and the specific
differences in the present model and wind tunnel
experiment can be referred in [6,29].

4. RESULTS AND DISCUSSION

The street canyon model is simulated by varying street
canyon width, from 0.5 to 2.5, with an increment of 0.25
that results in street canyon aspect ratios of 0.4 to 2.0.
Notably, the building height is kept constant to develop
models for different aspect ratio; this help simulate the
results for wider streets. In order to facilitate a comparison
among the results for different ARs, all boundary
conditions were kept the same in all the simulated cases.
The resultant average air-temperature (area-weighted)
within the target street canyon (middle canyon) were
normalized with the surface and air temperature difference
(Δθs-a). Linear regression is conducted in the resultant
normalized temperatures for different heating situations
as shown in Fig. 3. Clearly, air-temperature decrease with
an increase in street canyon aspect ratio. Notably, the
highest decrease in average air temperature (i.e. around
2.4 K or 0.8%) was observed between aspect ratios of 0.4
and 2.0. The reductions in air temperature when street
canyon width increased from 0.5 to 0.75, 1.0, 1.25, 1.5, 1.75,
2.0, 2.25 and 2.5 were around 0.2, 0.5, 0.8, 1.1, 1.4, 1.7 and 2
K, respectively. Seemingly, reductions in air-temperatures

FIG. 2. VALIDATION OF NORMALIZED HORIZONTAL VELOCITY AND POTENTIAL TEMPERATURE
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are consistent with the changes in aspect ratios. The
prevailing trend shows that reductions in air temperature
were within a range of 0.1 to 0.15% for different aspect
ratios. The highest decrease is observed between the street
canyon width of 2.25 and 2.5 as air-temperature decreased
by around 0.15% (0.4 K). Seemingly, the correlation derived
between the AR and average air temperature is very strong
(i.e. R2~0.99). Memon, R.A., et. al. [6] noted that ambient
wind speed has a significant impact on the heating within
the street canyon. The weighted average components for
horizontal and vertical velocity during different AR
situations have been graphed against average temperature
within the target street canyon (Fig. 4(a-b)). It could easily
be seen that horizontal velocity decreased initially for the
smaller aspect ratios but increased later-on in the lower
aspect ratios (i.e. from AR 0.4-0.57). On the other hand,
vertical velocity decreased continuously with an increase
in temperature throughout the simulation of different
cases. The correlation for the horizontal velocity and
temperature is clearly weaker than that between the vertical
velocity and temperature. Moreover, the vertical velocity

correlation shows that with an increase of 0.1 m/s in the
velocity there will be a decrease of around 1.5K in the
average temperature within the street canyon. On the other
hand, the result for horizontal velocity shows that with an
increase of 0.1 m/s, temperatures will increase by around
0.1K. Seemingly, the impact of vertical velocity is higher
as there has been an overall increase in the temperature
with a decrease in aspect ratio within the street canyon.

Above discussion shows that vertical velocity has a
significant impact on temperatures within the street
canyon. Therefore, spatial isotherms and normalized
vertical velocity curves have been drawn within the target
street canyon for different simulated cases as depicted
in Fig. 5. Fig. 5(a) shows air-temperature and vertical
velocity trends within the target street canyon of AR2.0
or street canyon width of 0.5 (ReH~33000). Clearly, higher
temperature exists in the corners of the canyon adjacent
to the leeward and windward walls. The upper portion of
the leeward wall is at higher temperature. However, the
higher temperature contour (i.e. 0.6-0.7) covers more

FIG. 3. NORMALIZED AVERAGE (AREA-WEIGHTED) AIR TEMPERATURE WITHIN THE TARGET STREET CANYON OF
DIFFERENT ASPECT RATIO
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space in the corner adjacent with the windward wall than
that leeward wall. A low temperature contour could be
seen at the entrance point of windward wall which may
be a result of fresh gust of air from that side. Analysis of
temperature contours in other figures (Fig. 5(b-i)) shows
that the temperatures decreased gradually with a decrease
in aspect ratio in particular on the windward side.

Evidently, the lower temperature contour (i.e. 0.3-0.4)
expends along the windward wall side and then cover
most of the portion of the canyon. However, this happens
gradually as temperatures adjacent to the corner with
the windward wall are higher. Conversely, temperatures
along the leeward wall are higher in the corner as well as
along the wall.

FIG. 4. NORMALIZED AVERAGE AIR-TEMPERATURE VERSUS AVERAGE VELOCITY WITHIN THE TARGET STREET CANYON OF
DIFFERENT ASPECT RATIOS
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Seemingly, the vertical velocity trends are correctly
reflecting the temperature variations due to street canyon
aspect ratio (Fig. 5). The vertical velocity is the lowest
with the corners of windward and leeward walls.
Simultaneously, vertical velocity is the highest along the
rest of the windward wall (i.e. contour of 0.12 to 0.18),
higher with the leeward wall (i.e. a contour of 0.06 to 0.11)
but lower within the rest of the canyon (i.e. 0.0 to 0.06).  It
is clear from the figure of spatial isotherms for AR 2.0 (Fig.
5(a)) that the temperatures are the highest with the corners
adjacent to the windward and leeward walls but

comparatively lower along the leeward and windward walls
and in the rest of the canyon. Apparently, vertical velocity
continues to increase along the leeward and windward
walls from AR 2.0 to 0.66 (Fig. 5(a-e)) decreasing
temperatures within the street canyon. A comparison
shows that vertical velocity in lower  ARs (i.e. from 0.57 to
0.4) reduces along the windward and leeward walls
although the velocity remained positive. Overall result
(Fig. 4) for vertical velocity shows that there has been an
insignificant increase in the velocity. The change in
temperature in these aspect ratios was also insignificant.

VERTICAL VELOCITYSPATIAL ISOTHERMS

VERTICAL VELOCITYSPATIAL ISOTHERMS

FIG. 5(A).  ASPECT RATIO 2.0 / STREET CANYON WIDTH 0.5 METER

FIG. 5(B).  ASPECT RATIO 1.33/STREET CANYON WIDTH 0.75 METER
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VERTICAL VELOCITYSPATIAL ISOTHERMS

VERTICAL VELOCITYSPATIAL ISOTHERMS

VERTICAL VELOCITYSPATIAL ISOTHERMS

FIG. 5(C). ASPECT RATIO 1.0/STREET CANYON WIDTH 1.0 METER

FIG. 5(D). ASPECT RATIO 0.8/STREET CANYON WIDTH 1.25 METERS

FIG. 5(E). ASPECT RATIO 0.66/STREET CANYON WIDTH 1.5 METER



262 MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING & TECHNOLOGY, VOLUME 30, NO. 2, APRIL, 2011 [ISSN 0254-7821]

MODELING THE EFFECT OF WIDER CANYONS ON URBAN HEATING

VERTICAL VELOCITYSPATIAL ISOTHERMS

VERTICAL VELOCITYSPATIAL ISOTHERMS

VERTICAL VELOCITYSPATIAL ISOTHERMS

FIG. 5(F). ASPECT RATIO 0.57/STREET CANYON WIDTH 1.75 METER

FIG. 5(G). ASPECT RATIO 0.5/STREET CANYON WIDTH 2.0 METER

FIG. 5(H). ASPECT RATIO 0.44/STREET CANYON WIDTH 2.25 METER
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5. CONCLUSIONS
Effects of AR are explored in this paper through simulations
of heating within street canyon. The adopted model was
validated and applied to varying aspect ratios to evaluate
the impact of wider street canyons. Results demonstrated
strong correlation (i.e. correlation of determination, R2>0.9)
between building AR and temperature within street
canyon. Notably, the impact of vertical velocity component
was higher than that of horizontal velocity component.
The vertical velocity increases along the leeward and
windward walls from AR 2.0-0.66 while temperatures are
decreased. A comparison shows that vertical velocity in
aspect ratios from 0.4-0.57 reduces along the windward
and leeward walls although the velocity remained positive.
The overall results reveals that there has been an
insignificant increase in the vertical velocity. In lower
aspect ratios the centre and windward wall of the street
canyon remained at low temperature offering thermal
comfort to pedestrians and low cooling energy demand
for building occupants. The city planners, HVAC
Engineers and environmentalists may benefit from the
results of this paper.

6. NOMENCLATURE
AR Aspect Ratio
H Street canyon height (m)
W Street canyon width (m)
X/W Spatial coordinate in horizontal direction divided

with street canyon width
ua Horizontal inflow wind speed (ms-1)

 θg Ground level temperature (K)
υ Kinematic viscosity (m2/s)
p Fluid pressure (Pascal)
u, v, w Velocity components in X, Y and Z directions

(m/s)
Z/H Spatial coordinate in Z direction  non-

dimensionalized by street canyon height
θa Ambient air-temperature (K)
Δθs-a Difference between the surface  and ambient air-

temperature  (K)
 υθ Kinematic diffusivity (m2/s)
ReH Reynolds number (based on street canyon

height) = uaH/ν
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