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A few areas in a large watershed might be more critical and responsible for high amount of 
runoff and soil losses. For an effective and efficient implementation of watershed management 
practices, identification of these critical areas is vital. In this study, we used the Soil and Water 
Assessment Tool (SWAT, 2009) to identify and prioritize the critical sub-basins in a highly 
mountainous watershed with imprecise and uncertain data (Bazoft watershed, southwestern 
Iran). Three different SWAT models were first developed using different climate input data sets. 
The first data set (denoted as CRU) was derived from the climate research unit data set 
developed by the British Atmosphere Data Center (BADC). The second data set (denoted as CDW) 
was included the climate data obtained from the precipitation and air temperature stations in the 
study area. The third set (denoted as COM) was a combination of CRU and CDW climate data. The 
Generalized Likelihood Uncertainty Estimation (GLUE) program was used for calibrating and 
validating the SWAT model. Daily rainfall, temperature, and runoff data of 20 years (1989-2008) 
were used in this study. In results, the constructed SWAT model using COM data set simulated 
the runoff more satisfactorily than the two other developed SWAT models according to the 
statistical evaluation criteria. The correlation coefficient and Nash-Sutcliff values for the 
constructed SWAT model using COM data set were 0.40 and 0.38, respectively. The model 
simulated the runoff satisfactorily; however, the predicted runoff values were much more in 
agreement with the measured data for the calibration period than those for the validation period. 
Sub-basins S10, S12, and S13 were assigned as the most top critical sub-basins in runoff 
production in the watershed. The study revealed that the SWAT model could successfully be used 
for identifying the critical sub-basins in a watershed with imprecise and uncertain data for 
management purposes. 
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Introduction 

The Resource considerations for implementation of watershed management programs related to 
administration or even political considerations may limit the implementation of management programs to a 
few sub-basins of a watershed only. Even otherwise, it is always better to begin management measures from 
the most critical sub-basins, which makes it mandatory to prioritize the sub-basins available. In other word, 
identification of these critical areas is essential for an effective and efficient implementation of watershed 
management programs. Watershed prioritization is thus the ranking of different critical sub-basins of a 
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watershed according to the order in which they have to be taken up for treatment and soil conservation 
measures (Tripathi et al., 2003).  

Hydrometric stations are quite limited in Iran and many of them have sparse data. Therefore, management 
plans are difficult to develop due to the lack of measured data. Hence, identification of critical sub-basins 
plays a crucial role in the proper planning and development of local resources. Recently, mathematical 
models of watershed hydrology and transport processes have been employed to address a wide spectrum of 
environmental and water resources problems. In this study, a calibrated and validated Soil and Water 
Assessment Tool (SWAT) model was used to determine the critical sub-basins in a highly mountainous 
watershed with imprecise and uncertain data (the Bazoft watershed, southwestern Iran). The effects of 
different climate input data sets on prediction accuracy of the model were also evaluated. 

Materials and Method 

Study area 

The study area was Bazoft watershed (31  37  to 32  39  N and 49  34  to 50  32  E) located in northern part 
of the Karun river basin in southwestern Iran (Fig. 1). The major river in the watershed is AbBazoft which is 
joined by Karun River at the outlet of the watershed. The elevation ranges from 880 m at the southern of the 
watershed to 4300 m on Zardkuh mountain. The long-term average rainfall and temperature in the region 
are around 800 mm and 10 °C, respectively. The slope class of 40-70 % is the major class of slope in this 
watershed which covers about 46 % of the study area. The dominant slope shape in the watershed is also 
convex. Approximately 56 % of the watershed is covered by pastures and the rest is covered by forest and 
bare lands. 

 

Fig. 1. Location of Bazoft watershed in south western of Iran (31  37  to 32  39  N and 49  34  to 50  32  E). 

 

SWAT model  

The ArcSWAT (2009) program was used to simulate runoff and sediment in the study area. The SWAT model 
is a basin-scale, continuous time model that operates on a daily time step and evaluates the impact of 
management practices on water, sediment and agricultural chemical yields in ungauged basins. The basic 
input data to SWAT are digital elevation model (DEM), stream network coverage, landuse, soil maps, and 
climate data. A DEM with grid size of 53m × 53m was used in this study. Stream network creation was done 
in the environment of ArcGIS using DEM. Soil data including sand, silt and clay contents, rock fragment 
content, organic carbon content, soil electrical conductivity (EC), water content, porosity, bulk density, 
saturated hydraulic conductivity (Ks), and soil hydrologic groups were obtained by studying soil profiles in 
the main landscape subunits. The land use map was prepared by interpretation of IRS-1D 2008 satellite 
image at a spatial resolution of 24 m by 24 m (Indian Space Applications Centre, Ahmedabad, India) in the 
ArcGIS software environment (Fig. 2). Based on the DEM and stream network maps, the SWAT delineates the 
watershed boundaries and divides it into sub-basins. By entrance of soil and land use maps into the model, 
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sub-basins subdivide into the hydrologic response units (HRUs) which are assumed to be spatially uniform 
in terms of soil, landuse and, topographic characteristics. The watershed was subdivided into 55 sub-basins 
and 946 hydrological response units (HRUs). 

Climate data sets 

Three different climate input data sets were developed in this study. The first data set (denoted as CRU) was 
derived from the climate research unit (CRU) data set developed by the British Atmosphere Data Center 
(BADC). The BADC holds the CRU TS3.1 dataset for the period 1901-2009. The time-series datasets are 
month-by-month variation in climate over the last century or so. These are on high-resolution grids. They 
allow the comparison of variations in climate with variations in other phenomena. Variables include cloud 
cover, diurnal temperature range, frost day frequency, precipitation, daily mean temperature, monthly 
average daily maximum temperature, vapour pressure and wet day frequency. The second data set (denoted 
as CDW) was included the climate data obtained from the precipitation and air temperature stations in the 
study area. The third set (denoted as COM) was a combination of the CRU and CDW climate data sets.  

Fig. 2. The input maps to SWAT (DEM: digital elevation model, landuse, and soil maps) 

 

GLUE algorithm description 

Generalized Likelihood Uncertainty Estimation (GLUE) is an uncertainty analysis technique inspired by 
importance sampling and regional sensitivity analysis (RSA; Hornberger and Spear, 1981). In GLUE, 
parameter uncertainty accounts for all sources of uncertainty, i.e., input uncertainty, structural uncertainty, 
parameter uncertainty and response uncertainty, because ‘‘the likelihood measure value is associated with a 
parameter set and reflects all these sources of error and any effects of the covariation of parameter values on 
model performance implicitly’’ (Yang et al., 2008). Also, from a practical point of view, ‘‘disaggregation of the 
error into its source components is difficult, particularly in cases common to hydrology where the model is 
non-linear and different sources of error may interact to produce the measured deviation’’ (Gupta et al., 
2005). In GLUE, parameter uncertainty is described as a set of discrete ‘‘behavioral’’ parameter sets with 
corresponding ‘‘likelihood weights’’. A GLUE analysis consists of the following three steps: 

(1) After the definition of the ‘‘generalized likelihood measure’’, L(θ), a large number of parameter sets are 
randomly sampled from the prior distribution and each parameter set is assessed as either ‘‘behavioral’’ 
or ‘‘non-behavioral’’ through a comparison of the ‘‘likelihood measure’’ with a selected threshold value. 

(2) Each behavioral parameter set is given a ‘‘likelihood weight’’ according to: 
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(3) Finally, prediction uncertainty is described by quantiles of the cumulative distribution realized from the 
weighted behavioral parameter sets (Abbaspour, 2009).  

The most frequently used likelihood measure for GLUE, the Nash–Sutcliffe coefficient (NS), was also used in 
this study:  
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where subscripts Qi and i represent measured and simulated, respectively, and Q is the average of 
measured data.  

Sensitivity analysis, calibration, and validation  

An initial sensitivity analysis was done to determine sensitive parameters among the input parameters 
selected for the calibration of SWAT model (Table 1). The simulation time period was from 1989 to 2008, 
where the first three years were used as a warm-up. Two-third of the available daily runoff data for the 
station at the outlet of the watershed were used for calibration (from 1998-2008) and the remainders were 
used for validation (1992-1997). In combination with SWAT, the GLUE program was used to calibrate and 
validate the model using the daily river discharge (Abbaspour, 2009). The objective function was the Nash–
Sutcliffe coefficient. The calibrated and validated SWAT model was then used to identify the critical sub-
basins on the basis of average annual runoff production. 

Table 1. Description of SWAT (2009) input parameters selected for calibration. 

Parameter Description Range 

Min Max 

*r_CN2.mgt Curve number for moisture condition II -0.4 0.4 
r_SOL_BD.sol Soil bulk density -0.3 0.3 
r_SOL_AWC.sol Soil available water storage capacity -0.3 0.3 

r_SOL_K.sol Soil hydraulic conductivity -0.8 0.8 

r_SOL_ALB.sol Moist soil albedo -0.5 0.5 

v_ALPHA_BF.gw Baseflow alpha factor 0 1 

v_GW_DELAY.gw Groundwater delay time 0 400 

v_REVAPMN.gw Threshold water in shallow aquifer 0 100 

v_GW_REVAP.gw Revap coefficient 0.02 0.2 

v_SHALLST.gw Initial depth of water in the shallow aquifer 0 1000 

v_RCHRG_DP.gw Deep aquifer percolation fraction 0 1 

v_GWQMN.gw Threshold depth of water in the shallow aquifer required for return 
flow to occur.    

0 500 

v_EPCO.hru Plant uptake compensation factor 0.01 0.2 

v_ESCO.hru Soil evaporation compensation factor 0.01 0.3 

v_SLSUBBSN.hru Average slope length 10 150 

v_OV_N.hru Manning’s n value for overland flow 0 0.8 

v_CH_N2.rte Manning’s n value for the main channel 0 0.3 

v_CH_K2.rte Main channel conductivity 0 150 

v_SFTMP.bsn Snowmelt temperature -5 5 

v_SMTMP.bsn Snowmelt base temperature -5 5 

v_SMFMX.bsn Melt factor for snow on 21 June 0 10 

v_SMFMN.bsn Melt factor for snow on 21 December 0 10 

v_TIMP.bsn Snow pack temperature lag factor 0.01 1 

v_MSK_CO1.bsn Muskingum coefficient 0 10 

v_MSK_CO2.bsn Muskingum coefficient 0 10 

v_SURLAG.bsn Surface runoff lag coefficient 1 24 
r_PCPMM.wgn  Average amount of precipitation falling in month -0.5 0.5 
r_PCPSKW.wgn Skew coefficient for daily precipitation in month -0.5 0.5 
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 * r_ means the existing parameter value is multiplied by (1 plus a given value) and v_ means the default parameter is 
replaced by a given value  

 

Results and Discussion 

SWAT models 

The SWAT model constructed using a combination of the CRU data and the climate data obtained from the 
precipitation and air temperature stations in the study area (i.e. COM climate data set) had higher prediction 
accuracy than the other two developed SWAT models (Fig. 3). The correlation coefficient and Nash-Sutcliff 
values for the constructed SWAT model using COM data set were 0.40 and 0.38, respectively. Furthermore, 
simulated runoff values by the constructed SWAT model using CDW data set were more in agreement with 
the measured values than those simulated by the constructed SWAT model using CRU data set (Fig. 3).  

 

r_PCPSTD.wgn Standard deviation for daily precipitation in month -0.5 0.5 
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Fig. 3. Daily runoff prediction using SWAT models developed by different input climate data sets (a: CRU, b: CDW, and c: 
COM). R2: coefficient of determination and NS: Nash-Sutcliff coefficient. 

Calibration and validation of the model  

The results of daily runoff calibration and validation using GLUE algorithm are presented in Table 2. The 
model simulated the runoff satisfactorily; however, the predicted runoff values were much more in 
agreement with the observed data for the calibration period than those for the validation period. The R2 and 
NS coefficients for the calibration period were 0.54 and 0.51, respectively; while, they were 0.48 and 0.47 for 
the validation period, respectively. Although the simulation of daily runoff was satisfactory during the 
calibration period, the model exhibited larger uncertainties in the calibration period. The P factor 
(percentage of data being bracketed by 95PPU) for the calibration period was 0.64, while it was 0.73 for the 
validation period (Table 2).  

Table 2. Summery statistic results for the daily runoff calibration and validation periods. 

R2: coefficient of determination, NS: Nash-Sutcliff coefficient, and P factor: percentage of data being bracketed by 95PPU. 

Identification of the critical sub-basins 

Fig. 4 shows location of the 3 most top critical sub-
basins in Bazoft watershed according to the SWAT 
model results. Based on the spatial distribution of 
the runoff production hazard in the watershed, sub-
basins S10, S12, and S13 were assigned as most top 
critical sub-basins in runoff production in the study 
area. The high runoff production rate predicted in 
these sub-basins may be attributed to insufficient 
use of the land, scanty vegetative cover, steep 
sloping areas, high population pressure, cultivating 
of the steep-lands, and other environmental 
problems. These 3 critical sub-basins were, hence, 
assigned as the top priorities and were 
recommended to be considered for the future 
conservation plans. 

 

 

 
Fig. 3. Location of the 3 critical sub-basins in Bazoft 

watershed according to the SWAT model results. 
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