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ABSTRACT 

Modeling Sludge volume index of activated sludge process in municipal 

WWTP is a difficult task to accomplish due to the high nonlinearity of the plant 

and the non-uniformity and variability of influent quantity, quality parameters, 

and operation condition. 

ANNs were developed for the prediction of the Sludge Volume Index using 

influent quality parameters and operating parameters of Batna Wastewater 

Treatment Plant from 2011 to 2014. The best model given by the neural 

network for the SVI prediction composed of one input layer with fifteen input 

variables, one hidden layer with thirteen nodes and one output layer with one 

output variable with R = 0.8784 and RMSE = 0.443. The results demonstrate 

the ability of the appropriate Neural Network models for the prediction of SVI. 

This provides a very useful tool that can be used by WWTP operators in their 

daily management to increase treatment process performances and WWTP 

reliability. 
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RESUME: 

La modélisation de l'indice de boues (IB) d'un procédé de boues activées dans 

une station d'épuration des eaux usées municipales est une tâche difficile à 

réaliser en raison de la forte non-linéarité des paramètres du process, la non-

uniformité, la variabilité de la quantité, de la qualité des eaux usées à l’entrée de 

la station d’épuration, et de l'état de fonctionnement. 

Les réseaux de neurones artificiels (RNA) ont été développés pour la prédiction 

de l'indice de boues (IB) à l'aide des paramètres de qualité de l'affluent et les 

paramètres de fonctionnement de la station d'épuration de la ville de Batna 

durant la période 2011 à 2014. Le meilleur modèle donnée par le réseau de 

neurones pour la prédiction de l'IB est composé d'une couche d'entrée avec une 

quinzaine de variables d'entrée, une couche cachée constitué de treize neurones, 

et une couche de sortie avec une grandeur de sortie. Le modèle proposé à pour 

indice de performances de la prédiction, un coefficient de correlation (R = 

0.8784), et une erreur quadratique moyenne (RMSE = 0.443). 

Les résultats démontrent la capacité des modèles de réseaux de neurones 

artificiels appropriées à prédire l'indice de boue (IB). Cela fournit un outil très 

utile qui peut être utilisé par les opérateurs dans la gestion quotidienne de la 

station d'épuration qui pourra contribuer à l'accroissement des performances du 

process et la fiabilité de la station. 

 

Key words: Sludge Volume Index, prediction, Wastewater treatment, activated, 

sludge, artificial neural networks 

INTRODUCTION 

Sludge production in wastewater treatment plant using activated sludge process 

(ASP), in which the pollutant degradation mainly results from microbial 

reaction has long been used for municipal and industrial wastewater treatment 

depends on different factors (Lou and Zhao, 2012 ; Amanatidou, 2015). 

Activated sludge plant operators and engineers have traditionally relied almost 

entirely on formulas and procedures derived from experience to operate the 

activated sludge system and to try to explain the variable changes that take 

place (Lacroix and Bloodgood, 1972). The sludge volume index (SVI) 
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introduced by Molman in 1934 has become the standard measure of the physical 

characteristics of activated sludge solids. It is defined as “the volume in mL 

occupied by 1 g activated sludge after settling the aerated liquor for 30 min (NF 

EN 14702, 2006). The SVI commonly used research applications to evaluate the 

effect of biological variables or physical or chemical treatment on the properties 

of sludge. Also the SVI has been advocated as mean of establishing the required 

sludge recirculation rate or for calculating the mixed liquor suspended solids 

concentration which can be maintained in the aeration tank. The most common 

use of SVI to monitoring wastewater treatment plant operation and in 

comparing the settling characteristic of various sludges (Dick and Vesilind, 

1969). 

Recently many investigations are oriented to reduce the sludge production in 

WWTP using activated sludge process (ASP), because management and 

treatment of sludge accumulate more than 50% of the construction and 

operating cost (Lui and Tay, 2001; Tchobanoglous et al., 2003; Foladori et al., 

2010; Guo et al., 2013). Sludge bulking is the most common solid separation 

problem in activated sludge problem Bulking leads to high level of total 

suspended solids in effluent that exceeds the discharge permit limitation ans 

subsequently loses activated sludge in the aeration basin, resulting in the 

deterioration of wastewater treatment process (Jenkins et al., 2003). Sludge 

settling and compaction are often quantified using sludge volume index (SVI). 

When SVI reaches 150 mL/g, bulking can be considered to happen (Lou and 

Zhao, 2012). 

Soft computation techniques, such as artificial neural networks (ANN) can be 

used for modeling WWTP processes (Cote et al., 1995; Häck and Köhne, 1996; 

Wena and Vassiliadis, 1998; Plazl et al., 1999; Lee and park, 1999; Hamoda et 

al., 1999; Holubar et al., 2002; Lee et al., 2002; Baruch et al., 2005; Kathikeyan 

et al., 2005; Lee et al., 2006; Moral et al., 2008). 

The ANN can be used for better prediction of WWTP process performance 

(Zhua et al., 1998; Belanche et al., 1999; Choi and Park, 2001; Oliveira-

Esquerre et al., 2002, Chen et al., 2003; Hamed et al., 2004; Mjalli et al., 2007; 

Pai et al., 2008; Vyas et al., 2011; Nasr et al., 2012; Djeddou, 2014; Djeddou 

and Achour, 2015). Developing a model that could predict SVI with reasonable 

accuracy the potential for bulking is of great practical importance, as it can be 

used to improve the treatment plant efficiency and cost saving (Capodaglio, 

1991). The complexity of  the problem can be overcome by applying data-

driven model for the whole system, rather than the breaking down of the system 

into small components described individually, in which only the inputs and 
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outputs of the system are taken into consideration. One major advantage of the 

data-driven models over mechanistic models is that they require minimal 

information of the intrinsic processes of the system (Lou and Zhao, 2012). 

MATERIALS AND METHODS 

Study Area 

Batna is an important city in Eastern Algeria. The city has grown very quickly 

during the last 10 years; localization of Batna WWTP is 35°34'24.41"N latitude 

and 6°10'34.49"E longitude, Figure 1. 

 

Figure 1: Batna Wastewater Treatment Plant. 

A conventional activated sludge process (ASP) is used in Batna wastewater 

treatment plant, and designed to have a capacity of an average flow rate of 

20000 m3/d and about 230000 EH in carbon, nitrogen, and phosphorus. The 

process scheme of Batna WWTP is shown in Figure 2. 

 

Figure 2: Process scheme of Batna WWTP. 
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Data Source 

Sludge samples were collected daily from the reaction tank. The monitored 

parameters used in this study include operational conditions   temperature, 

conductivity, and pH. Influent quality characteristics BOD5, COD, TSS, NH+
4, 

NO3, and Phosphorus concentrations were analyzed using the standard methods 

of AFNOR (Rodier et al., 1997). 

The influent quality parameters variability in time in Batna wastewater 

treatment plant is observed, with the simple statistical analysis shown in Table 

1. It was observed that the pH of the waste water at the inlet of the station varies 

in the interval of 6.18 to 8.38. The water temperatures matched the atmospheric 

temperatures that are low in the winter and high in the summer.  

 

Table 1: Variation of influent quality parameters in Batna WWTP from June 15, 2011 

to Dec. 31, 2014. 

Parameters Min. Max. Mean Std. dev. Coef. Of Variation 

TSS (mg/L) 22 1784 337.71 106.78 0.32 

COD (mg/L) 67 1996 842.37 200.34 0.24 

BOD5 (mg/L 108 665 337.95 87.60 0.26 

N-NH+
4 (mg/L) 18 48 30.01 5.97 0.20 

N-NO-
3 (mg/L) 0.01 46 0.92 4.55 4.92 

P-PO4 (mg/L) 1.44 5.36 2.88 0.66 0.23 

pH 6.18 8.38 7.45 0.21 0.03 

Temp. (°C) 10 27.2 19.00 4.00 0.21 

Cond. (µS/cm) 1452 2550 2032.35 171.91 0.08 

SVI (mL/g) 11 473 196.02 83.84 0.49 

 

The influent quality fluctuated in time, with high standard deviations of 200.34 

mg/L for COD, and 87,6 mg/L for BOD5. However the COD/BOD5 ratios were 

within 1.16-2.99 for 90% of data, which were within the normal range of 

municipal wastewater, indicating that it is readily biodegradable wastewater, the 

activated sludge process was chosen for pollution removal (Tchobanoglous, 

2003; Spellman, 2013). 

Similarly, the nitrogen and phosphorus concentrations in the influent fluctuated 

with 1-2 times higher or lower than  the average values, which were believed to 
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be the highly possible reasons that affected the growth of sludge volume index 

and causing filamentous bacteria in the reaction tank (EPA, 1987; Wilen, 1995; 

Jenkins et al., 2003; Lou and Zhao, 2012;).  

Figure 3 showed the change of SVIs over time, which clearly indicates that high 

value of Sludge volume index mostly happened winter from October to 

February, with the SVIs greater than 150 mL/g. We can observe that bulking 

levels were low in the springs and summers from Mars to September, with the 

SVI around 65-90 mL/g.  

 

Figure 3: Change of SVI in Batna WWTP from June 15, 2011 to Dec. 31, 2014. 

Data preparation and normalization 

Operation data was performed on the raw experimental data by excluding all 

outliers which were unusual points. The existence of these outliers is due to 

many reasons such as transcription or transposition errors due to improper input 

of data, errors measurements, and lost data. Neural network training could be 

made more efficient by performing certain preprocessing steps on the network 

inputs and targets. Network input processing functions transforms inputs into 

better form for the network use. The normalization process for the raw inputs 

has great effect on preparing the data to be suitable for the training. Without this 

normalization, training the neural networks would have been very slow 

(Jayalakshmi and Santhakumaran, 2011). 
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In this study, all variables are normalized between 0 and 1 before and after 

application in the neural network. Min-Max normalization is described as: 

𝑥𝑛𝑜𝑟𝑚 =  
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 

Where: 

xnorm: normalized value; xmin is the minimum value; xmax: maximum value of 

xm. 

Artificial Neural Networks Methodology 

Artificial Neural Networks (ANNs) present a very flexible, robust and general 

method of modeling data. An ANN can be trained to model a nonlinear system 

realized by on experimental data to model a nonlinear mapping realized by 

some system. One of the advantages of an ANN model over traditional 

nonlinear regression approaches is that it is not necessary to first find a suitable 

parametric form of the regression model for the problem at hand. A one hidden 

layer multilayer perceptron can act as a universal function approximator 

(Haykin, 1999). ANN’s may be defined as structures comprised of densely 

interconnected adaptive simple processing elements (called artificial neurons or 

nodes) that are capable of performing massively parallel computations for data 

processing and knowledge representation (Hecht-Nielsen, 1990; Grubert, 1995). 

The attractiveness of ANNs comes from the remarkable information processing 

characteristics of the biological system such as nonlinearity, high parallelism, 

robustness, fault and failure tolerance, learning, ability to handle imprecise 

information, and their capability to generalize (Jain et al., 1996; Tarassenko, 

1998; Hajmeer et al., 2000; Hu and Balasubramaniam, 2004).  

The basic structure of an artificial neural network (ANN), usually, consists of 

three distinct layers, the input layer, where data is input to the ANN, the hidden 

layer or several layers, where data is processed, and the output layer, where the 

results of ANN are produced. The structure and function of ANN is discussed 

by a number of authors (Caudill and Butler, 1992; Fausett, 1993; Dowla and 

Rogers, 1995; Patterson 1996; Haykin, 1999; Gurney, 1997). 

ANN’s are designed by placing weights between the neurons by using a transfer 

function which control the generation of the output in a neuron, and using 

adjustable laws defining the relative importance weight for input to a neuron. In 
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training, the ANN defines the importance of weight and adjusts by an iterative 

procedure (Diamantopoulou et al., 2006; Demuth et al., 2013) 

The Multi-layer perception (MLP) network is the most popular type of feed-

forward networks that learn from examples (Diamontopolu et al., 2005; Mjalli, 

2007 ; Pai et al., 2009 ;Vyas et al., 2011; Lou and Zhao, 2012 ; Han and Qiao, 

2012). The architecture of the proposed artificial neural network is shown in 

Figure 3. The ANN used in this study was a standard feed-forward back-

propagation neural network with three layers: an input layer, one hidden layer 

and an output layer. The function is the Log-sigmoid transfer function 

(LOGSIG). This transfer function takes the input (which may have any value 

between plus and minus infinity) and squashes the output into the range 0 to 1. 

The log-sigmoid transfer function is commonly used in multilayer networks that 

are trained using the backpropagation algorithm, in part because this function is 

differentiable (Dawson and Wilby, 2001; Yonaba et al., 2010; Dorofki et al., 

2012). Linear function was used as activation function for output neuron. As 

shown in Figure 4, by connection strengths named weights, every layer was 

connected together. Input vectors and the corresponding target vectors were 

used to train a network till it can approximate a function which associates input 

vectors with specific output vector. 

Fifteen variables were used as input parameters. These variables were TSSin 

(mg/L), CODin (mg/L), BODin (mg/L), temperaturein (°C), pHin, conductivityin 

(µS/cm), NH+
4in (mg/L), NO3in (mg/L), Pin (mg/L), TSS efficiency (%),COD 

efficiency (%), BOD efficiency (%), N-NH+
4 efficiency (%), N-NO3 efficiency 

(%), P-PO4 efficiency (%).  The output layer consisted of one neuron related to 

the sludge volume index (SVI).  

In most function approximation problems, one hidden layer is sufficient to 

approximate functions (Basheer, 2000; Hecht-Nielsen, 1990). Generally, two 

hidden layers may be necessary for learning functions with discontinuities 

(Masters, 1993). The determination of the appropriate number of hidden layers 

and number of hidden nodes (NHN) in each layer is one of the most critical 

tasks in ANN design. Unlike the input and output layers, one starts with no prior 

knowledge as to the number and size of hidden layers. ANN model with too 

many hidden nodes will follow the noise in the data due to over 

parameterization leading to poor generalization for untrained data, and training 

becomes excessively time-consuming (Basheer and Hajmeer, 2000).  

Some general rules for selecting  the number of hidden nodes  NHN in the ANN 

model  suggest that it should be within NINP  and  2NINP +1 (Hecht-Nielsen , 

1987). 
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Figure 4: Proposed Multi-Layer Feed Forward Network architecture. 

 

Masters (1993) suggests that the ANN architecture should resemble a pyramid 

with: 

𝑁𝐻𝑁 ≈ √𝑁𝐼𝑁𝑃𝑥𝑁𝑂𝑈𝑇 , 

Hecht-Nielsen (1990) used the Kolmogrov theorem to prove that: 

𝑁𝐻𝑁 ≤ 𝑁𝐼𝑁𝑃 + 1. 

Where: 

NINP is the number of input, and NOUT is the number of output. 

In this study, a trial-and-error approach was carried out to find the optimum 

number of hidden nodes in the models. The optimal architecture was determined 

through varying the number of hidden nodes from 5 to 15. In general, a network 
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structure with less hidden nodes is more preferable; this usually gives better 

generalization capabilities and fewer overfitting problems. To avoid the 

overfitting problem, which commonly occurs with the application of ANN, 

cross-validation tests were used. The training process of the ANN model was 

stopped when the minimum value of MSE for the cross-validation data set is 

reached (Sousa et al., 2007), and the best architecture was selected. 

Evaluation of predicting performance 

In order to evaluate the predicting performance of different ANN models, the 

correlation coefficient (R) for training set, and all dataset, mean absolute error, 

root mean square error (RMSE), and the mean absolute percentage error 

(MAPE) were employed and described as: 

𝑅 =
∑ (𝑥𝑜,𝑖 − �̅�𝑜,𝑖) × (𝑥𝑝,𝑖 − �̅�𝑝,𝑖  

)  𝑛
𝑖=1

√∑ (𝑥𝑜,𝑖 − �̅�𝑜,𝑖)
2𝑛

𝑖=1 𝑥 ∑ (𝑥𝑝,𝑖 − �̅�𝑝,𝑖  
)

2
𝑛
𝑖=1

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑝,𝑖 − 𝑥𝑜,𝑖|

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑝,𝑖 − 𝑥𝑜,𝑖)
2𝑛

𝑖=1

𝑛
 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑥𝑜,𝑖 − 𝑥𝑝,𝑖

𝑥𝑜,𝑖
|

𝑛

𝑖=1

 

Where : xp,i: correlated value; xo,i : observed value; n: number of observation; 

xmax: maximum observed value; xmin: minimum observed value; and x̅o : 
average of observed values. 

RESULTS AND DISCUSSION 

The data used in this study include operational conditions temperature, 

conductivity, and pH. Influent quality characteristics BOD5, COD, TSS, NH+
4, 

NO3, and Phosphorus concentrations at Batna WWTP, were selected for this 
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application. The statistical measures of operational conditions, influent quality 

and efficiencies used for modeling are given in Table 2. 

For neural network models construction, the entire data set was randomized. 

They were divided as follows: (70%) of this data was used for training, (15%) 

was used for testing and (15%) was used for validation. Levenberg-Marquardt 

algorithm achieved the training of neural networks. The networks are designed 

by putting weights between neurons, by using the log-sig function of training. 

The number of nodes in the hidden layer was determined based on the 

maximum value of coefficient of correlation. Different networks structures 

tested in order to determine the optimum number of hidden layers and the 

number of nodes in each.  

The statistical performance of the ANN models for predicting SVI with various 

hidden neuron numbers for the training process is presented in Table 3. Initially 

with 5 neurons and log-sig transfer function in the hidden layer, statistical 

parameter values were as follows 0.9490, 0.8091, 0.364, 0.548, 18.76 for 

RTRAINING, RALL, MAE, RMSE and MAPE respectively. It was found that 

increasing the number of neurons in the hidden layer, the values of statistical 

parameters previously mentioned is improved, which reflects on the 

performance. This is illustrated by that when the number of neurons in hidden 

layer was 10, it found that the statistical parameter values were 0.9775, 0.8476, 

0.268, 0.446 and 18,76 for RTRAINING, RALL, MAE, RMSE and MAPE 

respectively. With arrival the number of neurons to 13, it was obtained the best 

results (in bold in Table 3). With increasing the number of neurons in hidden 

layer at 15, the performance indexes of ANN’s model decreases. The best 

model given by the neural network for the SVI prediction composed of one 

input layer with fifteen input variables, one hidden layer with thirteen nodes and 

one output layer with one output variable with 0.9993, 0.8784, 0.186, 0.443 and 

10.98 for RTRAINING, RALLl, MAE, RMSE and MAPE respectively.  

The ANN model has the best performance, with RALL (0.8164-0.9993) , MAE 

(0.186-1.141), RMSE (0.393-1.346), and MAPE (10.98-28.43) for accuracy and 

generalization performance, indicating that using ANN model  can handle well 

the nonlinear relationship between SVIs, operation parameters, influent quality 

parameters and performances of activated sludge process (ASP). 
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Table 2 : Descriptive statistics for the fifteen inputs used for training, testing and 

validation. 

Parameters Min. Max. Mean Std. dev. Coef. Variation 

TSSin (mg/L) 202 614 340.56 92.74 0.27 

CODin (mg/L) 480 1484 843.38 192.48 0.23 

BOD5 in (mg/L) 108 606 343.78 86.71 0.25 

NH+
4 in (mg/L) 19 48 29.99 6.11 0.20 

NO3 in (mg/L) 0.01 46 1.12 5.41 4.83 

Pin (mg/L) 1.44 5.08 2.91 0.64 0.22 

pHin 7 8.18 7.55 0.23 0.03 

Tin (°C) 10 25.2 18.30 3.84 0.21 

Condin (µS/cm) 1628 2370 2019.18 158.62 0.08 

TSS effeciency (%) 81.12 96.44 90.02 3.92 0.04 

COD effeciency (%) 68.67 94.16 88.22 3.36 0.04 

BOD5 effeciency (%) 79.83 99.81 92.72 4.26 0.05 

N-NH+
4 effeciency (%) 1.64 38.37 14.39 8.98 0.62 

P-PO4 effeciency (%) 3.39 96.15 48.32 24.09 0.50 

N-NO3 effeciency (%) 42.85 99.55 75.46 29.41 0.39 

 

Table 3: Performance indexes of the ANN prediction models. 

 R    

ANN model RTRAINING.  RALL MAE RMSE MAPE (%) 

ANN 15-5-1 0.9490 0.8091 0.364 0.548 18.76 

ANN 15-6-1 0.9705 0.9126 1.141 1.346 14.79 

ANN 15-7-1 0.8164 0.7565 0.394 0.484 28.43 

ANN 15-9-1 0.9922 0.8246 0.292 0.479 21.35 

ANN 15-10-1 0.9775 0.8476 0.268 0.446 18.67 

ANN 15-11-1 0.9131 0.8217 0.347 0.454 22.82 

ANN 15-13-1 0.9993 0.8432 0.186 0.443 10.98 

ANN 15-15-1 0.983 0.8784 0.254 0.393 17.12 
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The prediction of all data set showed in Figure 5 exhibit over estimation in the 

low SVI level region and underestimation in extreme value of SVI. In general 

that ANN model was able to predict the SVI with a reasonable degree of 

accuracy. 

The study of the evolution of MAE and RMSE shows that, in general 𝑅𝑀𝑆𝐸 >
𝑀𝐴𝐸 for the range of most values. The degree to which RMSE exceeds MA is 

an indicator of the extent to which outliers (or variance in the differences 

between the predicted and observed values) exist in the data (Legates and 

McCabe Jr., 1999).  

The modeling SVIs using ANN versus measured SVI in Batna WWTP showed 

in Figure 6 clearly demonstrate the ability of the Neural network model to 

predict very well the Sludge Volume Index at Batna WWTP. 

From modeling point view, a disadvantage of ANN modeling is that the 

mechanisms of inner signal processing are unknow (Lou and Zhao, 2012), this 

is why we called the ANN Black-box modeling. However, it be used as a tool to 

prevent sludge bulking problems (Belanch et al., 2000; Lou and Zhao, 2012; 

Han and Qiao, 2013; Han and Qiao, 2015). The operators can control the 

predicted SVI and adjust activated sludge process parameters to increase 

efficiencies. In the future other parameters, such MLSS, SRT and DO will be 

added to the ANN model for more understanding the complete mechanisms and 

the relationships among the variables in activated sludge process. 

 

Figure 5: Observed and predicted sludge volume index in Batna wastewater treatment 

plant (2011-2014). 
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Figure 6: SVI estimated by the Neural Networks versus corresponding values of SVI 

for all data set. 

CONCLUSION 

Modeling Sludge volume index of activated sludge process in WWTP is 

difficult to accomplish due to the high nonlinearity of the plant and the non-

uniformity and variability of influent quality parameters, and operation. 

In this paper, ANNs were developed for the prediction of the sludge volume 

index using influent quality parameters (TSS (mg/L), CODi (mg/L), BOD 

(mg/L), temperature (°C), pH, conductivity (µS/cm), NH+
4 (mg/L), NO3 (mg/L), 

P (mg/L), and operating parameters, TSS efficiency (%), COD efficiency (%), 

BOD efficiency (%), Ammonia efficiency (N-NH+
4) (%), Nitrate efficiency (N-

NO3) (%), Phosphorus efficiency (P-PO4) Batna wastewater treatment plant, for 

the time period 2011-2014 were selected for this analysis. The training of neural 

networks was achieved by Levenberg-Marquardt algorithm. The networks are 

designed by putting weights between neurons, by using log-sig function transfer 

and linear function activation. The number of nodes in the hidden layer was 

determined based on the maximum value of coefficient of correlation. The 

results for the training and the test data sets were satisfactory. Consequently, the 

Neural Network models can be used for the prediction of SVI. 
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The best model given by the neural network for the SVI prediction composed of 

one input layer with fifteen input variables, one hidden layer with thirteen nodes 

and one output layer with one output variable with R= 0.8784, MAE = 0.186, 

RMSE = 0.443 and MAPE = 10.98%. 

The plant input data were used to predict the SVI without using mechanistic 

bio-modeling which involves a great degree of complexity and uncertainty. The 

modeling approaches used in this study had better prediction power. The ANN 

modeling technique has many favorable features such as efficiency, 

generalization and simplicity, which makes it an attractive and useful tool for 

modeling activated sludge process, and can be used by WWTP operators in 

their daily management to increase treatment process performances and WWTP 

reliability. 
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