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1. Introduction 
The symmetric group Sn, whose elements consist of the 

set of all permutations on n symbols is of central 
importance to mathematics and physics [1]. Cayley’s 
theorem states that every group is isomorphic to a 
subgroup of the symmetric group on that group. In physics 
the classification of atomic and nuclear states depends 
essentially on the properties of Sn [1]. The representation 
theory of the symmetric group is a well studied subject 
[1,2,3]. The partitions of n or equivalently Young 
diagrams of size n are the natural ways in which to 
parametrize the irreducible representations of Sn [4]. This 
paper is concerned, not with the general irreducible 
representations of Sn, but, more specifically, with the so-
called standard representation of the symmetric group, 
formally obtained from the n-1 dimensional subspace of 
vectors whose sum of coordinates is zero in the basis set 
of a permutation representation. The path taken in this 
work shall however be non-group theoretic. For example, 
we will not be concerned with Young diagrams. 

The standard representation of Sn is important for the 
following reason: For n ≥ 7, the permutation representation, 
the trivial (identical) representation, the sign representation, 
the standard representation and another n-1 dimensional 
irreducible representation found by tensoring with the sign 
representation are the only lowest-dimensional irreducible 
representations of Sn [4]. All other irreducible representations 
have dimension at least n. While it is a fact that all 
irreducible representations of Sn can be found, using 
Frobenius formula ([1], pp 189), for example, there are no 
known explicit formulas for the standard representation. 
The main result of this paper is the derivation of such 
formulas, which now make it possible to write down the 
standard representation matrices directly from those of the 
permutation representation. 

2. The Permutation Representation 

Denote the n! elements of Sn by , 1, 2,..., !kA k n= , such 
that, in usual notation,  
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and 1 ,k
ia n≤ ≤ , all k

ia  being distinct. For simplicity, and 
since no ambiguity can result, we will use the same 
symbol kA  for the representation matrices. Then, in the 
permutation representation, the n n×  matrices kA  are 
given, through their elements, by: 
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which is clearly a unitary representation, since 
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2.1. A Casimir Invariant for Sn in the 
Permutation Representation 
Theorem 1. The n n×  matrix C, with elements 

1ij ijC δ= −  is a Casimir Invariant of Sn in the 
permutation representation. 

Proof We require to prove that C commutes with every 
kA . 
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A similar calculation gives, 
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We see, therefore, that ,k kA C CA=  so that C is a 
Casimir Invariant of the symmetric group. 

3. The Standard Representation 
Since the Casimir invariant C, obtained in the previous 

section, is not proportional to the identity, Schur’s lemma 
tells us that the permutation representation is not 
irreducible, a well-known fact. It therefore remains to find 
the matrix P which diagonalizes C. First we prove a 
lemma. 

Lemma 1 The nonsingular n n×  matrix P with 
elements 1 1 1 , 2(1 )ij j j i i n jP δ δ δ δ + −= − − +  has the inverse 

1P−  where ( )1
1 , 22 1i i n jij

n P nδ δ−
+ −= − +  

Proof 
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It is straightforward to write out the terms and evaluate 
the summation termwise. One merely needs to note that 

 , 2 11 1n
r n j jr δ δ+ −= = −∑  

and 

 , 2 , 2 1 11 .n
i n r r n j ij i jr δ δ δ δ δ+ − + −= = −∑  

One then finds ( )1
ijij

PP δ− = , which establishes the 

claim. 

3.1. Diagonal form of the Casimir Invariant 
Theorem 2. The matrix P given in Lemma 1, diagonalizes 
the Casimir Invariant, C. 

Proof. We wish to compute 

 1 .D P CP−=  

Now 
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.
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Substituting the matrix elements, expanding and 
evaluating the sums, we find after some algebra, that 

 1 1 .ij i j ijD nδ δ δ= −  (6) 

Thus we see that D is a diagonal matrix, as claimed, 
with the entry ‘n−1’ in row 1, column 1 and the remaining 
diagonal elements being −1. 

The matrix P, above, which diagonalizes C will block-
diagonalize the matrices kA . 

3.2. Similarity Transformation of Ak: The 
Standard Representation 

Using the matrix elements of P, P−1 and Ak, it is not 
difficult to obtain the interesting result: 
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We see from (7) that each matrix 1 kP A P−  is block 
diagonal, being the direct sum of a 1 1×  matrix with entry 
1 and an ( ) ( )1 1n n− × −  matrix Bk, with elements 

 1 , 1 1 ,1,

1, ..., 1, 1, ..., 1.

k k k
ij n i n j n iB A A

i n j n
+ − + − + −= −

= − = −
 (8) 

The 1 1×  matrices correspond to the identical (trivial) 
representation in which every element of Sn is sent to the 
one-dimensional identity matrix, while the Bk matrices 
correspond to the irreducible 1n −  dimensional standard 
representation. 

4. Conclusion 
In this paper we have shown that the operator C with 

matrix elements 1ij ijC δ= −  is a Casimir Invariant for the 

symmetric group Sn. We also showed that if kA , 
1,..., !k n=  are the representation matrices for the 

elements of Sn in the permutation representation, then the 
matrices Bk for the standard representation of Sn are given 
by 

1 , 1 1 ,1, 1, ..., 1, 1, ..., 1.k k k
ij n i n j n iB A A i n j n+ − + − + −= − = − = −  
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