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1. Introduction 
The 2-variable Kampe de Feriet generalization of the 

Hermite polynomials [13] and [14] reads 
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These polynomials are usually defined by the 
generating function 
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and reduce to the ordinary Hermite polynomials Hn(x) (see 
[1]) when y = −1 and x is replaced by 2x. 

The classical Bernoulli numbers nB . Bernoulli 

polynomials ( )nB x  and their generalization ( ) ( )nB xα  (of 

real or complex) of order α are usually defined by means 
of the following generating functions ([2,40,41,42]). 
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and 
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The nB  are rational numbers and in particular 
( ) ( ) ( )1 0 0 .n n nB B B= =  
As is well known, the Bernoulli polynomials of the 

second kind [35] are defined by the generating function to 
be 
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When x = 0, bn = bn(0) are called the Bernoulli numbers of 
the second kind. The first few Bernoulli numbers bn of the 
second kind are b0 = 1, b1 = 1/2, b3 = 1/24, b4 = −19/720, 
b5 = 3/160, .... 

In [22], Kaneko introduced and studied poly-Bernoulli 
numbers which generalize the classical Bernoulli numbers. 

poly-Bernoulli numbers ( )k
nB  with k z∈  and n N∈  , 

appear in the following power series 
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where k∈z and 
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so for k ≤ 1, 
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Moreover when k ≥ 1, the left hand side of (1.1) can be 
written in the form 
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In the special case, one can see 

 ( )1 .n nB B=  

Recently, Jolany et al [17,18] generalized the concept 
of poly-Bernoulli polynomials is defined as follows. 

Let a, b, c > 0 and a ≠  b. The generalized poly-

Bernoulli numbers ( ) ( ),k
nB a b , the generalized poly-

Bernoulli polynomials ( ) ( ), ,k
nB x a b  and the polynomials 

( ) ( ), , ,k
nB x a b c  are appeared in the following series 

respectively 
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One can easily see that 

 ( ) ( ) ( ) ( ) ( )0,1, , 1k k k
n n nB e B B x x= = +  

and 
 ( ) ( ) ( ) ( )1,k k x x

n nB x B e e+=  (1.11) 

where ( )k
nB  re generalized poly-Bernoulli numbers. For 

more information about poly-Bernoulli numbers and poly-
Bernoulli polynomials, we refer to [15-20]. 

In [29-34] Pathan et al introduced the generalized 
Hermite-Bernoulli polynomials of two variables 

( ) ( ),H nB x yα
 is defined by 
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which is essentially a generalization of Bernoulli numbers, 
Bernoulli polynomials, Hermite polynomials and Hermite-
Bernoulli polynomials ( ),H nB x y  introduced by Dattoli et 
al [[14], p.386(1.6)] in the form 
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The Stirling number of the first kind is given by 
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and the Stirling number of the second kind is defined by 
generating function to be 
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Recently many mathematicians have studied the symmetric 
identities on some special polynomials see for details  
[29-34,43,44]. Some of mathematicians also investigated 
some applications of poly-Bernoulli numbers and 
polynomials of the second kind cf. [26,27,28,36,37,38,39]. 
For more information about these polynomials, look at  
[1-44] and the references cited therein. 

In this paper, we first give definitions of the Hermite 

poly-Bernoulli polynomials ( ) ( ),k
H nb x y  and we give 

some formulae of those polynomials related to the Stirling 
numbers of the second kind. Some implicit summation 
formulae and general symmetry identities are derived by 
using different analytical means and applying generating 
functions. These results extend some known summations 
and identities of generalized Hermite poly-Bernoulli 
numbers and polynomials of the second kind studied by 
Dattoli et al, Zhang et al, Yang, Khan, Pathan and Khan. 

2. Hermite poly-Bernoulli Numbers and 
Polynomials of the Second Kind 

For k∈z, we consider the Hermite poly-Bernoulli 

polynomials ( ) ( ),k
H nb x y  of the second kind 
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so that 
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when x = y = 0, ( ) ( ) ( )0,0k k
n nb b=  are called the poly-

Bernoulli numbers of the second kind. Indeed, for k = 1 in 
(2.1), we have 
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Thus by (2.1) and (2.3), we get 
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For y = 0 in (2.1), the result reduces to the poly-
Bernoulli polynomials of the second kind Kim et al [[26], 
p.Eq.(7)2] is defined as 

 
( )
( ) ( ) ( ) ( ) ( )

0

1
1 , .

log 1 !

t nk x k
n

n

Li e tt b x k z
t n

− ∞

=

−
+ = ∈

+ ∑  (2.4) 

Theorem 2.1. For n ≥ 0, we have 
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Proof. Applying Definition (2.1), we have 
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In particular k = 2, we have 
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Replacing n by n-m in above equation, we have 
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On equating the coefficients of the like powers of t in 
the above equation, we get the result (2.5). 
Remark 1. For y = 0 in Theorem (2.1), the result reduces 
to known result of Kim et al [[26], p. 3, Theorem (2.1)]. 
Corollary 1. For n ≥ 0, we have 
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Theorem 2.2. For n ≥ 0, we have 
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Proof. From equation (2.1), we have 
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Thus by equations (2.3), (2.8) and (2.9), we get 
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Replacing n by n-p in the r.h.s of above equation and 
comparing the coefficients of tn, we get the result (2.7). 
Remark 2. For y = 0 in Theorem (2.2), the result reduces 
to known result of Kim et al [[26].,p. 4, Theorem (2.2)]. 
Corollary 2. For n ≥ 0, we have 
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Theorem 2.3. For n ≥ 1, we have 
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Proof. Using the Definition (2.1), we have 
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Replacing n by n-p in the above equation and 
comparing the coefficients of tn, we get the result (2.11). 
Remark 3. For y = 0 in Theorem (2.3), the result reduces 
to known result of Kim et al [[26].,p. 4, Theorem (2.3)]. 

Corollary 3. For n ≥ 1, we have 
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3. Implicit Summation Formulae Involving 
Hermite poly-Bernoulli Num-bers and 
Polynomials of the Second Kind 

For the derivation of implicit formulae involving poly-

Bernoulli polynomials of the second kind ( ) ( )k
nb x  and 

Hermite poly-Bernoulli polynomials of the second kind 
( ) ( ),k

H nb x y  the same considerations as developed for the 
ordinary Hermite and related polynomials in Khan et al 
[21] and Hermite-Bernoulli polynomials in Pathan and 
Khan [29-34] holds as well. First we prove the following 
results involving Hermite poly-Bernoulli polynomials of 

the second kind ( ) ( ),k
H nb x y . 

Theorem 3.1. For x, yϵR and n ≥ 0. Then 
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Now replacing n by n-j and comparing the coefficients 
of tn, we get the result (3.1). 
Remark. Set u = 1 in the above theorem to get 
Corollary. For x, yϵR and n ≥ 0. Then 
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Theorem 3.2. For x, yϵR and n ≥ 0. Then 
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Proof. By the definition of poly-Bernoulli polynomials of 
the second kind and the definition (1.2), we have 
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Now replacing n by n-m and comparing the coefficients 
of tn, we get the result (3.3). 
Theorem 3.3. For x, yϵR and n ≥ 0. Then 
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Proof. Applying the definition (2.1) to the term 
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Replacing n by n-2j, we have 
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Equating their coefficients of tn, we get the result (3.4). 
Theorem 3.4. For x, yϵR and n ≥ 0. Then 
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Proof. Use the definition (2.1), we have 
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Replacing n by n-r in the above equation and 
comparing the coefficients of tn, we get the result (3.6). 

4. General Symmetry Identity 
In this section, we give general symmetry identity for 

the poly-Bernoulli polynomials of the second kind 
( ) ( )k
nb x  and the Hermite poly-Bernoulli polynomials of 

the second kind ( ) ( ),k
H nb x y  by applying the generating 

function(2.1) and (2.4). The results extend some known 
identities of Zhang and Yang [44], Yang [[43], Eqs.(9)], 
Khan [23,24,25] and Pathan et al [29-34]. 
Theorem 4.1. Let a, b > 0 and a ≠  b. For x, yϵR and n ≥ 
0. Then the following identity holds true: 
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Proof. Start with 
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Then the expression for g(t) is symmetric in a and b and 
we can expand g(t) into series in two ways to obtain 
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On the similar lines we can show that 
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Comparing the coefficients of tn on the right hand sides 
of the last two equations we arrive the desired result. 
Remark 1. By setting b = 1 in Theorem 4.1, we 
immediately following result 
Corollary. 
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 (4.3) 

5. Conclusion 
Based on the definition of Hermite polynomials and 

poly logarithmic function, we introduced a new class of 
Hermite poly-Bernoulli numbers and polynomials of the 
second kind. By using Jolany’s methods introduced in [17] 
and [18], we gave Hermite poly-Bernoulli numbers and 
polynomials of the second kind with two variable, and 

also we analyse its behaviors including general symmetric 
properties. 
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