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1. Introduction 

Let   be the set of prime numbers, and for all    , 

let      denote the number of prime numbers less than or 

equal to  . The prime number theorem which was shown 

independently by de la Vallée Poussin [1], and Hadamard 

[2] in     , states that:  

  ~ ,as
ln

x
x x

x
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where       is the logarithmic integral of   defined by:  
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We can give an equivalent statement for this theorem as, 

for example, let    denote the n'th prime number. Then  

    1 1 ~ ln .nn p Li n n n as n      (2) 

One of our objectives here is to use a restriction of the 

function   to   to study intrinsic properties of some 

sequences of primes defined by iterations. The point of 

departure for this study is the construction of an 

equivalence relation that we denote by  . The purpose of 

this equivalence relation is to show first, that there is a 

recurrence relation between prime numbers which can be 

arranged in an infinity of well-defined classes dependent 

on the initial value. Second, the use of its properties with 

the famous prime number theorem is one way to find and 

prove other results for the possible applications in number 

theory. Part of our motivation came from the prime 

number theorem and the Riemann hypothesis. Also, it was 

an attempt to establish the relationship between these 

prime numbers classes and several as-yet unproved 

conjectures, such as Goldbach's Conjecture and Twin 

Prime Conjecture. 

The structure of this paper is as follows. In section 2, 

we begin with the definition of our equivalence relation 

and its equivalence classes  ̇ where   is a prime number, 

which constitute the fundamental object of study, and we 

propose some preliminary results. In section 3, we exhibit 

the main results of this work by introducing and studying 

the functions               and   . The methods used 

here are part of elementary number theory and we have 

attempted to present the ideas in as elementary a way as 

possible. Finally, in section 4, we give some open 

questions related this subject. 

Notation 

1) We set  

   1,

p x

x


   

this function count the number of primes less than  . 

2) We define the following functions: 

 

times

( ) ( ) ,

n

n x x      

 

times

1 1 1( ) ( ),

n

n y y         

where   is the composition operator. 

3) In many situations, we search to estimate ∑         , 

where    . Then, we use the following formula: 

 

2

( ) ( )
( ) .

ln ln

x

p x n x

f n f t
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2. Preliminary results 

2.1. The Classes  ̇ and Its Elements 

We start with the following lemma:  
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Lemma 2.1. Let     be the restriction of   to  . Then, 

        is a bijection and its inverse function is 

   
      .  

Notation. Throughout this paper, we simply use the 

notation   to designate the restriction of   to the set   

instead of using    .  

The proof of the following theorem is obvious.  

Theorem 2.1. We define the relation   on the set of prime 

numbers   defined by: if   and   are two prime numbers, 

    if and only if: 

1)         for any prime number  ,  

2) there exists      such that        .  

Then,   is an equivalence relation.  

Notation. The elements of the equivalence class  ̇  are 

defined by:  

         2 1 2, , , , , , .p p p p p p        

The smallest element of  ̇, which we denote by   , is 

called the origin of the class  ̇. Then, in this case, we note 

that the sets  ̇ and  ̇  have the same elements.  

Example 1. 

    2 2,3,5,11,31,127, ,7 7,17,59, .     

Notation. We denote by    the set of all origins   . The 

set    is given explicitly by:  

 0 {2,7,13,19,23,29,37,43 },   

and we denote by      the set of all origins less than or 

equal to  . 

Theorem 2.2. Let   be a prime number. Then,      is not 

a prime number implies that, for all    , there is no an 

integer   such that         .  

Proof. Let    . By the prime number theorem,        

represents the  -th prime number which we denote by 

         . 

Next,          , implies that                      

which is the       -th prime number, so we obtain the 

formula: 

       
 

1 1 1 2
1p p .p p

p p


      
    (4) 

Now, we use the equation (4) which composed by     

gives  

 2 1 1 2
1 1( ) ( )

p ( ) (p ) ( ( )),
p p

p p
 

      
     

that is the       -th prime number. We can write  

 1 1 2 3
1 2( ) ( )

(p ) ( ( )) p ( )
p p

p p
 

      
     

Inductively, we obtain the following general formula: 

 ( 1) ( )
p ( ), 1.n

n p
p n


 

     (5) 

To each number  , we associate the set   : 

 1 2{ ( ), 0} { , ( ), ( ), }n
pA p n p p p        . 

Now, suppose that      is not a prime number, we 

must prove that for all    , there is no     such that 

        . To show this, suppose that there exists a 

positive integer   such that          , i.e.,        

                 and we show that      is a prime 

number. Hence, we have,               if and only if 

         , which implies that                 
                    

But, for all                        is prime, 

which proves what we wanted.  

Remark. The cardinality of the set    is infinite.  

Theorem 2.3. There exists a partition   of the set of 

prime numbers   defined by 

 
1 2

{ , , , , },p p pn
P A A A    

such that    
      

        
         , where      

and       is not prime number.  

Proof. On the one hand, according to the prime number 

theorem, the number of prime numbers belonging to 

         is equal to           . On the other hand, by 

the Theorem 2.2, there are              prime 

numbers which do not belong to 

                      . We denote these numbers 

by           , where               . So, we 

obtain              of sets    
 which are defined by:  

 1{ , ( ), , ( )},
lpk

p k k kk
A p p p 

   

such that ∑        
              and           

      . Finally, it is not difficult to see that the sets 

   
     constitute a partition of the set of prime 

numbers less than or equal to  . So, since   is arbitrary in 

 , letting   tend to    we obtain an infinity of sets    
 

which then form a partition   of the set  .  

Theorem 2.4. Let   be a finite set of prime numbers 

defined by  

 1 2{ , , , },nA p p p   

such that                 are consecutive. Then, 

there exists at least one set  ̇    where    , such that 

 ̇     .  
Before giving the proof of this result, we give an 

illustrative example.  

Example 2. Let   be a set which defined by  

 {5,7,11,13,17}.A   

• The class of the integer   is  ̇         and its 

cardinality is greater than  .  

• We notice that    ̇, therefore the integer   constitutes 

the origin of a new class which is  ̇         and its 

cardinality is greater than  . It only remains to see that the 

prime number    does not belong to the two classes  ̇ and 

 ̇. Thus the prime number    constitutes the origin of a 

new class  ̇  and clearly its cardinality is  .  

Proof of theorem 2.4. We suppose that each class 

 ̇           containing at least two elements i.e., the 

cardinality of  ̇  is equal or greater than  , and we suppose 

that       is prime. According to the theorem of prime 

numbers, the interval            contains       
         prime numbers. This leads to the two 

following cases:  

• If    , i.e., there exists only one prime number in 

          , namely  . Therefore, we obtain          

and      is not a prime number since      and       are 
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consecutive. Then  ̇ contains only one element in   which 

is the prime number  .  

• If    , i.e., there exist at least two prime numbers in 

          , namely        . We suppose that    where 

         , is a prime number. Then      is not prime 

and since            , then, the unique element of  ̇    

is     .  

Finally, in both cases, there exist at least one class  ̇ 

where    , such that   is a unique element of this class 

in  , i.e.,  ̇     . The proof now is completed.  

We have the following definition:  

Definition 1. Let   be the set defined as in the Theorem 

2.4 and   is a prime number belonging to  . We say that  ̇ 

is an outside class of  , if  

   1     ( )  . .,| | 1  .p is not prime in A and p A i e p in A      

if   ̇    in  , we say that this class is an inside class of 

 . 

Remark. According to the Definition 1, the number   is 

the smallest element of the class  ̇ in  , therefore, it is the 

origin of this class i.e.,     . 

2.2. Study of                    

The function      
 

   
,         , is a contraction. 

Therefore, the sequence    defined by:  

 1 ( ) ,
ln

n
n n

n

x
x p x

x
    

admits a fixed point. Since    decreasing and is bounded 

below by            , then it converges to the single 

fixed point  .  

Notation.                 ⏞          
       

, where   is the 

function composition operator.  

Theorem 2.5. Let      be an initial value. Then  
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Proof. We set            and we have  
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x
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And combining all these, we obtain  
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Which is equivalent to 

 0
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  (8) 

Then, passing to the limit, we obtain  
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Consequently,  
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and since  

 lim ,n
n

x e


  

the formula (10) is obviously equivalent to 

 0

0

( ) ln ( ).i
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


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Which is the desired result.  

Lemma 2.2. Let            be the sequence which is 

decreasing and bounded below by  , and let     be a 

real number. Then, the number of iterations, which denote 

by      , is depend on   and the initial value     , and 

given by : 

 
0 0

ln ln
( , ) ~ ,as ,

lnln lnln
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c x
n x x 

 
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where     is a bounded value, and           , i.e., 

   depend on  . 

Proof. We have  

 2 1 1 1 0 1 1 0'( ) , [ , ],x x p x x x x      

where    is the derivative of the function    

  '
3 2 2 2 1 2 1 1 0'( ) '( ) ,x x p x x p p x x        

where,             Inductively, we obtain  

 1 1 0 1
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'( ) . , [ , ].
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n n i n n n
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

 
    
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  

Next, there exists a real number           , such that 

 1 0 1 0'( ) .
n

n nx x p x x     

Or in an equivalent way, since,              and 

   , 

    1 0 0 1'( ) . .
n

n nx x p x x    

We can extract the value of   from the above equality:  

 1 0 1

0 0

ln( ) ln( )
,

ln '( ) ln '( )

n nx x x x
n

p p 

 
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and replacing    by its value, we get  

 1 0 1

0 0 0 0

ln( ) ln( )

ln(ln 1) 2lnln ln(ln 1) 2lnln

n n
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x x x x
n
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 
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   
 

Now, according to the definition of  , the sequences    

and      are bounded, then it holds for the difference 
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        which we denote it by  . Then, we have, by 

setting      and             : 

 

 
 0 0

1

0 0

ln
,

ln ln 1 2lnln

ln( )

ln(ln 1) 2lnln
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c

n x

x x
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 (12) 

Finally, we have the following limits:  

 0  as ,x     

 0 0 0ln(ln 1) 2lnln lnln as ,x        

 1 as ,x x x x     

then,  

 
0 0
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c x
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 
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3. Principal Results 

3.1. Definition and Estimate of the Functions 

        and   

We set the following definition:  

Definition 2. Let        . We define  

 0
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Then             counts the number of prime numbers 

less than or equal to   belonging to the class  ̇ .  

Lemma 3.1. We have  

 0 0( , )~ ( , )~ ( , ), as .iter iter iterx p n x n x p x    

Proof. According to the definition of  , there exists     

such that           . Next, from the prime number 

theorem, we have  
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x
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Moreover, supposing that          with       not a 

prime number, it follows that  
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And,  
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as      
Definition 3. Let    . We define the functions         

and         as follows: 
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Theorem 3.1. We have  

 0( , )~ln (ln ).x p x o x   

Proof. In view of the proof of Lemma 3.1, we have,  

   0 0
0 0

0 00 0

ln ln ( ) ~ ln ln ~ ,
n n

i i

i i

x x
x x x p x

p p


 

   

which is equivalent to 
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Finally, for all fixed    and   tend to infinity, we have 

           , then  

  
0

0
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i.e.,                      
Theorem 3.2. We have, 
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Proof. 

1) For the proof of the first formula, we have, on the one 

hand  
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Then we obtain  
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On the other hand, for all           with     
 , we have  
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Then 
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    
 0

0

,
, ln .

ln δ ln ln
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x p x
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 
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Now, according to Lemma 3.1, 

        (           ) , and then for x  sufficiently 

large (depending on  ),                        , 

and thus  

  
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Now, for all    , we can choose   more near to 1. 

For this , so that 
 

 
    , and for   sufficiently large, 

we have  
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2) According to Theorem 3.1, we have  
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3) Concerning the third equality, we have 
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 

 

 

 



 
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However, for   [√   ]  

      
,, ,00 0

1 1 1p t p t p t
p x p px p x p p p x p p

  
     

     
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By using             , since  

    0 0
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, , ln ln ln ln ln .
ln ln

iter
x

x p x p x x x
x

     

we obtain  
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iter
x
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Then,             
       

     
  (

   

     
)   

3.2. Definition and Estimate of    and    

3.2.1. Definition and Estimate of    

Definition 4. 

1. Let   be a positive real number. We denote by       

the number of different classes  ̇  such that      . 

Precisely, 

 0 0

0

( ) : 1, .c

p x

x p


   

2. We denote by       the function defined by  

 0 0

0

( ) n .l

p x

x p


   

Example 3. In        , the value   represents the origin 

of the class  ̇  but the values        do not, since they 

belong to the same class  ̇ . The value   represent the 

origin of the class  ̇. Thus in this case, we have        .  

We have the following result: 

Theorem 3.3. We have,  

 lim ( ) .c
x

x

 


   

Proof. Suppose that the number of different classes is 

finite as    . We know that  

 

0

1
.

ii
p






  (13) 

Next, let   
   ̇ , where   is finite by hypothesis. We 

obtain  

 

0 0

1 1
.

k
ii k i i

p p

 

  

   

Therefore, we have 

0

1

k
i ip





  , and since the second 

sum has a finite number of terms, we deduce  
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0

1
,

k
k i ip



 

    

which contradicts formula (13).  

Theorem 3.4. Let         . Then  

 ( ) ( ) ( ( )).c x x x      (14) 

Proof. To find the value of       means that we estimate 

the number of origins   . Clearly, the prime number    is 

an origin that means       is not a prime number. Then, 

let    be between   and  , and let         be the 

greatest prime number in      , therefore         is not a 

prime number and for all integer    ,             

       . So, we only have to search the numbers which 

are not primes and less than        . Thus, we have 

1° The number of the even numbers less than or equal 

to      equal to 
       

 
.  

2° The number of the odd numbers less than or equal to 

     equal to 
       

 
            such that            is 

the number of the prime numbers less than or equal to     .  

Next, we add the two quantities, we obtain, since 

      , the quantity       which is equal to  

 ( ) ( ) ( ( )).c x x x      

3.2.2. Estimate of    

For all initial value     , we define the following 

sequence:  

 1 ln .n n ny y y   (15) 

It is not difficult to see that, this sequence is stationary 

for      and increasing divergent to infinite for      

and as    . It is clear that, inductively,            
                     

 , then we have the 

following consequence:  

Lemma 3.2. We have,  
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
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
   


 

where    represents the origin of the classes  ̇.  

Proof.. Since for all         , we have       
   , 

then  
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In the expression:  

 0

ln ,0 0

,ln ln
np p x n

p



  

the value of   obviously depends on    and if we denote 

by    
, then, we have  

 
0

0

~ ( ),p

p

n x  

i.e., the number of elements of the form     
      must 

be equal to number of prime numbers    . 

According to the formula (3), we have  

 
lnln

lnln ,
ln

p x

x x
p

x


  

therefore, the inequality is obtained directly by 

substitution. 

Proposition 3.1. We have, 
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x x x

x x
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 (16) 

 0( )~ as ..x x x   

Proof. 

1. We have  

 

0
0

2

0

0

ln
lnln

( ) ( ( ))
lnln

lnln
ln ( ( ) ( ( ))) ln .

ln

p x

p x

p
x x

x x
xx

x x
p x x x

x

  

  





  

   





 

Moreover, since  
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And recalling that  
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We obtain 

 

0

0

lnln
ln ln

ln ln (ln lnln ) ln

1 lnln
1 .

ln lnln ln

p x

x x x x
p x

x x x x x

x
x

x x x



 
   

 

 
   

 


 

The second inequality is obtained in the same way,  
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
 

2. It is enough to tend   to    in the inequality (16). 

4 Conclusion and Future Work 

There is a lot of results on properties of prime numbers. 

There are innumerable ideas in this field regarding the 

randomness of prime numbers. However, it turns out that 

prime numbers do not appear absolutely randomly, 

meaning, it is not entirely true that there is no way 

whatsoever to see some relations and find some functions 
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to generate a lenght of few prime numbers. Patterns do 

emerge in the distribution of primes over varied ranges of 

number sets. In this paper we have investigated sequences 

of primes obtained by the equivalence relation  , from 

which we have associated various arithmetic functions. As 

we have seen in the sections above, many classical results 

stated in elementary number theory can be restated with 

our sequences. Also, there are many other asymptotic 

formulas can be deduced, we have just presented several 

of them as examples. 

As far as motivation, the concern relates to the 

developing of new ideas for solving great unsolved 

problems and conjectures encountered in this field. 

A highly intriguing area in primes is the concept of twin 

primes. These are prime numbers which differ by the 

number   for example:   and  ,   and  ,    and   , etc. 

There is an attempt being made to prove that there are 

infinitely many twin primes that exist in the natural 

number system. These are the concepts that come to mind. 

Others are pretty much minor results. 

Yitang Zhang, in his paper [3], attacked the problem by 

proving that the number of primes that are less than    

million units apart is infinite. While    million is a long, 

long way away from  , Zhang's work marked the first 

time anyone was able to assign any specific proven 

number to the gaps between primes. 

In November     , James Maynard, in [4] , introduced 

a new refinement of the GPY sieve, allowing him to 

reduce the bound to     and show that for any   there 

exists a bounded interval containing   prime numbers. 

At the present time, let me explain and share some 

general ideas and questions about my future work. Firstly, 

the questions raised are very broad in scope and cannot be 

addressed directly. This means that, it is preferable to 

resort to a methodology (plan in stages) to tackle the great 

problems in a structured manner. Secondly, for that reason, 

we have proposed and developed the results of this paper 

(see the problem 1 and 2). 

Finally, here are just a few questions and conjectures a 

little more direct, I think are important.  

Problem 1 The twin prime conjecture is equivalent to 

conjecturing the translates of the               (the 

values of the pair        ) are simultaneously prime 

values infinitely often. The question is: show that if the 

                are simultaneously prime values 

infinitely often then the                       are 

simultaneously twin primes infinitely often, and then the 

twin prime conjecture is true. We have posed this question 

from the perspective of finding recurrence relation 

between primes. 

Problem 2 Let    and      be twin primes. Show that  
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1 1 3 2
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( ) ( ) ~ ( ln ).
i n

i i

i

p p O n n 


 



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  

Problem 3  

1. Does the set    contain an infinity of twin primes? 

2. Let       fixed. Are there an infinity of primes of 

the form         such that           is prime? 

3. Study of  

 

0

1
,     ,

1
1p

s

s is a complex number

p
 
  

There is continuing research to prove these conjectures 

and questions rigorously, using the results of this paper 

and advanced techniques in number theory in the next 

work.  
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