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Abstract  The object of the present paper is to study some properties of curvature tensor R  of a semi-symmetric 
non-metric connection ∇  in a type of special paracontact Kenmotsu (briefly SP-Kenmotsu) manifold. We have 
deduced the expressions for curvature tensor R  and the Ricci tensor S  of Mn with respect to semi-symmetric non-
metric connection ∇ . It is proved that in an SP-Kenmotsu manifold if the curvature tensor of the semi-symmetric 
non-metric connection vanishes then the manifold is projectively flat. 
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1. Introduction 
Friedmann and Schouten [1,2] introduced the idea of 

semi-symmetric linear connection on a differentiable 
manifold. Hayden [3] introduced semi-symmetric metric 
connection on a Riemannian manifold and it was further 
developed by Yano [4]. Semi-symmetric connections play 
an important role in the study of Riemannian manifolds. 
There are various physical problems involving the semi-
symmetric metric connection. For example, if a man is 
moving on the surface of the earth always facing one 
definite point, say Jaruselam or Mekka or the North pole, 
then this displacement is semi-symmetric and metric [1]. 
In 1975, Prvanovi´c [5] introduced the concept of semi-
symmetric non-metric connection with the name pseudo-
metric, which was further studied by Andonie [6,7]. The 
study of semi-symmetric non-metric connection is much 
older than the nomenclature ’non-metric’ was introduced. 
In 1992, Agashe and Chafle [8] introduced a semi-
symmetric connection ∇  satisfying 0X g∇ ≠  on a 
Riemannian manifold, and called such a connection as 
semi-symmetric non-metric connection. Later, the 
curvature properties of the connection in an SP-Sasakian 
manifold were studied by Bhagwat Prasad [9], and many 
others. 

On the other hand, in 1976, Sato [10] defined the 
notions of an almost paracontact Riemannian manifold. 
After that, T. Adati and K. Matsumoto [11] defined and 
studied para-Sasakian and SP-Sasakian manifolds which 
are regarded as a special kind of an almost contact 
Riemannian manifolds. Before Sato, in 1972, Kenmotsu 

[12] defined a class of almost contact Riemannian 
manifolds satisfying some special conditions. In 1995, 
Sinha and Sai Prasad [13] have defined a class of almost 
paracontact metric manifolds namely para Kenmotsu 
(briefly P-Kenmotsu) and special para Kenmotsu (briefly 
SP-Kenmotsu) manifolds.  

In 1970, Pokhariyal and Mishra [14] have introduced 
new tensor fields, called W and E-tensor fields in a 
Riemannian manifold and studied their properties. In the 
present paper, we consider the W-curvature tensor of a 
semi-symmetric non-metric connection and obtained a 
relation connecting the curvature tensors of Mn with 
respect to semi-symmetric non-metric connection and the 
Riemannian connection. It is proved that in an SP-
Kenmotsu manifold if the curvature tensor of the semi-
symmetric non-metric connection vanishes then the 
manifold is protectively flat.  

Let Mn be an n-dimensional differentiable manifold 
equipped with structure tensors (Φ , ξ, η) where Φ is a 
tensor of type (1, 1), ξ is a vector field, η is a 1-form such 
that 

 ( ) = 1η ξ  (1.1) 

 2 ( ) = ( ) ; =X X X X Xη ξΦ − Φ  (1.2) 

Then Mn is called an almost paracontact manifold. 
Let g be the Riemannian metric in an n-dimensional 

almost paracontact manifold Mn such that 

 ( , ) = ( )g X Xξ η  (1.3) 

 = 0, ( ) = 0, rank = 1X nξ ηΦ Φ Φ −  (1.4) 

 ( , ) = ( , ) ( ) ( )g X Y g X Y X Yη ηΦ Φ −  (1.5) 
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for all vector fields X and Y on Mn. Then the manifold Mn 
[10] is said to admit an almost paracontact Riemannian 
structure (Φ , ξ, η, g) and the manifold is called an almost 
paracontact Riemannian manifold. 

A manifold Mn with Riemannian metric ‘g’ admitting a 
tensor field Φ of type (1, 1), a vector field ξ and 1-form η 
satisfying equations (1.1), (1.3) along with  

 ( ) ( ) = 0X YY Xη η∇ − ∇  (1.6) 

 
( ) = [ ( , ) ( ) ( )] ( )

[ ( , ) ( ) ( )] ( )
X Y Z g X Z X Z Y

g X Y X Y Z
η η η η

η η η
∇ ∇ − +

+ − +
 (1.7) 

 2= = ( )X X X Xξ η ξ∇ Φ −  (1.8) 

is called a para Kenmotsu manifold or briefly P-Kenmotsu 
manifold [13], where 𝛻𝛻 is the covariant differentiation 
with respect to g.  

It is known that [13] on a P-Kenmotsu manifold the 
following relations hold:  

 ( , ) = ( 1) ( )Ric X n Xξ η− −  (1.9) 

 
[ ( , ) , ] = [ ( , , )]

= ( , ) ( ) ( , ) ( )
g R X Y Z R X Y Z

g X Z Y g Y Z X
ξ η

η η−
 (1.10) 

where R is the Riemannian curvature. 
Let (Mn, g) be an n-dimensional Riemannian manifold 

admitting a tensor field Φ of type (1, 1), a vector field ξ 
and 1-form η satisfying 

 ( ) = ( , ) ( ) ( )X Y g X Y X Yη η η∇ −  (1.11) 

 ( , ) = ( ) and ( ) = ( , ), 
where  is an associate of  

Xg X X Y X Yξ η η φ
φ

∇
Φ

 (1.12) 

is called a special para Kenmotsu manifold or briefly SP-
Kenmotsu manifold [13]. 

A linear connection ∇  in a Riemannian manifold Mn is 
said to be semi-symmetric connection if its torsion tensor 
T satisfies  

 ( , ) = ( ) ( ) .T X Y Y X X Yη η−  (1.13) 

A semi-symmetric non-metric connection ∇  in an 
almost paracontact metric manifold with torsion tensor 
(1.13) is given by  

 = ( )X XY Y Y Xη∇ ∇ +  (1.14) 

where 𝛻𝛻 is a Riemannian connection with respect to 
metric g [8]. 

Apart from conformal curvature tensor, the projective 
curvature tensor is an other important tensor from the 
differential geometric point of view. The Weyl-projective 
curvature tensor W of type (1, 3) of a Riemannian 
manifold Mn with respect to the Riemannian connection is 
defined by [14] 

 
 ( , )1( , ) ( , )

 ( , )1
Ric Y Z X

W X Y Z R X Y Z
Ric X Z Yn

 
= −  −−  

 (1.15) 

for X, Y, Z ( ) ,T M∈  where R is the curvature tensor and 
Ric is the Ricci tensor. If there exists a one-to-one 
correspondence between each coordinate neighbourhood 
of a Riemannian manifold Mn and a domain in Eucledian 
space such that any geodesic of the Riemannian manifold 

corresponds to a straight line in the Eucledian space, then 
Mn is said to be locally projectively flat. For 3,n ≥  Mn is 
locally projectively flat if and only if the projective 
curvature tensor W vanishes. For n = 2, the projective 
curvature tensor identically vanishes. 

2. Curvature Tensor 

The manifold Mn is considered to be an SP-Kenmotsu 
manifold. Let us denote the curvature tensor of the semi-
symmetric non-metric connection ∇  by R  and the 
curvatre tensor of 𝛻𝛻 by R. By straight forward calculation, 
we get  

 
( , , )

= ( , , ) ( )( ) ( )( ) .X Y

R X Y Z
R X Y Z Z Y Z Xη η+ ∇ − ∇



 

 (2.1) 

As a consequence of equations (1.11) and (1.14), 
equation (2.1) reduces to  

 ( , , ) = ( , , ) ( , ) ( , )R X Y Z R X Y Z g X Z Y g Y Z X+ −  (2.2) 

which is the relation between the curvature tensors of Mn 
with respect to the semi-symmetric non-metric connection 
∇  and the Riemannian connection ∇ . 

It is well known that a Riemannian manifold is of 
constant curvature if and only if it is projectively flat or 
conformally flat [15] and in general, the necessary and 
sufficient condition for a manifold with a symmetric linear 
connection to be projectively flat is that the projective 
curvature tensor with respect to it vanishes identically on a 
manifold [16].  

As an example, if Mn is a Riemannian manifold with 
vanishing curvature tensor with respect to semi-symmetric 
non-metric connection, then Mn is projectively flat [8]. 
Analogus to this, we prove the following for an  
SP-Kenmotsu manifold which is Riemannian. 
Theorem 2.1: If in an SP-Kenmotsu manifold Mn the 
curvature tensor of a semi-symmetric non-metric 
connection ∇  vanishes, then the manifold is projectively 
flat. 
Proof: Since R = 0, then equation (2.2) gives  

 ( , , ) = ( , ) ( , ) .R X Y Z g Y Z X g X Z Y−  (2.3) 

On contracting the above equation, we get  

 ( , ) = ( 1) ( , ).Ric Y Z n g Y Z−  (2.4) 

Then, by (2.3) and (2.4), we get 

 1( , , ) [  ( , )  ( , ) ] = 0
1

R X Y Z Ric Y Z X Ric X Z Y
n

− −
−

(2.5) 

or W = 0 from (1.15), proves that the manifold is 
projectively flat. 
Theorem 2.2: If in an SP-Kenmotsu manifold the Ric 
tensor of a semi-symmetric non-metric connection ∇  
vanishes, then the curvature tensor of ∇  is equal to the 
projective curvature tensor of the manifold Mn. 
Proof: From equation (2.2), we have  

( , , , )
= ( , , , ) ( , ) ( , ) ( , ) ( , ).

R X Y Z U
R X Y Z U g X Z g Y U g Y Z g X U+ −



(2.6) 
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On contracting the above equation, we get  

 ' ( , ) = ( , ) ( 1) ( , ).Ric Y Z Ric Y Z n g Y Z− −  (2.7) 

Since 'Ric  = 0, we have  

 1( , ) = [  ( , )].
1

g Y Z Ric Y Z
n −

 (2.8) 

From equations (2.2) and (2.8), we have R  = W. 
Theorem 2.3: In an SP-Kenmotsu manifold the projective 
curvature tensor of a semi-symmetric non-metric 
connection ∇  is equal to the projective curvature tensor 
of the manifold. 
Proof: From equations (2.2) and (2.7), we get  

 

'  ( , )1( , , ) = ( , , )
 ( , )1

1    ['  ( , )  ( , )] .
1

Ric Y Z
R X Y Z R X Y Z X

Ric Y Zn

Ric X Z Ric X Z Y
n

 
+  −−  

− −
−



 (2.9) 

The terms of the equation (2.9) can be rearranged as  

 

1( , , ) [ '  ( , ) '  ( , ) ]
1
1= ( , , ) [  ( , )  ( , ) ]

1

R X Y Z Ric Y Z X Ric X Z Y
n

R X Y Z Ric Y Z X Ric X Z Y
n

− −
−

− −
−



(2.10) 

which is ‘W = W, where ‘W is the Weyl projective 
curvature tensor with respect to the semi-symmetric non-
metric connection. 
Theorem 2.4: In an SP-Kenmotsu manifold with semi-
symmetric non-metric connection ∇  we have 

a) ( , , ) ( , , ) ( , , ) = 0R X Y Z R Y Z X R Z X Y+ +     

b) ' ( , , , ) ' ( , , , ) = 0R X Y Z U R X Y U Z+    
Proof: Using the Bianchi’s first identity with respect to 
the Riemannian connection equation (2.2) gives (a). From 
equation (2.6) we get (b).  
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