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Abstract Following the definition of g-Frobenius-Euler polynomials introduced in [3], we derive some new
symmetric identities under sym (5), also termed symmetric group of degree five, which are derived from the

fermionic p-adic g-integral over the p-adic numbers field.
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1. Introduction

As it is known, the Frobenius-Euler polynomials
Hp(x) for 2eC with || >1 are defined by means of

the power series expansion at t =0
" 1-2
e

ioHnm _

nl el_2

(1.1)

Taking x = 0 in the Eq. (1.1), we have H,(0):=H,

that is widely known as n-th Frobenius-Euler number cf.
[3,4,5,8,17,18,21].

Let p be chosen as a fixed odd prime number.
Throughout this paper, we make use of the following
notations: Z, denotes topological closure of Z , Q

denotes the field of rational numbers, Qp denotes
topological closure of Q, and C, indicates the field of
p-adic completion of an algebraic closure of Qp. Let N

be the set of natural numbers and N* = N {0}.
For d an odd positive number with (p,d) =1, let

X :=Xq =limz/dpNZ and X, =7,
n
and

a+deZID ={XG X |xza(modde)}

where aeZ lies in Ogagde . See, for details,

[1,2,3,4,6-17].

The normalized absolute value according to the theory
of p-adic analysis is given by |p|p =pt. q can be
considered as an indeterminate a complex number qeC
with |gf<1 , or a p-adic number gqeC, with

b
|q—]4p <p P and g* =exp(xlogq) for |x|p <1 Itis

always clear in the content of the paper.
Throughout this paper, we use the following notation:

: (1.2)
1-¢

which is called g-extension of x. It easily follows that

Iim(Hl[x]q =x forany x.

Let f be uniformly differentiable function at a point
aeZp, which is denoted by erD(Zp). Then the
p-adic g-integral on Z, (or sometimes called g-
Volkenborn integral) of a function f is defined by Kim [10]

Ny

pz f(x)g*.(1.3)

x=0

(D=1, 1000 ()= N@Qﬁ

It follows from the Eq. (1.3) that
lim 1 (f)=1_1(f)= f(x)d
Jim 1g(F)=1a(f)=], (XM (x)
(1.4)
= lim
N —w0 ¥=0

Thus, by the Eq. (1.4), we have
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where f,(x)=f(x+n),(neN.). For the applications of

fermionic p-adic integral over the p-adic numbers field,
see the references, e. g., [1,2,3,4,6,7,9,11,12,16].

In [3], the g-Frobenius-Euler polynomials are defined
by the following p-adic fermionic g-integral on Z , , with

i)

respectto p_;:

(1.5)
/1+1
j ly[x+y] du_y(y).
Upon setting x = 0 into the Eq. (1.5) gives
Hpq(0):=Hp 4 which are called n-th g-Frobenius-Euler
number.

By letting g —» 1" in the Eqg. (1.5), it yields to

lim H x|—ﬂf1 =H x|—}f1
g (312 = o (1127
/1+1
j A (x+y)d g (y).
Recently, many mathematicians have studied the

symmetric identities on some special polynomials, see, for

details, [1,6,7,9,12]. Some of mathematicians also
investigated some applications of Frobenius-Euler
numbers and polynomials (or its g-analog) cf.

[3,4,5,13,14,15,16]. Moreover, Frobenius-Euler numbers
at the value A = -1 in (1.1) are Euler numbers that is
closely related to Bernoulli numbers, Genocchi numbers,
etc. For more information about these polynomials, look
at [1-21] and the references cited therein.

In the present paper, we obtain not only new but also
some interesting identities which are derived from the
fermionic p-adic g-integral over the p-adic numbers field.
The results derived here is written under Sym (5).

2. Symmetric  Identities
g-Frobenius-Euler Polynomials

Involving

For w; e N with w; =1(mod2) with ie{12,34,5},
by the Egs. (1.3) and (1.5), we obtain

Wi WoWawgy

W WRW3WAW5X

+W5WAWo W3l

+FW5WAWW3 |

+W5Wa W Wok

+HW5W3WWoh

J‘Z Aawowaway o 9 duy(y)
(2.1)
W WoW3Wg Y
+HW W W3WAWE X
+HW5WAWoW3i
+WEWAW W3 |
N +HW5 WA W Wok

p-1
:i ||m (_1))’ iW_|_W2W3W4y e +W5W3W_|_W2h q

N
ws-1p™ -1

3 (-1 2 awwgwy (1+wsy)
y=0
[MW2W3W4(|,+W5y)+MW2}N3W4W5X] t

FWEWAWRW3I+W5WAW W3 )
+W5W4 W Wo K +WsW3wgwoh

_q\i+jtk+h

. WEW4 W W3+ W5 WA WA W3 |
i=0 j=0 k=0 h=0 ) +W5 Wz W WoK +Wsw3wywoh

on the both sides of Eq. (2.1) gives
(_1)i+j+k+h

yony WEWAWR W3+ W5 WA W W3 J
i=0 j=0 k=0 h=0| ,\+Wswawwok+Wswawiwah

WW2W3W4 Y
TWWRWIWAW5X
+W5WA W W3
FWEWAWW3 |
+Wi5 W4 Wy Wok

+WsW3wwoh
XJ‘Z AMW2W3W4Y o 9 duy(y)

w—1wo —1wz—-1wg-1wg—1 p -1

“im Y TS Y Y (-

N—>% {25 j=0 k=0 h=0 1=0 y-0
[V\Q_W2W3W4(|+W5y)+W5W4W2W3I }
A

|+j+k+h+y+|

(2.2)

+HW5WAW W3 J+W5WAW Wok +WsWawiwoh

+WEWAWR Wi+ WEWAW W3 ]

VV_‘|_W2W3W4(|+W5y)+W_‘|_W2W3W4W5X t
+W5W4 W WoK +W5w3wywoh q

xe

Note that the equation (2.2) is invariant for any
permutation o €Ss. Hence, we have the following
theorem.

Theorem 1. Let w; eN with w; =1(mod2) with

i €{1,2,3,4,5}. Then the following

(_1)i+j+k+h

EXP([Wor(1) Wer(2) Wor(3) Wor(4) Y
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holds true for any o € Ss.
By Eg. (1.2), we easily derive that

Wy Wy WaWy Y + Wy Wy W W4 Wi X + W5W4W2W3i
+ Wi W,y Wy W3 J + Wi W Wi Wo K + Wis WaWg Wy 1 q

y+w5x+£i (2.3)

=W wowawy ]q
Y5 j s s

Wo Ws Wy quW2W3W4
From Eq. (2.1) and (2.3), we obtain

WW2W3WAY
FWWRW3W4 W5 X
+HW5WAWo W3
FWEWAWIW3 )
+W5W4 W Wok

h
J‘Z : 2 MwowWawaY o +FWEWIWIW2 9 A, (y)

= Z [W1W2W3W4]?,
n=0
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r n

W .
Y+ WX+ —=I

Wl n
X od —,
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Wy Ws
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+—2h
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(2.4)

from which, we have

W WoW3Wa Y

+ Wy Wy W3 Wy Wi X
+Wi5 W Wy Wi

+ W5 Wy Wy W |
+W5 W, Wy Wo K

J‘Zp 2 wpwawgy duq(y)

(2.5)

[ +Wswawwoh - |

_ 2 "H
—m[""lW2W3W4]q n.qMW2WaWa

[st&i&,ﬂk&m_z—mwzwsw]_
W Wy W3 Wy
(n>0).

Thus, by Theorem 1 and (2.5), we procure the
following theorem.

Theorem 2. For w; eN with w; =1(mod2) with
i €{1,2,3,4,5}, the following

holds true for any o € Sg.
It is shown by using the definition of [x], that

n
{y+w5x+%i+kj+%k +kh}
W

Wp o W3 Wy wawowgwy
¢ (n )[ [ws], J”_m
meo\M/| [awzvgwa (2.6)
Wy Wy Wi + Wy Wy W3 m
- szlwlwzk + W3 Wy Wy h:|q\l\15
P (et Ay m
q [y+ W5X]qW1W2W3W4 '

Taking J'Z AM2Y3M4Yd 1 4 (y) on the both sides of
p

Eq.(2.6) gives

r an
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2 )

[ W W Wai + Wy Wy Wy j + Wy Wy Wk + W3W1W2h]2v_vg
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xH (W5X | -~ "234 )
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By the Eq. (2.7), we have

A41"stwet
[W1W2W3W4]g > 2
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i=0 j=0 k=0 h=0
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C Wo, Wa, W, | M

g™ (W, Wy, w3, Wy [ M)
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Consequently, by (2.9), we get the following theorem.
Theorem 3. Let w;eN with w; =1(mod2) with

i €{1,2,3,4,5}. Then the following expression

n n - .
mgo(mj[Wo'(l)Wo'(Z)Wo-(:;)WO_(A) :|q [W5 ]q

e
Wor(3)Wor(4
xH nqug(l)wo'(z)wd(3)wa(4) Wy (5)% |-

C. (s (o) o2 Yore) o) )

holds true for some o € Sg.

3. Conclusion

We have derived some new interesting identities of
g-Frobenius-Euler polynomials. We also showed that
these symmetric identities are written by symmetric group
of degree five.
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