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1. Introduction 
In [3], N. Elezović and J. Pečarić established the 

following theorem. 
Theorem A ([3]). Let :f I R R⊆ →  and ,a b I∈  . Then 
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is Schur-convex (Schur-concave) on 2I  if and only if f  
is convex (concave) on .I  

In [7,10], Theorem A was generalized as the following 
theorem. 

Theorem B ([7,10]). Let  be a continuous function 
and  a positive continuous weight on an interval . Then 
the weighted arithmetic mean of  with weight  defined 
by 

 
( ) ( )d

, ,
( , ) ( )d

( ),

y
x

y
x

p t f t t
x y

G x y p t t

f x x y


 ≠= 

 =

∫
∫  

is Schur-convex (Schur-concave) on  if and only if  
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holds (reverses) for all . 
For more information on this topic, please refer to 

[5,8,9] and closely-related references therein. 

In this paper, we discuss Schur-geometric and Schur-
harmonic convexity of the mean  and obtain two 
results which generate Theorem A. 

2. Definitions and Lemmas 
In order to prove our main results we need the 

following definitions and lemmas. 
Definition 1 ([4]). Let I R⊆  and 1( , , )nx x x= ⋅⋅⋅ , 

1( , , ) ,n
ny y y I= ⋅⋅⋅ ∈ and let : .nI Rϕ →  

(1) x  is said to be majorized by y (in symbols x y ) 

if [ ] [ ]1 1
k k

i ii ix y= =≤∑ ∑  for 1, 2, , 1k n= ⋅⋅⋅ −  and 

[ ]1 1
n n

ii ix y= ==∑ ∑[i] , where [1] [ ]nx x≥ ⋅⋅⋅ ≥  and 

[ ]ny y≥ ⋅⋅⋅ ≥[1]  are rearrangements of x  and y  in a 
descending order.  

(2) x y≤ means i ix y≤  for all 1, 2, , .i n= ⋅⋅⋅  φ  is said 
to be increasing if x y≤  implies ( ) ( )x yϕ ϕ≤ . φ  is said 
to be decreasing if and only φ−  is increasing. 

(3) φ  is said to be a Schur-convex function on nI  if 

x y  on nI  implies ( ) ( )x yϕ ϕ≤ . φ  is said to be a 

Schur-concave function on nI  if and only φ−  is Schur-
convex function. 

Definition 2 ([1,2]). Let 1( , , )nx x x= ⋅⋅⋅ , 1( , , )ny y y= ⋅ ⋅ ⋅  

+
n nI R∈ ⊆  and : nI Rϕ →  and let 1ln (ln , , ln ),nx x x= ⋅⋅⋅  

( )1 1 1
1

, ,x x xn
= ⋅⋅⋅ . 

(1) φ  is said to be a Schur-geometrically convex 

function on nI  if ln lnx y  on nI  implies ( ) ( )x yϕ ϕ≤ . 
φ  is said to be a Schur-geometrically concave function on 
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nI  if and only φ−  is Schur-geometrically convex 
function. 

(2) φ  is said to be a Schur-harmonically convex 

function on nI  if 1 1
x y  on nI  implies ( ) ( )x yϕ ϕ≤ . φ  

is said to be a Schur-harmonically concave function on nI  
if and only φ−  is Schur-harmonically convex function. 

Lemma 2.1([1]). Let 2 2
+: I R Rϕ ⊆ →  be a continuous 

function on 2I and differentiable in interior of 2I . Then 
ϕ is Schur-geometrically convex (Schur-geometrically 
concave) if and only if it is symmetric and 
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for all , .a b I∈  

Lemma 2.2 ([2]). Let 2 2
+: I R Rϕ ⊆ →  be a 

continuous function on 2I  and differentiable in interior of 
2I . Then ϕ  is Schur-harmonically convex (Schur-

harmonically concave) if and only if it is symmetric and 
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for all , .a b I∈   
For two positive numbers 0a >  and 0b > , define 
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It is well known that ( , )A a b , ( , )G a b , ( , )H a b and 
( , )sL a b are respectively called the arithmetic, geometric, 

harmonic and generalized logarithmic means of a  and .b  
Lemma 2.3 ([6]) ( , )rL a b  is increasing function on 

2
+( , )a b R∈ . 

In this paper, we will prove that the function ( , )F a b  is 
Schur-geometrically convex and Schur-harmonically 
convex on 2

+R . 

3. Main Results 
Theorem 3.1. Let :f I R R+⊆ →  and F be defined in 

Theorem A. 
(i). If f is convex and increasing on I , then F is 

Schur-geometrically convex on 2I . 

(ii). If f is concave and decreasing on I , then F is 

Schur-geometrically concave on 2I . 
Proof. If ,a b I∈   and a b= , we have ( , ) ( ).F a a f a=  

For all , ,a b I a b∈ ≠ , a straightforward computation 
gives 
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If f is convex and increasing on I , by the inequality 
(2), we obtain 
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Hence, ( , )F a b  is Schur-geometrically convex on 2I . If 
f  is concave and decreasing on I , then the inequality (4) 

is reversed. According to Lemma 2.1, it follows that 
( , )F a b  is Schur-geometrically concave 2I . This 

completes the proof of Theorem 3.1. 
Theorem 3.2. Let :f I R R+⊆ →  and F be defined in 

Theorem A. 
(i). If f is convex and increasing on I , then F is 

Schur-harmonically convex on 2I . 
(ii). If f is concave and decreasing on I , then F is 

Schur-harmonically concave on 2I . 
Proof . If ,a b I∈   and a b= , we have ( , ) ( ).F a a f a=  

For all , ,a b I a b∈ ≠ , if f is convex and increasing, 
using inequality (3) and (2), we get  
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Therefore, ( , )F a b  is Schur-harmonically convex function 

on 2I . If f  is concave and decreasing function on I , 
then the inequality (5) is reversed. According to Lemma 
2.2, it follows that ( , )F a b  is Schur-harmonically concave 

function on 2I . The proof of Theorem 3.2 is complete. 
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4. Applications 
Theorem 4.1. For 0a >  and 0b > , if 1r ≥ , then 
( , )rL a b  is Schur-geometrically convex and Schur-

harmonically convex. 
Proof. Taking ( ) rf x x=  for all x R+∈ , if a b≠ , it 

follows that 
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and ( ) rf x x=  is convex increasing on R+  for 1r ≥ . 
Therefore, by Theorem 3.1 and 3.2, we have  
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is Schur-geometrically convex and Schur-harmonically 
convex on 2R+  for 1r ≥ , then ( , )rL a b  is Schur-
geometrically convex and Schur-harmonically convex on 

2R+  for 1r ≥ . Thus, Theorem 4.1 is proved. 
Corollary 4.1.1. For 0b a> > and 1r ≥ , define 

(1 )au ta t b= + − , (1 )av t a tb= − + , 1t t
gu a b −= , 

1 t t
gv a b−= , 1 1(1 )hu ta t b− −= + − ，  and 

1 1(1 )hv t a tb− −= − +  for (0,1)t∈ . Then 
(1) when (0,1)t∈  and 1/ 2t ≠ , we have  
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(2) when =1/ 2t , we have 

 ( , ) ( , ) ( , )= ( , ).rH a b G a b A a b L a b≤ ≤  

Proof. When =1/ 2t , it is easy to obtain that 
( , ) ( , ) ( , ).rH a b G a b L a b≤ ≤  When (0,1)t∈  and 1/ 2t ≠ , 

by Corollary 2 in [6] and Lemma 2.3, Corollary 4.1.1 is 
thus proved. 
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