C) Science and Education Publishing

Backward Orbit Conjecture for Lattès Maps

Vijay Sookdeo*
Department of Mathematics, The Catholic University of America, Washington, DC
*Corresponding author: sookdeo@cua.edu

Abstract

For a Lattès map $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ defined over a number field K, we prove a conjecture on the integrality of points in the backward orbit of $P \in \mathbb{P}(\bar{K})$ under ϕ.

Keywords: backward orbit conjecture, Lattès maps
Cite This Article: Vijay Sookdeo, "Backward Orbit Conjecture for Lattès Maps." Turkish Journal of Analysis and Number Theory, vol. 3, no. 3 (2015): 75-77. doi: 10.12691/tjant-3-3-1.

1. Introduction

Let $\phi: \mathbb{P}^{1} \rightarrow P^{1}$ be a rational map of degree ≥ 2 defined over a number field K, and write ϕ^{n} for the nth iterate of ϕ. For a point $P \in \mathbb{P}^{1}$, let $\phi^{+}(P)=\left\{P, \phi(P), \phi^{2}(P), \ldots\right\}$ be the forward orbit of P under ϕ, and let

$$
\phi^{-}(P)=\bigcup_{n \geq 0} \phi^{-n}(P)
$$

be the backward orbit of P under ϕ. We say P is ϕ-preperiodic if and only if $\phi^{+}(P)$ is finite.

Viewing the projective line \mathbb{P}^{1} as $A^{1} \cup\{\infty\}$ and taking $P \in A^{1}(K)$, a theorem of Silverman [4] states that if ∞ is not a fixed point for ϕ^{2}, then $\phi^{+}(P)$ contains at most finitely many points in \mathcal{O}_{K}, the ring of algebraic integers in K. If S is the set of all archimedean places for K, then \mathcal{O}_{K} is the set of points in $\mathbb{P}^{1}(K)$ which are S-integral relative to ∞ (see section 2). Replacing ∞ with any point $Q \in \mathbb{P}^{1}(K)$ and S with any finite set of places containing all the archimedean places, Silverman's Theorem can be stated as: If Q is not a fixed point for ϕ^{2}, then $\phi^{+}(P)$ contains at most finitely many points which are S-integral relative to Q.

A conjecture for finiteness of integral points in backward orbits was stated in [[6], Conj. 1.2].
Conjecture 1.1. If $Q \in \mathbb{P}^{1}(\bar{K})$ is not S-preperiodic, then $\phi^{-}(P)$ contains at most finitely many points in $\mathbb{P}^{1}(\bar{K})$ which are S-integral relative to Q.

In [6], Conjecture 1.1 was shown true for the powering map $\phi(z)=z^{d}$ with degree $d \geq 2$, and consequently for Chebyschev polynomials. A gener-alized version of this conjecture, which is stated over a dynamical family of maps $|\varphi|$, is given in [[1], Sec. 4]. Along those lines, our goal is to prove a general form of Conjecture 1.1 where $|\varphi|$ is the family of Lattès maps associate to a fixed elliptic curve E defined over K (see Section 3).

2. The Chordal Metric and Integrality

2.1. The Chordal Metric on \mathbb{P}^{N}. Let M_{K} be the set of places on K normalized so that the product formula holds: for all $\alpha \in K^{*}$,

$$
\prod_{v \in M_{K}}|\alpha|_{v}=1
$$

For points $P=\left[x_{0}: x_{1}: \cdots: x_{N}\right] \quad$ and $Q=\left[y_{0}: y_{1}: \cdots: y_{N}\right]$ in $\mathbb{P}^{N}\left(\bar{K}_{v}\right)$, define the v-adic chordal metric as

$$
\Delta_{v}(P, Q)=\frac{\max _{i, j}\left(\left|x_{i} y_{j}-x_{j} y_{i}\right|_{V}\right)}{\max _{i}\left(\left|x_{i}\right|_{v}\right) \cdot \max _{i}\left(\left|y_{i}\right|_{v}\right)}
$$

Note that Δ_{v} is independent of choice of projective coordinates for P and Q , and $0 \leq \Delta_{v}(\cdot, \cdot) \leq 1$ (see [2]).
2.2. Integrality on Projective Curves. Let C be an irreducible curve in \mathbb{P}^{N} defined over K and S a finite subset of M_{K} which includes all the archimedean places. A divisor on C defined over \bar{K} is a finite formal sum $\sum n_{i} Q_{i}$ with $n_{i} \in \mathbb{Z}$ and $Q_{i} \in C(\bar{K})$. The divisor is effective if $n_{i}>0$ for each i, and its support is the set $\operatorname{Supp}(\mathrm{D})=\left\{Q_{1}, \cdots, Q_{\ell}\right\}$.

Let

$$
\lambda_{Q, v}(P)=-\log \Delta_{v}(P, Q)
$$

and $\lambda_{D, v}(P)=\sum n_{i} \lambda_{Q_{i}, v}(P)$ when $D=\sum n_{i} Q_{i}$. This makes $\lambda_{D, v}$ an arithmetic distance function on C (see [3]) and as with any arithmetic distance function, we may use it to classify the integral points on C.

For an effective divisor $D=\sum n_{i} Q_{i}$ on C defined over \bar{K}, we say $P \in C(\bar{K})$ is S-integral relative to D , or P is a (D, S)-integral point, if and only if $\lambda_{Q_{i}^{\sigma}, v}\left(P^{\tau}\right)=0$ for all embeddings $\sigma, \tau: K \rightarrow \bar{K}$ and for all places $v \notin S$. Furthermore, we say the set $\mathcal{R} \subset C(\bar{K})$ is S-integral relative to D if and only if each point in \mathcal{R} is S-integral relative to D.

As an example, let C be the projective line $A^{1} \cup\{\infty\}$, S be the Archimedean place of $K=\mathbb{Q}$, and $D=\infty$. For $P=x / y$, with x and y are relatively prime in \mathbb{Z}, we have $\lambda_{D, v}(P)=-\log |y|_{v}$ for each prime v. Therefore, P is S-integral relative to D if and only if $y= \pm 1$; that is, P is S-integral relative to D is and only if $P \in \mathbb{Z}$.

From the definition we find that if $S_{1} \subset S_{2}$ are finite subsets of M_{K} which contains all the archimedean places, then P is a $\left(D, S_{2}\right)$-integral point implies that P is a $\left(D, S_{1}\right)$-integral point. Similarly, if $\operatorname{Supp}\left(D_{1}\right) \subset$ Supp $\left(D_{2}\right)$, then P is a $\left(D_{2}, S\right)$-integral point implies that P is also a $\left(D_{2}, S\right)$-integral point. Therefore enlarging S or Supp(D) only enlarges the set of (D, S)-integrals points on $C(\bar{K})$.

For $\phi: C_{1} \rightarrow C_{2}$ a finite morphism between projective curves and $P \in C_{2}$, write

$$
\phi^{*} P=\sum_{Q \in \phi^{-1}(P)} e_{\phi}(Q) \cdot Q
$$

where $e_{\phi}(Q) \geq 1$ is the ramification index of ϕ at Q . Furthermore, if $D=\sum n_{i} Q_{i}$ is a divisor on C, then we define $\phi^{*} D=\sum n_{i} \phi^{*} Q_{i}$.
Theorem 2.1 (Distribution Relation). Let $\varphi: C_{1} \rightarrow C_{2}$ be a finite mor-phism between irreducibly smooth curves in $\mathbb{P}^{N}(\bar{K})$. Then for $Q \in C_{1}$, there is a finite set of places S, depending only on φ and containing all the archimedean places, such that $\lambda_{P, v} \circ \varphi=\lambda_{\varphi}{ }^{*} P, v$ for all $v \notin S$.

Proof. See [[3], Prop. 6.2b] and note that for projective varieties the $\lambda_{\delta W \times V}$ term is not required, and that the big-O constant is an M_{K}-bounded constant not depending on P and Q.
Corollary 2.2. Let $\varphi: C_{1} \rightarrow C_{2}$ be a finite morphism between irreducibly smooth curves in $\mathbb{P}^{N}(\bar{K})$, let $P \in C_{1}(\bar{K})$, and let D be an effective divisor on C_{2} defined
over K. Then there is a finite set of places S, depending only on φ and containing all the archimedean places, such that $\phi(P)$ is S-integral relative to D if and only P is S-integral relative to $\phi^{*} D$.

Proof. Extend S so that the conclusion of Theorem 2.1 holds. Then for $D=\sum n_{i} Q_{i}$ with each $n_{i}>0$ and $Q_{i} \in C_{2}(\bar{K})$, we have that.

$$
\lambda_{\phi^{*} D, v}(P)=\lambda_{D, v}(\phi(P))=\sum n_{i} \lambda_{Q_{i}, v}(\phi(P)) .
$$

So $\lambda_{\phi^{*} D, v}(P)=0$ if and only if $\lambda_{Q_{i}, v}(\phi(P))=0$.

3. Main Result

Let E be an elliptic curve, $\psi: E \rightarrow E$ a morphism, and $\pi: E \rightarrow \mathbb{P}^{1}$ be a finite covering. A Lattès map is a rational map $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ making the following diagram commute:

For instance, if E is defined by the Weierstrass equation $y^{2}=x^{3}+a x^{2}+b x+c, \quad \psi=[2] \quad$ is the multiplication-by-2 endomorphism on E, and $\pi(x, y)=x$, then

$$
\phi(x)=\frac{x^{4}-2 b x^{2}+8 c x+b^{2}-4 a c}{4 x^{3}+4 a x^{2}+4 b x+4 c}
$$

Fix an elliptic curve E defined over a number field K, and for $P \in \mathbb{P}^{1}(\bar{K})$ define:

$$
\begin{gathered}
{[\varphi]=\left\{\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \left\lvert\, \begin{array}{l}
\text { there exist } K-\text { morphosm } \psi: E \rightarrow E \\
\text { and finite cov ering } \pi: E \rightarrow \mathbb{P}^{1} \text { such } \\
\text { that } \pi \circ \psi=\phi \circ \pi
\end{array}\right.\right\}} \\
\Gamma_{0}=\bigcup_{\phi \in[\varphi]} \phi^{+}(P) \\
\Gamma=\left(\bigcup_{\phi \in[\varphi]} \phi^{+}\left(\Gamma_{0}\right)\right) \cup \mathbb{P}^{1}(\bar{K})_{[\varphi]-\text { preper }}
\end{gathered}
$$

A point Q is $[\varphi]$-preperiodic if and only if Q is ϕ preperiodic for some $\phi \in[\varphi]$. We write $\mathbb{P}^{1}(\bar{K})_{[\varphi]-\text { preper }}$ for the set of $[\varphi]$-preperiodic points in $\mathbb{P}^{1}(\bar{K})$.

Theorem 3.1. If $Q \in \mathbb{P}^{1}(\bar{K})$ is not $[\varphi]$-periodic, then Γ contains at most finitely many points in $\mathbb{P}^{1}(\bar{K})$ which are S-integral relative to Q.

Proof. Let Γ_{0}^{\prime} be the End (E)-submodule of $E(\bar{K})$ that is finitely generated by the points in $\pi^{-1}(P)$, and let $\Gamma^{\prime}=\left\{\xi \in E(\bar{K}) \mid \lambda(\xi) \in \Gamma_{0}^{\prime}\right.$ for some non-zero $\left.\lambda \in \operatorname{End}(E)\right\}$.

Then $\pi^{-1}(\Gamma) \subset \Gamma^{\prime}$. Indeed, if $\pi(\xi) \in \Gamma$ is not $[\varphi]$ preperiodic, then ξ is non torsion and $\left(\phi_{1} \circ \pi\right)(\xi) \in \Gamma_{0}$ for some Lattès map ϕ_{1}. So $\left(\phi_{1} \circ \pi\right)(\xi) \in \Gamma_{0}$ for some morphism $\psi_{1}: E \rightarrow E$, and this gives $\left(\pi \circ \psi_{1}\right)(\xi) \in \phi_{2}(P)$ for some Lattès map ϕ_{2}. Therefore $\psi_{1}(\xi) \in\left(\pi^{-1} \circ \phi_{2}\right)(P)$ $=\left(\psi_{2} \circ \pi^{-1}\right)(P)$ for some morphism $\psi_{2}: E \rightarrow E$. Since any morphism $\psi: E \rightarrow E$ is of the form $\psi(X)=\alpha(X)+T \quad$ where $\quad \alpha \in E n d(E)$ and $T \in E_{\text {tors }}$ (see [[5], 6.19]), we find that there is a $\lambda \in \operatorname{End}(E)$ such that $\lambda(\xi)$ is in Γ_{0}^{\prime}, the End(E$)$-submodule generated by $\pi^{-1}(P)$. Otherwise, if $\pi(\xi) \in \Gamma$ is $[\varphi]$-preperiodic, then $\pi\left(E(\bar{K})_{\text {tors }}\right)=\mathbb{P}^{1}(\bar{K})_{[\varphi]-\text { preper }}([[5]$, Prop. 6.44]) gives that ξ may be a torsion point; again $\xi \in \Gamma^{\prime}$ since $E(\bar{K})_{\text {tors }} \subset \Gamma^{\prime}$. Hence $\pi^{-1}(\Gamma) \subset \Gamma^{\prime}$.

Let D be an effective divisor whose support lies entirely in $\pi^{-1}(Q)$, let \mathcal{R}_{Q} be the set of points in Γ which are S-integral relative to Q, and let \mathcal{R}_{D}^{\prime} be the set of points in Γ^{\prime} which are S-integral relative to D. Extending S so that Theorem 2.1 holds for the map $\pi: E \rightarrow \mathbb{P}^{1}$, and since $\operatorname{Supp}(\mathrm{D}) \subset \operatorname{Supp}\left(\pi^{*} D\right)$, we have: if $\gamma \in \Gamma$ is S-integral relative to Q, then $\pi^{-1}(\gamma)$ is S-integral relative to D. Therefore $\pi^{-1}\left(\mathcal{R}_{Q}\right) \subset \mathcal{R}_{D}^{\prime}$. Now π is a finite map and $\pi(E(\bar{K}))=\mathbb{P}^{1}(\bar{K})$; so to complete the proof, it suffices to show that D can be chosen so that \mathcal{R}_{D}^{\prime} is finite.

From [[5], Prop. 6.37], we find that if Λ is a nontrivial subgroup of $\operatorname{Aut}(E)$, then $E / \Lambda \cong \mathbb{P}^{1}$ and the map
$\pi: E \rightarrow \mathbb{P}$ can be determine explicitly. The four possibilities for π, which are $\pi(x, y)=x, x^{2}, x^{3}$, or y correspond respectively to the four possibilities for Λ, which are $\Lambda=\mu_{2}, \mu_{4}, \mu_{6}$, or μ_{3}, which in turn depends only on the j-invariant of E. (Here, μ_{N} denotes the Nth roots of unity in \mathbb{C}.)
First assume that $\pi(x, y) \neq y$. Since Q is not [']preperiodic, take $\xi \in \pi^{-1}(Q)$ to be non torsion. Then $-\xi \in \pi^{-1}(Q) \quad$ since $\quad \Lambda=\mu_{2}, \mu_{4}$, or μ_{6}, and $\xi-(-\xi)=2 \xi$ is non-torsion. Taking $D=(\xi)+(-\xi)$, [[1], Thm. 3.9(i)] gives that \mathcal{R}_{D}^{\prime} is finite.

Suppose that $\pi(x, y)=y$. Then $\pi(x, y)=\left\{\xi, \xi^{\prime}, \xi^{\prime \prime}\right\}$ where $\xi+\xi^{\prime}+\xi^{\prime \prime}=0$ and ξ is non-torsion since Q is not $[\varphi]$-preperiodic. Assuming that both $\xi-\xi^{\prime}$ and $\xi-\xi^{\prime \prime}$ are torsion give that 3ξ is torsion, and this contradicts the fact that ξ is torsion. Therefore, we may assume that $\xi-\xi^{\prime}$ is non-torsion. Now taking $D=(\xi)+\left(\xi^{\prime}\right),\left[[1]\right.$, Thm. 3.9(i)] again gives that \mathcal{R}_{D}^{\prime} is finite. Hence RQ, the set of points in Γ which are Sintegral relative to Q, is finite.

References

[1] David Grant and Su-Ion Ih, Integral division points on curves, Compositio Math-ematica 149 (2013), no. 12, 2011-2035.
[2] Shu Kawaguchi and J. H. Silverman, Nonarchimedean green functions and dynam-ics on projective space, Mathematische Zeitschrift 262 (2009), no. 1, 173-197.
[3] J. H. Silverman, Arithmetic distance functions and height functions in Diophantine geometry, Mathematische Annalen 279 (1987), no. 2, 193-216.
[4] Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. 71 (1993), no. 3, 793-829.
[5] The arithmetic of dynamical systems, Graduate Text in Mathematics 241, Springer, New York, 2007.
[6] V. A. Sookdeo, Integer points in backward orbits, J. Number Theory 131 (2011), no. 7, 1229-1239.

