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1. Introduction

Integration with weight functions is used in many
mathematical branches such as: approximation theory,
spectral analysis, statistical analysis, theory of
distributions and functional analysis. In 1938, Ostrowski
[13] proved his famous inequality:

Theorem 1 Let f : [a,b] >R be continuous on
[a,b] (a,b),
‘f'(x)‘g M forall x (a,b), then the inequality holds

a+b 2
(X_zj M
(1)

(b-a)® |b-a’

and differentiable on and assume

S(f;ab) < E+

forall x e[a,b]. The constant % is best possible.

Several generalizations of the above integral inequality
are considered by many authors such as [2,3,4,10,16,17].

The functional S(f;a,b) given below, represents the

deviation of f (x) from its integral mean over [a,b]
S(f;ab)=f(x)-M(f;ab), ()

and

1 b
fab:b—zl; (3)

Milovanovic’ and Pecaric’ in [11] gave first
generalization of Ostrowski’s inequality. Dragomir and
Wang [7] introduced Ostrowski-Griiss type inequality.
Cheng gave a sharp version of the mentioned inequality in
[3]. Dragomir and Wang [5,6,7,8,9] and Cerone [1]
pointed out a result to the above. We establish new
inequalities, which are more generalized as compared to
previous inequalities developed in [1,5,6,7,8,9] and
[14,15]. Moreover, our results are further generalized by
the introduction of weight function.

The approach of Dragomir and Wang [5,6,7,8,9],
Cerone [1], and Qayyum et. al [14,15] for obtaining
bounds depended on Peano kernel while we use weighted
Peano kernel in our findings. This approach not only
generalizes the results of Dragomir and Wang [5,6,7,8,9],
Cerone [1] and Qayyum [14,15], but also gives some other
interesting inequalities as special cases. In the last section,
we will apply our main result for cumulative distribution
function.

Montgomery’s identity states that for

continuous mappings f : [a,b] >R

absolutely

f(x)= —jf(t)dt+—jp(xt)f(t)dt (4)

where

t—a if a<t<x<b
t—b ifa<x<t<h.

P(x,t) :{

Dragomir and Wang [5,6,7,8] utilizing an integration by
parts argument, obtained

|S(f;a,b)| (5)
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2
1 b-a a+b
_b_a[(_z [ ”“f | f el fab]
L fia oty
<<b-a q+1
' 1 1
f eLylabl,p>l,—+==1
plan]p>1ted
1 [b-a a+b|
b | L RN}
where f : [a,b]—> R is absolutely continuous on [a,b]
1
and the constants l{i}q and 1 are sharp. L, is
g+1 2

defined in [14].
Cerone [1], proved the following inequality:
Lemma 1 Let f [a,b] >R be absolutely

continuous mapping and define
M(f;ax
( ) } (6)

1
f(x)_oc+,BL,BM(f;x,b)

r(%a,B)=
where
b
1
f ab —b—j
a

then
|T(X;a,ﬂ)| (7

(
o 1 /3)Lﬂ N X}“f “ f eLl,[ab]

1

Mf“  etyfab]

IN

1 [aq(x a)
(a+ ) (q+1)q LHA (b=

%[H%Juf'“l, £ cLfab]

Now we express some generalizations (non weighted
version) of cerone’s result [1].

Lemma 2 Let P(xt):[a,b]—>R, the peano type
kernel, is given by

a 1 t—(a+hb_—a] ,ast<x,
a+pfx-a|

p(x,t,h) = ®

= t—(b—hﬂj
Bb—x 2 )|

Then,
ﬁ{x—[a+hb_7a)}
| xa,B| |a+ﬂ f(x) (9
S
aiﬂ(b;aj(x(fa (a)+b%f(b)j
_aiﬂ[éff(t)dpr%if(t)dt]'
o | (xoa)? (a+hb—Taj 2}
X—a 4 _a+x
2 . '
@l
A= o) l
x| 4 _x+b
L 2 -
f eL,[ab]
_ ) (X_(amb;a)jqﬂ
(x—a)° _(haTquﬂ
o ol
— 1,
(q+1) (a+p)
f eL,[ab],
(a+ﬁ)—hb;a{a(sg_xi;(igga)} %
2(a+p
+ (a—ﬂ)+hb;av((xx_a3)£fbx)X)}
f el[ab].
Qayyum etal [14] proved another non-weighted

version.
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Lemma 3 Denote by P(x,.) : [a,b] >R the kernel is

given by
#(t—a)z,astgx,
2(a+pB)(x-a)

P(x,t):= (10
L — 2 X<t<
2arp)oxy ) xstsb

Then,
le(x . B) (11D

_ 1 l

e gy lea) B0 -1
[aM(f;a,X)JrﬁM(f;X’b)N

f
[a(x-a)’ +p(-x } I “ e L, [ab]
1
L a9 (x-a)™+5%(b- xqﬂq Hf “
L (29+1)q

f" ely[ab],

Al
(e(x—a)+B(b-x)+|a(x—a)-B(b Ha+ p)
e L [a,b].

Qayyum et.al [15] proved a generalized non-weighted
version of Cerone’s result [1].

Lemma 4 Let f : [a,b] >R be an absolutely
continuous mapping. Denote by P(x,.) : [a,b] > R, the

kernel P(x,t,h) is given by

- 12
¢ ! 1t (a+hb—aj ast<x
a+pBx-a2| 2 )]
P(x,t,h) =
- -2
B iit—(b—hb‘—aJ x<t<b
a+pb-x2| 2 )]
Then,
1 a b 2
r(xa,pB)=] —| x- (a+h—j (12)
2(a+p)| x-a 2

IA

1

b-x

1

_a+ﬂ

+

1 2 (b-a)

B

(a+p)

hb_a[ a ia
2 | x

a+p

2
=

+aiﬁ[aM(f;a,X)+ﬂM(finb)]|

2(20+1)q (a+ )

fe Lp [a,b],

a(x-a)+p(b—x)-

a

X

h(b-

+h2(b—a){

+|B(b—x)-

2

B

M}
Xx—a b-x

a(x-a)+h(b-a)(a-

a

+hz(b—a){

2

y f" S Ll[a,b].

b—x_x—a}|

a

|71,

6(c+p)’
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a)(a+p) |

£ (b) =% f (a)}

X_

Il

4(a+,8)
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2. Main Results

To establish our main results we first give the following
essential definition and lemma.

Definition 1 We assume that the weight function (or
density) w:(a,b) »0,0) to be non-negative and
integrable over its entire domain.

b
jw(t)dt <o,

a

and

b
jw(t)dt #0.

a

The domain of w may be finite or infinite and may
vanish at the boundary point. We denote the moments

b
m(a,b) = j w(t)dt,
a

b
N (a,b) = j tw(t)dt,
N (a,b
m(a,b)

~—

o(ab)=

n(a,b)= T f (t)w(t)dt,

n(a,b
m(a,b)’

~—

5(ab)=

Let the functional S, ( f;a,b) be defined by

Sw(fiab)=f(x)-M,(f;ab) (13)
where
. b
My (fia,b) =+ [foow(x)ax.  (14)
jw(x)dxa

a

The function S, (f;a,b) represents the deviation of

f (x) from its weighted integral mean over [a,b].

We start our main result with the following weighted
identity which will be used to obtain bounds.

Lemma 5 Let f : [a,b] >R be an absolutely

continuous mapping. Denoted by R, (x,.) : [a,b] >R
the weighted peano kernel is then given by
a 1
—————m(at),ast<x
a+ 5 m(a,x) (at)
Ru(x,1) = (15)
p L m(b,t),x<t<b
a+p m(xb)

where « >0, 8 >0 and not both zero. Then the following
weighted identity

b
j R, (x,t)f (t)dt
a (16)

= f(x)-

aiﬁ[aé(a,x)ws(x,b)],

holds.
Proof. From (15), we have
X[t

1 '
P, (X, 1) f (t)dt——— w(u)du | ' (t)dt
g eries

,3 1 b/t .
+a+ﬂ m(X:b);[['t[W(U)du] f'(t)dt.

By integration by parts formula, we get (16).
We now give our main result.

Theorem 2 Let f [a,b] >R be absolutely
continuous mapping. Define
M (f;a,x
r (6 p) = F(x)——| @ w(:2) 1)
a+p|+pMy (f;x,b)

where M, (f;a,b) is the weighted integral mean defined
in (14), then

|TW(X;0(,,B)| (18)
Al
{a[x—a(a,x)}+ﬂ[—x+o(x b)] a+,B
el [ab]
. [aq (x-a)T™ L (b—x)** ]; W(“)“ f “p
m9 (a, x) m9(x,b) (q+l)%(a+ﬂ)
f e Lp[a,b],
[ m@ay Il L
e P ey ek

Proof. Taking the modulus of (16), we have from (14)
and (17)

|Tw (X, B

b
)| = j R, (x.t) f (t)dt

b
S“Pw(x,t)” f'(t)‘dt.(19)
Thus, for f e L, [a,b] (19) gives

[ (X, B)| < “ f ”w T|Pw(x,t)|dt.

Using (15) we obtain
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b
j |Ry(x,1)|dt

X b

1 J‘
a+pm(xb)

dt +

dt

jw(u)du

_t[w(u)du
b

:a+/3 m(a,x)j

a

= aiﬂ{a[x—a(a,x)]+ﬂ[—x+0(x!b)}}-

Hence the first inequality is proved.
_ f
|z’W(X;a,ﬂ)|£ a[x O-(a7x)] M
+B[-x+c(xb)]| (a+B)

Further, using Hoélder’s integral inequality, from (19)
we have for f e Lp[ab]

1

a (B q
a8 <] “p{ﬂpw(x,t)p dt] |
a

where l+£=1 with p >1. Now
q

; ‘
(a+ﬁ)[j|PW(x,t)|q dtj
a
1
aq Xt q ﬁq b (b q q
= mq(aix)i‘lw(u)du dt+mq ,b)“.W(u)du dt

- (aw(u))® (x—a)™* +(ﬂw(u))q (b—x)* 4
1A+l mi(ax) A+l mI(xb) |

This proves the second inequality.

[z (x,w;ax, B)
g {aq (X_a)(Hl 0 (b— X)q+1 f] W(U)H f ”p |
m%(a,x) m%(x,b) (q+1)%(a+,8)

Finally, for f e Ly [a,b], we have from (19) and using
(15)

|rw (X, B)| < teS[L;F,)b]|PW(X’t)|“ f Hl ,

where

(a+B) sup |Py(x.1)|
te[a,b]

- max am(a,t) m(t,b) |y,
- { m(a,x)"gm(x,b)}uf“l'

This completes the proof of theorem.

Remark 1 If we put w(x)=1, in (18) , we get
cerone’s results (7). If we put &= 4 and w(x)=1, in

(18), we get Dragomir’s result (5). Similarly, for different
weights, we can obtain a variety of results.
Remark 2 We may write

aMy, (f;a,x)+ BM,, (f;x,b)

b

jf(u)w(u)du
- : B la
=aM(f;a, X)+—m(x,b)

—T f (u)w(u)du

= aMy (fa,x)-—2 _Tf(u)w(u)du

m(x,b) 2
5 B
m(x,b)-f f (u)w(u)du

+

=(a+B-Bow (X))My, (f:a,x)
+:Bpw(x)Mw(f;a’b)

where
_m(a,b)
Pw(Xx)= m(xb) (20)
Thus, from (17),
tw(Xa,p)
i j .
1- ow(X) My, (f;a,x
_f(x)_[ i () Mo (1120
+a+ﬂaw(x)MW(f;a,b)
so that for fixed [a,b], M, ( f;a,b) is also fixed.
Corollary 1 If we put « = # in (18), we get
1
‘f (x)—E[MW(f;a,x)+ MW(f;x,b)]‘ (21)
A
{o(x.b)-0o(ax)} ” ZHw L fely[ab]
(x—a)t (b_x)q*l_; w7
< + P f eLy[ab],
mi(a,x) mi(xb) |

2(q+1)q

LR by i,

m(a,x) m(x,b)| 2

Corollary 2 Let the conditions of Theorem 2 holds.
Then
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aM(f,W;a,aLbj
f(a_+b)_ 1 2
2 (a+5) +ﬂM(f,W;aT+b,bj

[a_+b_0[ a+bﬂ
2 2 |7,
s
f eLw[a b]
] p ]
b .
a5 || o)
<\ 2 s (0+1)q (a+ )
mq(‘”b b)
L 2 ’ .
,f'eLp[a,b],
may  meb) | 7]
e “m(a,mbj’ﬁ o[ 228,0) (o)
2 2
f'ELl[a,b].

Proof. Placing x = a—;b in (17) and (18) produces the
results stated in (22).
Corollary 3 If (21) is evaluated at the midpoint, then

we get
‘f(a—”’j—iMw(f,w;a,b)‘ (23)
2 ) 2
()t
2 2 )| 2

1
1 q
wf']

1 1
2(q +1)q

IN
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3. An Application to the Cumulative
Distribution Function

Let X be a random variable taking values in the finite
interval [a,b] with Cumulative Distributive Function

we also use the fact that

b

I f(u)w(u)du=1,

a

where f is a Probability Density Function. The following
theorem holds.

Theorem 3 Let X and F be as above, then
[am(x,b)- Bm(a,x)]Fy, (x)
-m(a,x)[(a+B)m(xb) f (x)-A]
i a[x-o(a,x)] } .
e 07N e,

+B[—x+o(x,b

(24)

1
a (X_a)q+1 q
o

m(a,x)m(x,b) m (a,x) W(u)”f'“p
< , 7 —x)¥H :
< +,3q (r:q (X)lb) (q +1)q
. eLy[ab],

m(a, x)m(x,b)max{a rr:((:;t()) v nT((:(kk))))}” f ”1

y f' € Ll[a,b].

Proof. From (18), we have

TW(X;avﬂ)

= f(x)—aiﬂ[aMW(f;a,x)+ﬂMW(f;x,b)}

. m{f(u)w(u)du
= f(x)_a+ﬂ .
+m(§b)jf(u)w(u)du

X

After simple calculations, we get
—(a+pB)m(a,x)m(x,b)z, (X2, B)
= (am(x,b) - Am(a,x))Fy ()
—(a+pB)m(a,x)m(x,b) f (x)+Bm(a,x)
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= (em(x,b)—Bm(a,x))Fy(X)
~m(a,x)[(a+B)m(x.b) f (x)-A].
(e+ p)m(a,x)m(xb)7y (X x, B)
:(am(x,b) pm(a,x))Fy (x)
-m(a,x)[(a+B)m(xb) f (

By using (18), we get (24).

Putting « = # = 1/2 in Theorem 3 gives the following
result.

Corollary 4 Let X be a random variable, F,(x)

sl

weighted Cumulative Distributive Function and f is a
Probability Density Function. Then

-o(a,x)
e T
m9 (a, x w(u)| f
m(a,x)m(x,b) ( 3+1 1p
< +(b—X) (q+1)q
- m9(x,b)
,fl IS Lp[a,b],

m(a,t) m(t,b) |y
(e gm(somec 220, MUO )

m(a,

f' € Ll[a,b].

Remark 3 The above result allow the approximation of
Fw (x) interms of f(x).The approximation of

Ry (X)=1-F, (x),
could also be obtained by a simple substitution. Ry, (x) is

of importance in reliability theory where f(x) is the

Probability Density Function of failure.
Remark 4 Put g =0 in (24) and, assuming that « =0

to obtain
|Fy (x)—-m(a,x) f (x)| (26)
m(a,x)[x—a(a,x)]“f'uw, f' eLy,[ab]

1W(U)Hf ”p el [ab]

IA
—_
><

(Q+1)
m(a,x)”f'”l, fe Ly [a,b].

Further we note that

.[F u)du =uFy (u )|2—jxw(x)f(x)dx

a

:b—E[XW(x)].
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