

# **Diagonal Function of k-Lucas Polynomials**

Yogesh Kumar Gupta<sup>1,\*</sup>, V. H. Badshah<sup>1</sup>, Mamta Singh<sup>2</sup>, Kiran Sisodiya<sup>1</sup>

<sup>1</sup>School of Studies in Mathematics, Vikram University Ujjain, (M. P.) India
<sup>2</sup>Department of Mathematical Science and Computer applications, Bundelkhand University, Jhansi (U. P.) India
\*Corresponding author: yogeshgupta.880@rediffmail.com

**Abstract** The Lucas polynomials are famous for possessing wonderful and amazing properties and identities. In this paper, Diagonal function of k-Lucas Polynomials is introduced and defined by  $G_{n+1}(x) = kxG_n(x) + G_{n-2}(x), n \ge 1$ . with  $G_0(x) = 2$ . and  $G_1(x) = 1$ . Some Lucas Polynomials, rising & descending diagonal function and generating matrix established and derived by standard methods.

**Keywords:** Lucas Polynomials, rising diagonal function, descending diagonal function and generating matrix

**Cite This Article:** Yogesh Kumar Gupta, V. H. Badshah, Mamta Singh, and Kiran Sisodiya, "Diagonal Function of k-Lucas Polynomials." *Turkish Journal of Analysis and Number Theory*, vol. 3, no. 2 (2015): 49-52. doi: 10.12691/tjant-3-2-3.

#### 1. Introduction

The sequence 1,1,2,3,5..., got its name as name as Fibonacci sequence by the Famous Mathematics Francois Edouard Lucas in 1876 [7].

Lucas also discovered a new Fibonacci like sequence with different initial condition call it, Lucas Sequence

$$L_n = L_{n-1} + L_{n-2}, n \ge 2.$$

with initial condition  $L_0 = 2, L_1 = 1$ .

In 1965 Hoggatt, V.E. [5] has defined Lucas polynomials by recurrence relation.  $L_{n+1}(x) = xL_n(x) + L_{n-1}(x)$ , where

$$L_0(x) = 2, L_1(x) = x,$$
 (1.1)

The first few Lucas polynomials are

$$L_{1}(x) = 1.x^{1},$$

$$L_{2}(x) = 1.x^{2} + 2.x^{0},$$

$$L_{3}(x) = 1.x^{3} + 3.x^{1},$$

$$L_{4}(x) = 1.x^{4} + 4.x^{2} + 2.x^{0},$$

$$L_{5}(x) = 1.x^{5} + 5.x^{2} + 5.x^{1},$$

$$L_{6}(x) = 1.x^{6} + 6.x^{4} + 9.x^{2} + 2.x^{0},$$

$$L_{7}(x) = 1.x^{7} + 7.x^{5} + 4.x^{5} + 7.x^{1},...$$

In this paper, we are using the pair of sequence  $\{G_n\}$  and  $\{P_n\}$  for which,

$$G_{n+1}(x) = kxG_n(x) + G_{n-1}(x), n \ge 1.$$
 (1.2)  
$$G_0 = 2, G_1 = 1 \qquad (x \ne 0)$$

$$P_{n+1}(x) = kxP_{n}(x) + P_{n-1}(x), n \ge 1$$
$$P_{0} = k, P_{1} = kx. \quad (x \ne 0)$$
(1.3)

where k is any positive integer. k=0, 1, 2, 3...

Using the equation (1.1) and (1.2) and made a rising diagonal function and descending Diagonal Functions.

## 2. Sequence {G<sub>n</sub>} and {P<sub>n</sub>}

We have the pair of sequence  $\{G_n\}$  and  $\{P_n\}$  for which,

$$G_{n+1}(x) = kxG_{n}(x) + G_{n-1}(x), n \ge 1.$$
  

$$G_{0} = 2, G_{1} = 1 \qquad (x \ne 0),$$
  

$$P_{n+1}(x) = kxP_{n}(x) + P_{n-1}(x), n \ge 1.$$
  

$$P_{0} = k, P_{1} = kx. \qquad (x \ne 0)$$

The first few terms of the sequence  $\{G_n\}$  are

2  
1  

$$kx + 2$$
  
 $k^{2}x^{2} + 2kx + 1$   
 $k^{3}x^{3} + 2k^{2}x^{2} + 2kx + 2$   
 $k^{4}x^{4} + 2k^{3}x^{3} + 3k^{2}x^{2} + 4kx + 1$   
 $k^{5}x^{5} + 2k^{4}x^{4} + 4k^{3}x^{3} + 6k^{2}x^{2} + 3kx + 2$   
 $k^{6}x^{6} + 2k^{5}x^{5} + 5k^{4}x^{4} + 8k^{3}x^{3} + 6k^{2}x^{2} + 6kx + 1$   
 $k^{7}x^{7} + 2k^{6}x^{6} + 6k^{5}x^{5} + 10k^{4}x^{4}$   
 $+ 10k^{3}x^{3} + 12k^{2}x^{2} + 4kx + 2$   
 $k^{8}x^{8} + 2k^{7}x^{7} + 7k^{6}x^{6} + 12k^{5}x^{5} + 15k^{4}x^{4}$   
 $+ 20k^{3}x^{3} + 10k^{2}x^{2} + 8kx + 1.$   
(2.1)

The first few terms of the sequence  $\{P_n\}$  are

$$k^{k}$$

$$k^{k}$$

$$k^{2}x^{2} + k$$

$$k^{3}x^{3} + k^{2}x + kx$$

$$k^{4}x^{4} + k^{3}x^{2} + 2k^{2}x^{2} + k$$

$$k^{5}x^{5} + k^{4}x^{3} + 3k^{3}x^{3} + 2k^{2}x + kx,$$

$$k^{6}x^{6} + k^{5}x^{4} + 4k^{4}x^{4} + 3k^{3}x^{2} + 3k^{2}x^{2} + k$$

$$k^{7}x^{7} + k^{6}x^{5} + 5k^{5}x^{5} + 4k^{4}x^{3} + 6k^{3}x^{3} + 3k^{2}x + kx$$

$$k^{8}x^{8} + k^{7}x^{6} + 6k^{6}x^{6} + 5k^{5}x^{4} + 10k^{4}x^{4} + 6k^{3}x^{2} + 4k^{2}x^{2} + k.$$
(2.2)

#### **3. Rising Diagonal Function**

Consider the rising diagonal function of x,  $U_n(x)$ ,  $u_n(x)$  for (2.1) and (2.2) respectively,

$$\begin{split} & U_{1}(x) = 1 \\ & U_{2}(x) = kx \\ & U_{3}(x) = k^{2}x^{2} + 2 \\ & U_{4}(x) = k^{3}x^{3} + 2kx \\ & U_{5}(x) = k^{4}x^{4} + 2k^{2}x^{2} + 1 \\ & U_{6}(x) = k^{5}x^{5} + 2k^{3}x^{3} + 2kx \\ & U_{7}(x) = k^{6}x^{6} + 2k^{4}x^{4} + 3k^{2}x^{2} + 2 \\ & U_{8}(x) = k^{7}x^{7} + 2k^{5}x^{5} + 4k^{3}x^{3} + 4kx \\ & U_{9}(x) = k^{8}x^{8} + 2k^{6}x^{6} + 5k^{4}x^{4} + 6k^{2}x^{2} + 1. \\ & u_{1}(x) = k \\ & u_{2}(x) = kx \\ & u_{3}(x) = k^{2}x^{2} \\ & u_{4}(x) = k^{3}x^{3} + k \\ & u_{5}(x) = k^{4}x^{4} + k^{2}x \\ & u_{7}(x) = k^{6}x^{6} + k^{4}x^{3} + 2k^{2}x^{2} \\ & u_{8}(x) = k^{7}x^{7} + k^{5}x^{4} + 3k^{3}x^{3} + k \\ & u_{9}(x) = k^{8}x^{8} + k^{6}x^{5} + 4k^{4}x^{4} + 2k^{2}x^{2} \end{split}$$
(3.2)

Now, we define

$$U_0(x) = u_0(x) = 0.$$
(3.3)

from equation (3.1), (3.2) and (3.3) we get the following theorem:

**Theorem** (1). If  $U_n$  (x) and  $u_n(x)$  are rising diagonal functions of x for sequence  $\{G_n\}$  and  $\{P_n\}$  respectively, than for,  $n\geq 4$ 

$$U_{n}(x) = kxU_{n-1}(x) + U_{n-4}(x).$$
(3.4)

Proof can be obtained by PMI's method so it is obvious.

#### **Special Case-I**

If  $U_n(x)$  and  $u_n(x)$  are rising diagonal functions of x f sequence  $\{G_n\}$  and  $\{P_n\}$  respectively, than for n=3, n=4.

$$u_n(x) = kxu_{n-1}(x) + u_{n-3}(x).$$
 (3.5)

#### 4. Descending Diagonal Function

From (2.1) and (2.2), the descending diagonal function of x,  $Q_i(x)$ ,  $q_i(x)$  are

$$Q_{1}(x) = 1$$

$$Q_{2}(x) = kx + 1$$

$$Q_{3}(x) = (kx + 1)^{2}$$

$$Q_{4}(x) = (kx + 1)^{3}$$

$$Q_{5}(x) = (kx + 1)^{4}$$

$$Q_{6}(x) = (kx + 1)^{5}$$

$$Q_{7}(x) = (kx + 1)^{6}$$

$$Q_{8}(x) = (kx + 1)^{7}.$$

$$q_{1}(x) = k$$

$$q_{2}(x) = kx + k$$

$$q_{3}(x) = (kx + k)(kx + 1)$$

$$q_{4}(x) = (kx + k)(kx + 1)^{2}$$

$$q_{5}(x) = (kx + k)(kx + 1)^{3}$$

$$q_{6}(x) = (kx + k)(kx + 1)^{4}$$

$$q_{7}(x) = (kx + k)(kx + 1)^{6}$$

$$(4.2)$$

Now, we define

$$Q_0(x) = q_0(x) = 0.$$
 (4.3)

from (4.1), (4.2) and (4.3) we get for  $n \ge 2$ .

$$Q_n(x) = (kx+1)Q_{n-1} = (kx+1)^{n-1}.$$
(4.4)

$$q_n(x) = (kx+1)q_{n-1}.$$
 (4.5)

from (4.4) and (4.5) we get the following theorem: **Theorem (2).** If  $Q_n(x)$  and  $q_n(x)$  are descending diagonal function of x for Sequence  $\{G_n\}$  and  $\{P_n\}$  respectively, than for n > 2.

a) 
$$\frac{Q_n}{Q_{n-1}} = \frac{q_n}{q_{n-1}} = (kx+1).$$
  
b)  $\frac{Q_n}{q_n} = \frac{(kx+1)}{(kx+k)}.$ 

#### 5. Generating Matrix

For the sequence  $\{G_n\}$  defend in equation (1.1) we consider the matrix

$$A = \begin{bmatrix} kx & 1\\ 1 & 0 \end{bmatrix}.$$
 (5.1)

Since, the elements of this matrix are the member of the sequence of Fibonacci Polynomials. We call this matrix as Fibonacci matrix.

**Theorem** (3). For sequence  $\{G_n\}$  we define  $n \ge 1, p \ge 0$ .

$$G_{n+p}(x) = G_{n+1}(x)G_{p}(x) + G_{n}(x)G_{p-1}(x)$$
  

$$G_{n+p}(x) = G_{n}(x)G_{p+1}(x) + G_{n-1}(x)G_{p}(x).$$

**Proof.** For sequence  $\{G_n\}$ , we have

$$A = \begin{bmatrix} kx & 1 \\ 1 & 0 \end{bmatrix}.$$

Since, determinant of matrix A is -1, therefore,

$$\det \mathbf{A}^{n} = \left(\det A\right)^{n} \tag{5.2}$$

$$\det \mathbf{A}^{n} = (-1)^{n}$$

$$A^{n} = \begin{bmatrix} G_{n+1}(x) & G_{n}(x) \\ G_{n}(x) & G_{n-1}(x) \end{bmatrix}$$
(5.3)

Form equation (3.5.2) and (3.5.3), we get

$$G_{n+1}(x)G_{n-1}(x) - G_n^2(x) = (-1)^n$$

Since  $A^{n+p} = A^n A^p$ 

$$\begin{bmatrix} G_{n+p+1}(x) & G_{n+p}(x) \\ G_{n+p}(x) & G_{n+p-1}(x) \end{bmatrix}$$
  
=
$$\begin{bmatrix} G_{n+1}(x) & G_n(x) \\ G_n(x) & G_{n-1}(x) \end{bmatrix} \begin{bmatrix} G_{p+1}(x) & G_p(x) \\ G_p(x) & G_{p-1}(x) \end{bmatrix}$$

After multiplying the matrices and equating the corresponding elements, we get

$$G_{n+p}(x) = G_{n+1}(x)G_{p}(x) + G_{n}(x)G_{p-1}(x)$$
  

$$G_{n+p}(x) = G_{n}(x)G_{p+1}(x) + G_{n-1}(x)G_{p}(x).$$

**Theorem (4).** For sequence  $\{G_n\}$  we define  $n \ge 1$ ,  $p \ge 0$ 

$$G_{n}(x) = G_{n+p+1}(x)G_{-n}(x) + G_{n+p}(x)G_{-(p+1)}(x)$$
  

$$G_{n}(x) = G_{n+p}(x)G_{-p+1}(x) + G_{n+p-1}(x)G_{-p}(x).$$

**Proof.** For sequence  $\{G_n\}$ , we have

$$A = \begin{bmatrix} kx & 1\\ 1 & 0 \end{bmatrix}.$$

If A is any square Matrix, then we know that

$$AA^{-1} = I \tag{5.4}$$

Where I is identity matrix from equation (5.4) we get

$$A^{-1} = \begin{bmatrix} 0 & 1 \\ 0 & -kx \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} G_0(x) & G_{-1}(x) \\ G_{-1}(x) & G_{-2}(x) \end{bmatrix}$$

By Mathematical induction, we have

$$A^{-p} = \begin{bmatrix} G_{-(p-1)}(x) & G_{-p}(x) \\ G_{-p}(x) & G_{-(p+1)}(x) \end{bmatrix}$$

Since  $A^n = A^{n+p}A^{-p}$ 

$$\begin{bmatrix} G_{n+p}(x) & G_{n}(x) \\ G_{n}(x) & G_{n-1}(x) \end{bmatrix}$$

$$= \begin{bmatrix} G_{n+p+1}(x) & G_{n+p}(x) \\ G_{n+p}(x) & G_{n+p-1}(x) \end{bmatrix} \begin{bmatrix} G_{-(p-1)}(x) & G_{-p}(x) \\ G_{-p}(x) & G_{-(p+1)}(x) \end{bmatrix}$$

After multiplying the matrices and equating the corresponding elements, we get

$$G_{n}(x) = G_{n+p+1}(x)G_{-n}(x) + G_{n+p}(x)G_{-(p+1)}(x)$$
  

$$G_{n}(x) = G_{n+p}(x)G_{-p+1}(x) + G_{n+p-1}(x)G_{-p}(x).$$

### 6. Generating Matrix

For the sequence  $\{P_n\}$  defend in equation (1.1) we consider the matrix

$$A = \begin{bmatrix} kx & 1\\ 1 & 0 \end{bmatrix} \tag{6.1}$$

since, the elements of this matrix are the members of the sequence of Fibonacci polynomials. We call this matrix as Fibonacci Matrix.

**Theorem (5).** For sequence  $\{P_n\}$  we define  $n \ge 1, r \ge 0$ 

$$P_{n+r}(x) = P_{n+1}(x)P_{r}(x) + P_{r}(x)P_{r-1}(x)$$
$$P_{n+r}(x) = P_{n}(x)P_{r+1}(x) + P_{n-1}(x)P_{r}(x).$$

**Proof.** For sequence  $\{P_n\}$ , we have

$$A = \begin{bmatrix} kx & 1 \\ 1 & 0 \end{bmatrix}.$$

Since, determinant of matrix A is -1, there for,

$$\det \mathbf{A}^{\mathbf{n}} = \left(\det A\right)^{n} \tag{6.2}$$

$$\det \mathbf{A}^n = \left(-1\right)^n.$$

By mathematical induction

$$A^{n} = \begin{bmatrix} P_{n+1}(x) & P_{n}(x) \\ P_{n}(x) & P_{n-1}(x) \end{bmatrix}.$$
 (6.3)

Form equation (3.6.2) and (3.6.3), we get

$$P_{n+1}(x)P_{n-1}(x) - P_n^2(x) = (-1)^n$$

Since  $A^{n+r} = A^n A^r$ 

$$\begin{bmatrix} p_{n+r+1}(x) & p_{n+r}(x) \\ p_{n+r}(x) & p_{n+r-1}(x) \end{bmatrix}$$
  
= 
$$\begin{bmatrix} p_{n+1}(x) & p_n(x) \\ p_n(x) & p_{n-1}(x) \end{bmatrix} \begin{bmatrix} p_{r+1}(x) & p_r(x) \\ p_r(x) & p_{r-1}(x) \end{bmatrix}$$

After multiplying the matrices and equating the corresponding elements, we get

$$P_{n+r}(x) = P_{n+1}(x)P_{r}(x) + P_{n}(x)P_{r-1}(x).$$
  

$$P_{n+r}(x) = P_{n}(x)P_{r+1}(x) + P_{n-1}(x)P_{r}(x).$$

**Theorem (6).** For sequence  $\{P_n\}$  we define  $n \ge 1$ ,  $r \ge 0$ .

$$P_{n}(x) = P_{n+r+1}(x)P_{-r}(x) + P_{n+r}(x)P_{-(r+1)}(x).$$
  

$$P_{n}(x) = P_{n+r}(x)P_{-r+1}(x) + P_{n+r-1}(x)P_{-r}(x).$$

**Proof.** For sequence  $\{G_n\}$ , we have

$$A = \begin{bmatrix} kx & 1\\ 1 & 0 \end{bmatrix}.$$

If A is any square Matrix, then we know that

$$AA^{-1} = I \tag{6.4}$$

Where I is identity matrix from equation (5.4) we get

$$A^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -kx \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} P_n(x) & P_{-1}(x) \\ P_{-1}(x) & P_{-2}(x) \end{bmatrix}$$

By mathematical indication, we have

$$A^{-r} = \begin{bmatrix} P_{-(r-1)}(x) & P_{-r}(x) \\ P_{-r}(x) & P_{-(r+1)}(x) \end{bmatrix}$$

Since  $A^n = A^{n+r}A^{-r}$ 

$$\begin{bmatrix} p_{n+1}(x) & p_n(x) \\ p_n(x) & p_{n-1}(x) \end{bmatrix}$$
$$= \begin{bmatrix} p_{n+r+1}(x) & p_{n+r}(x) \\ p_{n+r}(x) & p_{n+r-1}(x) \end{bmatrix} \begin{bmatrix} p_{-(r-1)}(x) & p_{-r}(x) \\ p_{-r}(x) & p_{-(r+1)}(x) \end{bmatrix}.$$

After multiplying the matrices and equating the corresponding elements, we get

$$P_{n}(x) = P_{n+r+1}(x)P_{-r}(x) + P_{n+r}(x)P_{-(r+1)}(x).$$
  

$$P_{n}(x) = P_{n+r}(x)P_{-r+1}(x) + P_{n+r-1}(x)P_{-r}(x).$$

#### 7. Conclusions

In this paper Diagonal function k-Lucas Polynomials. Some basic rising diagonal function and descending diagonal function and generating matrix derived by standard method.

### Acknowledgement

We would like to thank the anonymous referees for numerous helpful suggestions.

#### References

- A.F Hordam, Diagonal Function, the Fibonacci Quarterly, Vol. 16, 19-36.
- [2] Alexandra Lupas Guide of Fibonacci and Lucas polynomials, Octagon Mathematics Magazine Vo. 17, No.1 (1999), 2-12.
- [3] B.S.Porov, A note on the sum of Fibonacci and Lucas polynomials, The Fill Quarterly 1970, 428-438.
- [4] D.V. Jaiswal, "Some Metric Properties of a Generalized Fibonacci Sequence", Labdev Journal of Science and technology, India vol.11-A, No.1, 1973, 1-3.
- [5] Jr. V.E. Hoggatt, Fibonacci and Lucas Numbers, Houshton Mifflin Company, Borton, 1965.
- [6] Koshy, T. Fibonacci and Lucas number with application, Wiley, 2001.
- [7] M. Catalan, An Identity for Lucas Polynomials, Fibonacci Quarterly Vol 43, No.1 2005.
- [8] Singh, B., S. Teeth, and Harne Diagonal Function of Fibonacci Polynomials, chh. J. Sci. Tech 2005, 97-102.
- [9] Vajda, S. Fibonacci and Lucas numbers and the golden section, Ellis Horwood Limited, Chi Chester, England, 1989.
- [10] Vorobyou, N.N., The Fibonacci number, D.C. health company, Boston, 1963.