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1. Introduction 
On 19 December 2014, Mr. Yan-Zong Zhang, a 
mathematician in China, asked online a question: is the 
sequence 
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increasing? if not, can one take an example? where   
denotes the set of all positive integers. On 20 December 
2014, he told that this problem is needed by his teacher, 
Ms. Jun Jiang, and she said that this problem originates 
from computation of the probability of intersecting 
between a plane couple and a convex body in an 
unpublished paper. 

The main of this paper is to give an affirmative answer 
to the above question. 

Theorem 1.1. The sequence np  defined by (1.1) is 
strictly increasing. 

2. A Direct Proof of Theorem 1.1 
We firstly affirm the above question directly. 

It is well known that the formula 
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is called the Wallis sine (cosine) formula, see [[9], Section 
1.1.3], where 

 1
0
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is the classical Euler gamma function. 
It is clear that 1 0p =  and 0np >  for 1n > . 
One may reformulate the sequence np  for 1n >  in 

terms of the Euler gamma function ( )xΓ  as 
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for n∈. Hence, in order to make sure the increasing 
monotonicity of the sequences np  and nq , it is sufficient 
to make clear the monotonicity property of the sequence 
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Taking the logarithm of nQ  gives 
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and using the functional equation ( ) ( )1x x xΓ + = Γ  leads 
to 
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As a result, it suffices to prove 1 0n nG G+ − >  which is 
equivalent to 
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that is, 
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In [[7], p. 645], Gurland obtained that 
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Later, Chu recovered the ineuqlaity (2.3) in [[4], Theorem 
2]. Since 
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is equivalent to 
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the inequality (2.2) is valid. This implies that the sequence 
nQ , and then the sequence np , is strictly increasing. The 

proof of Theorem 1.1 is complete. 

3. The First Indirect Proof of Theorem 
1.1 
Now we are in a position to give the first indirect proof of 
Theorem 1.1. 

One may observe that the sequence nQ  defined by (2.1) 
may be rearranged as 
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where 
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Recall from [1,11] that a positive function f  is said to 
be logarithmically completely monotonic on an interval I  
if f  has derivatives of all orders on I  and its logarithm 

ln f  satisfies ( )( 1) [ln ( )] 0k kf x− ≥  for all k ∈  on I . 
For more information about the notion “logarithmically 
completely monotonic function”, please refer to 
[2,5,13,16,17,18] and closely related references therein. 

In 1986, J. Bustoz and M. E. H. Ismail revealed in 
essence in [3] that 

(1) the function 
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for 1 0b a≥ − >  is logarithmically completely 
monotonic on the interval (max{ , }, )a c− − ∞  if 

1
2

a bc + −
≤ , so is the reciprocal of the function 

, ; ( )a b cf x  on (max{ , }, )b c− − ∞  if c a≥ . 
The logarithmically complete monotonicity of the function 

1/2 ( )f x  and 0,1/2;0 ( )f x  imply the strictly increasing 

monotonicity of the function 1/2
1/2,0[ ( )]F x  on (0, )∞ . 

Therefore, by the relation (3.1), the sequence nQ , and 
then the sequence np  , is strictly increasing. The proof of 
Theorem 1.1 is complete. 

4. The Second Indirect Proof of Theorem 
1.1 
Finally we give the second indirect proof of Theorem 1.1. 

For real numbers a , b , and c , denote min{ , , }a b cρ =  
and let 
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In [[12], Theorem 1], Qi and Guo discovered the 
following necessary and sufficient conditions: 

(1) the function , , ( )a b cH x  is logarithmically 
completely monotonic on ( , )ρ− ∞ if and only if 
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(2) the function , , ( )b a cH x  is logarithmically 
completely monotonic on ( , )ρ− ∞  if and only if 
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This means that the function 

 1/2,0;0 1/2,0
0,1/2;0

1( ) ( )H x F x
H

= =  

is strictly increasing on (0, )∞ , where 1/2,0 ( )F x  is defined 
by (3.2). As a result, by the relation (3.1), the sequence 

nQ , and so the sequence np  , is strictly increasing. The 
proof of Theorem 1.1 is complete. 

Remark 4.1. The reciprocal of the sequence np  for 
2n ≥  is a (logarithmically) completely monotonic 

sequence. For information on the definition of (logarithmi- 
cally) completely monotonic sequences and related 
properties, please refer to closely related chapters in the 
books [8,19]. 

Remark 4.2. By carefully reading the expository and 
survey articles [9,10,14,15] and a large amount of 
references therein, one may deeply understand and exten- 
sively comprehend the spirit and essence of this paper. 

Remark 4.3. This paper is a slightly revised version of 
the preprint [6]. 
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