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1. Introduction 
In 2006, Mustafa and Sims [6] introduced a new notion 

of generalized metric space called G-metric space. In fact, 
Mustafa et. al. [5-9] studied many fixed point results for a 
self-mapping in G-metric space under certain conditions. 

In the present work, we study some fixed point results 
for a pair of self mappings in a complete G-metric space X 
under weakly contractive conditions related to altering 
distance functions. 

In 1984, Khan et. al. [4] introduced the notion of 
altering distance function as follows: 

Definition 1.1. A mapping f: [0, ∞) → [0, ∞) is called 
an altering distance function if the following properties are 
satisfied: 

f is continuous and non-decreasing. 
f(t) = 0 ⇔  t = 0. 
Definition 1.2. Let X be a nonempty set, and let G : X 

× X × X → +  be a function satisfying the following 
properties: 

(G1) G(x, y, z) = 0 if x = y = z, 
(G2) G(x, x, y) > 0 for all x, y in X, with x ≠ y, 
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z in X with y ≠ 

z, 
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) =…, (symmetry 

in all three variables), 
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a 

in X, (rectangular inequality). 
Then the function G is called a generalized metric, or 

specially a G-metric on X, and the pair (X, G) is called a 
G-metric space. 

Definition 1.3. Let (X, G) be a G-metric space and let 
{xn} be a sequence of points in X, then {xn} is said to be 
G-convergent to x in X, if G(x, xn, xm) → 0, as n, m → ∞. 

G-Cauchy sequence in X, if G(xn, xm, xl) → 0, as n, m, l 
→ ∞. 

Proposition 1.4. Let (X, G) be a G-metric space. Then, 
the following are equivalent 

{xn} is G-convergent to x. 
G(xn, xn, x) → 0, as n → ∞. 
G(xn, x, x) → 0, as n → ∞. 
G(xn, xm, x) → 0, as n, m → ∞. 
Proposition 1.5. Let (X, G) be a G-metric space. Then, 

the following are equivalent the sequence {xn} is G-
Cauchy. 

for any ε > 0 there exists k in   such that G(xn, xm, xm) 
< ε, for all m, n ≥ k. 

Proposition 1.6. Let (X, G) be a G-metric space. Then 
f : X → X is G-continuous at x in X if and only if it is G-
sequentially continuous at x, that is, whenever {xn} is G-
convergent to x, {f(xn)} is G-convergent to f(x). 

Proposition 1.7. Let (X, G) be a G-metric space. Then 
the function G(x, y, z) is jointly continuous in all three of 
its variables. 

Definition 1.8. A G-metric space (X, G) is called G-
complete if every G-Cauchy sequence is G-convergent in 
(X, G). 

In 1996, Jungck [3] introduced the concept of weakly 
compatible maps as follows: 

Definition 1.9. Two self maps f and g are said to be 
weakly compatible if they commute at coincidence points. 

In 2002, Aamri et. al. [1] introduced the notion of E.A. 
property as follows: 

Definition 1.10. Two self-mappings f and g of a metric 
space (X, d) are said to satisfy E.A. property if there exists 
a sequence {xn} in X such that 
lim limn n n nfx gx t→∞ →∞= =  for some t in X. 

In 2011, Sintunavarat et. al. [10] introduced the notion 
of (CLRf) property as follows: 

Definition 1.11. Two self-mappings f and g of a metric 
space (X, d) are said to satisfy (CLRf) property if there 
exists a sequence {xn} in X such that 
lim limn n n nfx gx fx→∞ →∞= =  for some x in X.  
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In 2011, Aydi H. [2] introduced the concept of weak 
contraction in G-metric space as follows: 

Definition 1.12. Let (X, G) be a G-metric space. A 
mapping f : X → X is said to be a ϕ -weak contraction, if 
there exists a map ϕ : [0, ∞) → [0, ∞) with ϕ (0) = 0 and 
ϕ (t) > 0 for all t > 0 such that 

G(fx, fy, fz) ≤ G(x, y, z) – ϕ (G(x, y, z)), for all x, y, z 
in X. 

In 2011, Aydi H. [2] proved the following result: 
Theorem 1.13. Let X be a complete G-metric space. 

Suppose the map f : X → X satisfies the following: 
ψ (G(fx, fy, fz)) ≤ ψ (G(x, y, z)) – ϕ (G(x, y, z)), for 

all x, y, z in X, 
where ψ  and ϕ  are altering distance functions.  

Then f has a unique fixed point (say u) and f is G-
continuous at u. 

2. Weakly Compatible Maps 
Theorem 2.1. Let (X, G) be a G-metric space and let f 

and g be self mappings on X satisfying the followings:  

 gX fX⊂  (2.1) 

        ,fX or gX is complete subspace of X  (2.2) 
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Then, f and g have a point of coincidence in X.  
Moreover, if f and g are weakly compatible, then f and 

g have a unique common fixed point. 
Proof. Let x0 ∈  X. From (2.1), we can construct 

sequences {xn} and {yn} in X by yn = fxn+1 = gxn, n = 0, 1, 
2,… 

From (2.3), we have 
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Since ψ  is non-decreasing, therefore we have  

 ( ) ( )1 1 1,  ,    ,  ,  .n n n n n nG y y y G y y y+ + −≤  

Let un = G(yn, yn+1, yn+1), then 0 ≤ un ≤ un-1 for all n > 0. 
It follows that the sequence {un} is monotonically 

decreasing and bounded below. So, there exists some r ≥ 0 
such that  

 ( )1 lim ,  ,  lim .n n n nn n
G y y y u r+

→∞ →∞
= =  (2.5) 

From (2.4) and (2.5) and letting n → ∞, we have 
ψ (r) ≤ ψ (r) – ϕ (r), since ψ  and ϕ  are continuous.  
Thus, we get ϕ (r) = 0, i.e., r = 0, by property of ϕ , we 

have 

 ( )1 lim ,  ,  lim 0.n n n nn n
G y y y u+

→∞ →∞
= =  (2.6) 

Now, we prove that {yn} is a G-Cauchy sequence. Let, 
if possible, {yn} is not a G-Cauchy sequence. Then, there 
exists ε > 0, for which, we can find subsequences {ym(k)} 
and {yn(k)} of {yn} with n(k) > m(k) > k such that 

 ( )( ) ( ) ( ),  ,  n k m k m kG y y y ε≥  (2.7) 

Let m(k) be the least positive integer exceeding n(k) 
satisfying (3.7) such that 
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Then, we have 
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Letting k → ∞, and using (2.6), we have 
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From (2.8), we get 
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Moreover, we have 
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Letting k → ∞ in the above two inequalities and using 
(2.6) – (2.10), we get 

 ( ) ( )( )( ) 1 1 1lim ,  ,  .n k m k m kk
G y y y ε− − −→∞

=  (2.11) 

Taking x = xn(k), y = xm(k) and z = xm(k) in (2.3), we get 
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Letting k → ∞, using (2.11) and the continuity of ψ  
and ϕ , we get 
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( ) ( ) ( )ψ ε ψ ε ϕ ε≤ − , that is, ( ) 0ϕ ε = , a contradiction, 
since ε  > 0. 

Thus {yn} is a G-Cauchy sequence. 
Since fX is complete subspace of X, so there exists a 

point u ∈  fX, such that 

 1 lim lim .n nn n
y fx u+

→∞ →∞
= =  (2.12) 

Now, we show that u is the common fixed point of f 
and g. 

Since u∈  fX, so there exists a point p ∈  X, such that, 
fp = u. 

From (2.3), we have 
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Using (2.12) and the property of ψ  and ϕ , we have 
ψ (G(fp, gp, gp)) ≤ ψ (0) – ϕ (0), implies that, G(fp, 

gp, gp) = 0, that is, fp = gp = u. 
Hence u is the coincidence point of f and g. 
Since, fp = gp, and f, g are weakly compatible, we have 

fu = fgp = gfp = gu. 
Now, we claim that, fu = gu = u. 
Let, if possible, gu ≠ u. 
From (2.3), we have 
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Hence gu = u = fu, so u is the common fixed point of f 
and g. 

For the uniqueness, let v be another common fixed 
point of f and g so that fv = gv = v. 

We claim that u = v. Let, if possible, u ≠ v. 
From (2.3), we have 
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Thus, we get, u = v. 
Hence u is the common fixed point of f and g. 

3. E.A. Property 
Theorem 3.1. Let (X, G) be a G-metric space. Let f and 

g be weakly compatible self maps of X satisfying (2.3) 
and the followings: 

      . . ,f and g satisfy the E A property  (3.1)  

      .fX is closed subset of X  (3.2) 

Then f and g have a unique common fixed point. 
Proof. Since f and g satisfy the E.A. property, there 

exists a sequence {xn} in X such that  

lim
n→∞

 gxn = lim
n→∞

 fxn = x0 for some x0 in X. 

Now, fX is closed subset of X, therefore, by (3.1), we 
have lim

n→∞
 fxn = fz, for some z in X. 

From (2.3), we have 
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Letting limit as n → ∞, we have 
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Using (2.3), and property of ψ , ϕ , we have 
ψ (G(fz, gz, gz)) ≤ ψ (0) –ϕ (0) = 0, implies that, G(fz, 

gz, gz) = 0, that is, fz = gz. 
Now, we show that gz is the common fixed point of f 

and g. 
Suppose that gz ≠ ggz. Since f and g are weakly 

compatible, gfz = fgz and therefore ffa = gga. 
From (2.3), we have 
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Hence ggz = gz, so gz is the common fixed point of f 
and g. 

Finally, we show that the fixed point is unique. 
Let u and v be two common fixed points of f and g such 

that u ≠ v. 
From (2.3), we have 
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Thus, we get, u = v. 
Hence u is the unique common fixed point of f and g. 

4. (CLRf) Property 
Theorem 4.1. Let (X, G) be a G-metric space. Let f and 

g be weakly compatible self maps of X satisfying (2.3) 
and the following: 

 ( )     .ff and g satisfy CLR property  (4.1) 

Then f and g have a unique common fixed point. 
Proof. Since f and g satisfy the (CLRf) property, there 

exists a sequence {xn} in X such that 
lim
n→∞

 gxn = lim
n→∞

 fxn = fx for some x in X. 

From (2.3), we have 
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Letting limit as n → ∞, we have 
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Using (2.3), and property of ψ , ϕ , we have 
ψ (G(fz, gz, gz)) ≤ ψ (0) –ϕ (0) = 0, implies that, G(fx, 

gx, gx) = 0, that is, fx = gx. 
Let w = fx =gx. 
Since f and g are weakly compatible, gfx = fgx, implies 

that, fw = fgx = gfx = gw. 
Now, we claim that gw = w. 
Let, if possible, gw ≠ w. 
From (2.3), we have 
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Hence gw = w = fw, so w is the common fixed point of 
f and g. 

Finally, we show that the fixed point is unique. 
Let v be another common fixed point of f and g such 

that fv = v =gv. 
From (2.3), we have 
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Thus, we get, w = v. 
Hence w is the unique common fixed point of f and g. 
Example 4.2. Let X = [0, 1] and G(x, y, z) =max{|x-y|, 

|y-z|, |x-z|}, for all x, y, z in X. Clearly (X, G) is a G-
metric space.  

Let 1fx x
4

=  and 1gx x
8

=  for each x ∈  X. Then 

 1 1[0, ][0, ] .
8 4

gX fX= =  

Without loss of generality, assume that x > y > z. 
Then, G(x, y, z) =|x-z|.  
Let ψ (t) = 5t and ϕ (t) = t. Then 
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From here, we have 

 ( )( ) ( )( ),  ,  ,  ,  .G fx fy fz G fx fy fz x zψ ϕ− = −  

So ψ (G(gx, gy, gz)) < ψ (G(fx, fy, fz)) - ϕ (G(fx, fy, 
fz)). 

From here, we conclude that f, g satisfy the relation 
(2.3).  

Consider the sequence {xn} = { 1
n

} so that 

( )lim im 0 0n n n nfx gx f→∞ →∞= = = , hence the pair (f, g) 
satisfy the (CLRf) property. Also, f and g are weakly 
compatible and 0 is the unique common fixed point of f 
and g. 

From here, we also deduce that 
lim im 0n n n nfx gx→∞ →∞= = , where 0 ∈  X, implies that 
f and g satisfy E.A. property. 
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