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Abstract  Suppose that E is an algebraic number field over the rational field . Let a(n) be the number of integral 
ideals in E with norm n and ∆(x) denote the remainder term in the asymptotic formula of the l-th integral power sum 
of a(n). In this paper the bound of the average behavior of ∆(x) is given. This result constitutes an improvement upon 
that of Lü and Wang for the error terms in mean value. 
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1. Introduction and the Result 
Let E  be an algebraic number field of degree d  over 

the rational field  , and ( , )s Eζ  be its Dedekind zeta-
function. Thus 
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where a  runs over all integral ideals of the field E , and 
Na  is the norm of a . If ( )a n  denotes the number of 
integral ideals in E  with norm n , then we have 
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It is known that ( )a n  is a multiplicative function and 
satisfies  

 ( ) ( ) ,da n nτ  (1) 

where ( )nτ  is the divisor function. 
It is an important problem to study the function ( )a n . 

In 1927, Landau [7] first proved that 
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for any arbitrary algebraic number field of degree 2d ≥ , 
where α  is the residue of ( , )s Eζ  at its simple pole 1s = . 

It is hard to refine Landau's result. Later, Huxley and 
Watt [3] and Müller [9] improved the results for the 
quadratic and cubic fields, respectively. 

Until 1993, Nowak [10] obtained the best result 
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for any arbitrary algebraic number field of degree 3d ≥ . 
In [1], Chandraseknaran and Good studied the l -th 

integral power sum of ( )a n  in some Galois fields, and 
they showed that 

Theorem 1.0. If E  is a Galois extension of   of 
degree d , then for any 0>  and any integer 2d ≥  , we 
have 
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where 1lm d −= , and ( )lQ t  is a suitable polynomial in t  
of degree 1m − . 

Recently, Lü and Wang [8] improved the classical 

result of [1] by replacing 2
md

 with 3
6md +

 . 

Motivated by [2,4,5], the purpose of this paper is to 
study the remainder term in mean square, and we shall 
prove the following result. 

Theorem 1.1 Subject to assumptions in Theorem 1.0, 
and define 

 ( ) : ( ) (log )l
m

n x
x a n xQ x

≤
∆ = −∑ . (2) 

Then we have 
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for any given 0> . 
Notations. As usual, the Vinogradov symbol A B  

means that B  is positive and the ratio /A B  is bounded. 
The letter   denotes an arbitrary small positive number, 
not the same at each occurrence.  

2. Proof of Theorem 1.1 
To prove our Theorem, we need the following lemmas. 
Lemma 2.1 Let /E   be a Galois extension of degree 

d  , and ( )a n  be defined in (1). Define 
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Then we have  

 1( ) ( , ) ( ),m
lN s s E A sζ= ⋅  

for any integer 1l ≥ , where 1lm d −= , and ( )1A s  denotes 
a Dirichlet series, which is absolutely and uniformly 
convergent for ( ) 1/ 2sℜ >e  . 

Proof. This is Lemma 2.1 in [8]. 
Lemma 2.2. Let E  be an algebraic number field of 

degree d , then 

 
(1 )

3( , ) (1 | |) ,
d

it E t
σ

ζ σ
− +

+ +


 

for 1 1
2
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Proof. By Lemma 2.2 in [8] and the Phragmen-
Lindelöf principle for a strip (see, e.g. Theorem 5.53 in 
[6]), Lemma 2.2 follows immediately. 

Now we begin to prove our theorem. 
Let E  be a Galois extension of   of degree d . 
Recall ( )a n  denotes the number of integral ideals in 

E with norm n , and 
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From (1), (3) and Perron's formula (see Proposition 
5.54 in [6], we get 
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By the property ( )lN s  only has a simple pole at 

  1s =  for 1( )
2

sℜ >e  and Cauchy's residue theorem, we 

have 
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where 1lm d −= , and ( )mQ t  is a suitable polynomial in t  
of degree 1m −  . 

From the definition of ( )x∆  in （2）, we have 

 ( )1 1
1 2 3( ) ( ) ( ) ( ) .x J x J x J x O x T+ −∆ = + + +   

Therefore to prove Theorem 1.1, we shall prove the 
following results. 
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It is easy to get 
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Now we consider the integral ( )1J x  . We have 
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To go further, we get 
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By (7) and (8) 
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From (9), Lemma 2.1 and 2.3, we have (for 3d ≥ ) 
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Finally we estimate trivial bounds of the integrals 
( ) ( )2 3,  J x J x . By Lemma 2.2, we get 
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which yields 
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The inequalities (4), (5) immediately follow from (6), 
(10) and (11). That is, 
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Then this completes the proof of Theorem 1.1. 
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