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1. Introduction 
The harmonic number nH  is defined as 

 1 1 11
2 3nH

n
= + + + +  

and it has the following close connections with the Euler-
Mascheroni constant γ : 

 ( )lim ln 0.57721...nn
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→∞
= − =  

and 

 ( )1 ,nH nψ γ= + +  

where ( )xψ  is the digamma function which is the 
logarithmic derivative of the classical Euler gamma 
function 
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The harmonic number nH  has interesting applications 
in many areas of mathematics, such as number theory, 
special functions, and combinatorics. For example, 
Lagarias proved that the Riemann hypothesis is equivalent 
to the statement that 

 ( ) lnHn
n nn H e Hσ ≤ +  

for n∈ , where ( )nσ  denotes the sum of the divisors of 
n. 

In [20], Paule and Schneider obtained the identity 
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In [2], Alzer presented the inequality 
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for n 2≥ , where the constants  0.0140α = …  and  1β =  
are the best possible. In [5], Batir gave an inequality 
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This double inequality was refined in [4] by replacing 
2

ln
6
π  by 1. It also inspired Mortici to construct a 

sequence 
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in [15], which converges to more quickly. 
For more information on the harmonic number Hn, 

please refer to [2,6-19,21-26] and plenty of references 
therein. 

In this paper, we will establish a new double inequality 
for bounding the harmonic number nH  in terms of the 
hyperbolic cosine. 

Our main result may be stated as the following theorem. 
Theorem 1.1. For all positive integers n∈ , we have 

 1ln ln cosh ,nH n
n

α β≤ − − <  (1.1) 

where the constants ( ) 1 ln cosh 1   0.5662α = − = …  and 
 0.5772β γ= = …  are the best impossible. 

2. Lemmas 
In order to prove Theorem 1.1, we need the following 

lemmas. 
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Lemma 2.1 ([[3], p. 384]). Let n 1≥  and k 0≥  be 
integers, for x 0> , we have 

 ( ) ( )( ) ( ) ( ) ( )12 ; 1 2 1; ,n n
n nS k x x S k xψ+< − < +  
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Lemma 2.2 ([10,22]). For x 0> , we have 
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3. Proof of Theorem 1.1 
Now we are in a position to prove our Theorem 1.1. 
Let 

 ( ) ( ) 11 ln ln cosh , 0.f x x x x
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ψ γ= + − − + >  

A direct differentiation yields 
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By virtue of inequalities (2.1) and 
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for x 1> . This implies that '( ) 0f x >  and that ( )f x  is 
increasing on (1, )∞ . 

By the asymptotic expansion 
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as x →∞  in [[1], p. 259] and the well-known formula 
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we easily find 
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as x →∞ . Hence, it follows that 
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Taking into account that ( )f x  is increasing on (1, )∞  
reveals 

 ( ) ( ) ( )1 lim , .
n

f f n f n nγ
→∞

≤ < = ∈  (3.2) 

Combining (1), (3.1), and (3.2) concludes that the 
double inequality (1.1) holds for all n 1≥  and that the 
bounds  0.5662α = …  and    0.5772β γ= = …  in (1.1) 
are the best impossible. The proof of Theorem 1.1 is 
complete. 
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