Note on a Partition Function Which Assumes All Integral Values

Manvendra Tamba*
Department of Mathematics, Goa University, Taleigao Plateau, Goa, India
*Corresponding author: tamba@unigoa.ac.in

Abstract

Let $G(n)$ denote the number of partitions of n into distinct parts which are of the form $2 m, 3 m, 5 m, 6 m-3$, $8 m-3,9 m-3$ or $11 m-3$ with parts of the form $2 m, 3 m, 6 m-3$, or $11 m-3$ being even in number minus the number of them with parts of the form $2 m, 3 m, 6 m-3$, or $11 m-3$ being odd in number. In this paper, we prove that $G(n)$ assumes all integral values and does so infinitely often.

Keywords: partition functions, Gaussian integers, Jacobi's triple product identity
Cite This Article: Manvendra Tamba, "Note on a Partition Function Which Assumes All Integral Values." Turkish Journal of Analysis and Number Theory, vol. 2, no. 6 (2014): 220-222. doi: 10.12691/tjant-2-6-5.

1. Introduction

Let $S(n)$ denote the number of partitions of n into distinct parts with even rank minus the number with odd rank (see [2]). Andrew, Dyson and Hickerson [3] used the arithmetic of $\mathrm{Q}(\sqrt{ } 6)$ to show that $\mathrm{S}(n)$ takes on every integral value infinitely often. This is the first time the interaction between the theory of partitions and algebraic number theory was exhibited. It was remarked in [3] that they know of no other partition function in the literature which assumes all integral values as $\mathrm{S}(\mathrm{n})$ does.

Let $\mathrm{H}(n)$ denote the number of partitions of n into parts which are repeated exactly $1,3,4,6,7,9$, or 10 times with the parts repeated exactly $1,4,6$, or 9 times even in number minus the number of them with parts repeated exactly 1,4 , 6, or 9 times odd in number. In [5], using the arithmetic of Gaussian integers $\mathbb{Z}[\mathrm{i}]$, it was shown that $\mathrm{H}(\mathrm{n})$ assumes all integral values and does so infinitely often.

Let $G(n)$ denote the number of partitions of n into distinct parts which are of the form $2 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}, 6 \mathrm{~m}-3$, $8 \mathrm{~m}-3,9 \mathrm{~m}-3$, or $11 \mathrm{~m}-3$ with parts of the form $2 \mathrm{~m}, 3 \mathrm{~m}, 6 \mathrm{~m}-$ 3 , or $11 \mathrm{~m}-3$ being even in number minus the number of them with parts of the form $2 \mathrm{~m}, 3 \mathrm{~m}, 6 \mathrm{~m}-3$, or $11 \mathrm{~m}-3$ being odd in number. For example, $G(7)$ is zero because $(2(2))+(3(1)),(2(2))+(6(1)-3)$ have even number of parts of the form $2 \mathrm{~m}, 3 \mathrm{~m}, 6 \mathrm{~m}-3$, or $11 \mathrm{~m}-3$. while (2(1)) $+(5(1))$ and $(2(1))+(8(1)-3)$ areodd number of parts of the form $2 \mathrm{~m}, 3 \mathrm{~m}, 6 \mathrm{~m}-3$, or $11 \mathrm{~m}-3$ (here m -values are shown in bold). In this paper, we show that $G(n)$ assumes all integral values and does so infinitely often.

2. Main Results

A For (positive) integer n, consider the equation

$$
\begin{equation*}
u^{2}+v^{2}=24 n+2 \tag{2.1}
\end{equation*}
$$

We call a solution (u, v) of (2.1) admissible if $u \equiv 1$ $(\bmod 6)$ and $v \equiv 1(\bmod 6)$. For a (positive) integer $n \equiv 2$ (mod 24), let $J(n)$ be the excess of the number of admissible solutions of $u^{2}+v^{2}=n$ with $v \equiv 1(\bmod 12)$ over the number of them with v not congruent to 1 modulo 12.

In subsequent sections, we shall be proving the following:
Therorem 1. For $n \geq 0, G(n)=J(24 n+2)$.
Theorem 2. $G(n)$ takes on every integer value infinitely often.

3. Proof of Theorem 1

First we note that the generating function of $G(n)$ is

$$
\begin{aligned}
& \sum_{n \geq 0} G(n) q^{n} \\
= & \prod_{n \geq 1}\binom{1-q^{2 n}-q^{3 n}+q^{5 n}-q^{6 n-3}}{+q^{8 n-3}+q^{9 n-3}-q^{11 n-3}}
\end{aligned}
$$

Lemma 1. For $|q|<1$,

$$
\begin{aligned}
& \prod_{n \geq 1}\binom{1-q^{2 n}-q^{3 n}+q^{5 n}-q^{6 n-3}}{+q^{8 n-3}+q^{9 n-3}-q^{11 n-3}} \\
& =\sum_{n, m \in \mathbb{Z}}(-1)^{m} q^{\frac{3}{2}\left(n^{2}+m^{2}\right)+\frac{1}{2}(n+m)}
\end{aligned}
$$

Proof. Using Jacobi's triple product identities (see [1], p. 21) we get
$\sum(-1)^{m} q^{\frac{3}{2}\left(n^{2}+m^{2}\right)+\frac{1}{2}(n+m)}$
$n, m \in \mathbb{Z}$
$=\left(\sum_{n \in \mathbb{Z}} q^{\frac{3}{2} n^{2}+\frac{1}{2} n}\right)\left(\sum_{m \in \mathbb{Z}}(-1)^{m} q^{\frac{3}{2} m^{2}+\frac{1}{2} m}\right)$
$=\Pi_{n \geq 1}\left(\left(1-q^{3 n}\right)\left(1+q^{3 n-1}\right)\left(1+q^{3 n-2}\right)\right)$
$\times \prod_{n \geq 1}\left(\left(1-q^{3 n}\right)\left(1-q^{3 n-1}\right)\left(1-q^{3 n-2}\right)\right)$
$=\Pi_{n \geq 1}\left(\left(1-q^{3 n}\right)^{2}\left(1+q^{6 n-2}\right)\left(1+q^{6 n-4}\right)\right)$
$=\prod_{n \geq 1}\left(\left(1-q^{3 n}\right)\left(1-q^{2 n}\right)\left(1-q^{6 n-3}\right)\right)$
$=\Pi_{n} \geq 1\binom{1-q^{2 n}-q^{3 n}+q^{5 n}-q^{6 n-3}}{+q^{8 n-3}+q^{9 n-3}-q^{11 n-3}}$
$=\sum_{n \geq 0} G(n) q^{n}$.
This proves the Lemma.
Using this lemma, it follows that:
$\Sigma_{n \geq 0} G(n) q^{24 n+2}$
$=q^{2} \prod_{n \geq 1}\binom{1-q^{48 n}-q^{72 n}+q^{120 n}-q^{144 n-72}}{+q^{192 n-72}+q^{216 n-72}-q^{264 n-72}}$
$=q^{2} \sum_{n, m \in \mathbb{Z}(-1)^{m}} q^{36\left(n^{2}+m^{2}\right)+12(n+m)}$
$=\Sigma_{n, m \in \mathbb{Z}(-1)^{m} q^{(6 n+1)^{2}}+(6 m+1)^{2}}$
$=\sum_{n \geq 0} J(24 n+2) q^{24 n+2}$.
This proves Theorem 1.

4. Arithmetic of $J(n)$

In this section we study $J(n)$ using Gaussian integers $\mathbb{Z}[i]$, where $i=\sqrt{-1}$. For $\alpha=u+i v \in \mathbb{Z}[i]$, let $N(u+i v)=u^{2}+v^{2}$. We define $c_{4}(\alpha)$ in terms of u $(\bmod 4)$ and $v(\bmod 4)$ by

Table 1. Values of $c_{4}(\alpha)$

	$v(\bmod 4)$				
		0	1	2	4
	0	0	i	0	$-i$
	1	1	0	-1	0
	2	0	$-i$	0	i
	4	-1	0	1	0

Let $c_{\mathbf{3}}(\alpha)$ be defined in terms of $u(\bmod 3)$ and v $(\bmod 3)$ by the following table, where $\omega=(1+i) / \sqrt{ } 2$:

Table 2. Values of $\boldsymbol{c}_{3}(\boldsymbol{\alpha})$

	$v(\bmod 3)$			
$u(\bmod 3)$		0	1	2
	0	0	$-i$	i
	1	1	ω^{5}	ω^{7}
	2	-1	ω^{3}	ω

Let $C(\alpha)=c_{3}(\alpha) c_{4}(\alpha)$ and let

$$
G(n)=\sum_{N(\alpha)=n} c(\alpha)
$$

where the sum is over a complex set non-associate Gaussian integers with norm n.

Let $P=\{\alpha=u+i v \in \mathbb{Z}[i]: u \equiv 1(\bmod 6)$ and $v \equiv 1$ $(\bmod 6)\}$ and let $\mathrm{Q}=\{\beta=r+i s \in \mathbb{Z}[i]:(1+i) \beta P$ or $(1-i) \beta \in P\}$. Then, for $n \equiv 1(\bmod 12)$,

$$
J(2 n)=\sum_{\substack{\alpha \in P \\ N(\alpha)=2 n}}(-1)^{(v-1) / 2},
$$

(where v is the imaginary part of α)

$$
=\sum_{\substack{\beta \in Q \\ N(\beta)=n}}(c(\beta)+c(\bar{\beta})),
$$

(where $\bar{\beta}$ is the conjugate of β)

$$
=C(n) .
$$

Note that this together with Theorem 1 proves the assertion made in the Remark 2 of [5].

Thus we have shown that:
Lemma 2. For $n \equiv 1(\bmod 12), J(2 n)=C(n)$.
Next we recall the properties of C(n) from [5].
Lemma 3. (a) The function C(n) is multiplicative.
(b) $C(n)=0$ unless $n \equiv 1$ or $5(\bmod 12)$.

Lemma 4. Let p be a prime $\equiv 1(\bmod 12)$ and $n \geq 1$. Then:
a. $\mathrm{C}(\mathrm{n})$ is either 0,2 or -2 .
b. If $C(p)=0$, then

$$
C\left(p^{n}\right)=\left\{\begin{array}{cl}
(-1)^{n / 2} & \text { if niseven } \\
0 & \text { other wise }
\end{array}\right.
$$

c. If $C(p)= \pm 2$, then

$$
\left(p^{n}\right)=\left\{\begin{array}{cc}
(n+1) & \text { if } C(p)=2 \\
(-1)^{n}(n+1) & \text { if } C(p)=-2
\end{array}\right.
$$

Lemma 5. Let p be a prime $\equiv 5(\bmod 12)$ and $n \geq 1$ be even. Then:

$$
C\left(p^{n}\right)=\left\{\begin{array}{cc}
(-1)^{n / 4} & \text { if } n \equiv 0(\bmod 4) \\
(-1)^{(n+2) / 4} & \text { if } n \equiv 2(\bmod 4)
\end{array}\right.
$$

5. Proof of Theorem 2

As in [5],
$G\left(\frac{61^{k-1} 13^{2 m}-1}{12}\right)=C\left(61^{k-1} \cdot 13^{2 m}\right)$
(by Theorem 1and Lemma 2)
$=C\left(61^{k-1}\right) C\left(13^{2 m}\right) \quad($ by Lemma 3(a))
$=k(-1)^{m}$
(by Lemma 4 (b) and (c)
and [[5], Table 1])

$$
=\left\{\begin{array}{cl}
k & \text { if } m \text { is even } \\
-k & \text { if } m \text { is odd } .
\end{array}\right.
$$

This proves Theorem 2.

6. Conclusion

An arithmetical function $f(n)$ is called lacunary if it is almost always 0 (see[4]). In [3] it is shown that $S(n)$ is lacunary. In [5] it is shown that $H(n)$ is lacunary. So is is natural to ask whether $G(n)$ is so. We make the following conjecture:

Conjecture. $G(n)$ is lacunary.

References

[1] G.E. Andrews, The Theory of Partitions, (G.-C. Rota, Ed.), Encyclopedia of Math. And its Applications, Vol. 2, AddisonWesley, Reading, MA, 1976.
[2] G.E. Andrews, Questions and conjectures in partition theory, Amer. Math. Monthly, 93 (1986) 708-711.
[3] G.E. Andrews, F.J. Dyson and D. Hickerson, Partitions and indefinitequadratic forms, Invent. math., 91 (1988) 391-407.
[4] J. Lovejoy, Lacunary Partition Functions, Math. Research Letters, 9 (2002) 191-198.
[5] M.Tamba, On a partition function which assumes all integral values, J.Number Theory 41 (1992) 77-86.

