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Abstract  Let G(n) denote the number of partitions of n into distinct parts which are of the form 2m, 3m, 5m, 6m-3, 
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all integral values and does so infinitely often. 
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1. Introduction 
Let S(n) denote the number of partitions of n into 

distinct parts with even rank minus the number with odd 
rank (see [2]). Andrew, Dyson and Hickerson [3] used the 
arithmetic of ( )Q 6√  to show that S(n) takes on every 

integral value infinitely often. This is the first time the 
interaction between the theory of partitions and algebraic 
number theory was exhibited. It was remarked in [3] that 
they know of no other partition function in the literature 
which assumes all integral values as S(n) does. 

Let H(n) denote the number of partitions of n into parts 
which are repeated exactly 1, 3, 4, 6, 7, 9, or 10 times with 
the parts repeated exactly 1,4,6, or 9 times even in number 
minus the number of them with parts repeated exactly 1, 4, 
6, or 9 times odd in number. In [5], using the arithmetic of 
Gaussian integers [ ]i , it was shown that H(n) assumes 
all integral values and does so infinitely often. 

Let G(n) denote the number of partitions of n into 
distinct parts which are of the form 2m, 3m, 5m, 6m-3, 
8m-3, 9m-3, or 11m-3 with parts of the form 2m, 3m, 6m-
3, or 11m-3 being even in number minus the number of 
them with parts of the form 2m, 3m, 6m-3, or 11m-3 
being odd in number. For example, G(7) is zero because 
(2(2)) + (3(1)), (2(2))+(6(1)-3) have even number of parts 
of the form 2m, 3m, 6m-3, or 11m-3. while (2(1))+(5(1)) 
and (2(1))+ (8(1)-3) areodd number of parts of the form 
2m, 3m, 6m-3, or 11m-3 (here m-values are shown in 
bold). In this paper, we show that G(n) assumes all 
integral values and does so infinitely often. 

2. Main Results 
A For (positive) integer n, consider the equation 

 2 2  24 2u v n+ = +  (2.1) 

We call a solution ( ),u v  of (2.1) admissible if 1u ≡  
(mod 6) and 1v ≡  (mod 6). For a (positive) integer 2n ≡  
(mod 24), let J(n) be the excess of the number of 
admissible solutions of 2 2u v n+ =  with 1v ≡  (mod 12) 
over the number of them with v not congruent to 1 modulo 
12. 

In subsequent sections, we shall be proving the 
following: 
Therorem 1. For ( ) ( )0,  24 2n G n J n≥ = + . 
Theorem 2. G(n) takes on every integer value infinitely 
often. 

3. Proof of Theorem 1 
First we note that the generating function of G(n) is 
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Lemma 1. For 1q < , 
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Proof. Using Jacobi’s triple product identities (see [1], p. 
21) we get 
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This proves the Lemma. 
Using this lemma, it follows that: 
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This proves Theorem 1. 

4. Arithmetic of J(n) 
In this section we study J(n) using Gaussian integers 
[ ]i , where 1i = − . For [ ]u iv iα ∈= +  , let 

( ) 2 2N u iv u v+ = + . We define ( )4c α  in terms of u 
(mod 4) and v (mod 4) by 

Table 1. Values of c4(α) 

 v (mod 4) 

u (mod 4) 

 0 1 2 4 

0 0 i 0 -i 

1 1 0 -1 0 

2 0 -i 0 i 

4 -1 0 1 0 

Let ( )c α3  be defined in terms of u ( mod 3) and v 

(mod 3) by the following table, where ( ) 1  / 2iω = + √ : 

Table 2. Values of c3(α) 

 v (mod 3) 

u(mod 3) 

 0 1 2 

0 0 -i i 

1 1 ω5 ω7 

2 -1 ω3 ω 

Let ( ) ( ) ( )3 4 C c cα α α=  and let 

 ( ) ( ) ( ),N n cG n α α== ∑  

where the sum is over a complex set non-associate 
Gaussian integers with norm n. 

Let {   [ 1] :P u iv uiα ∈= = + ≡  (mod 6) and  1v ≡  
(mod 6)} and let ( )Q  {  : 1[ ]r is i i Pβ β= ∈= + +  or 

( )1 }i Pβ− ∈ . Then, for  1n ≡  (mod 12), 
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(where v is the imaginary part of α) 
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(where β  is the conjugate of β ) 

( ).C n=  
Note that this together with Theorem 1 proves the 

assertion made in the Remark 2 of [5]. 
Thus we have shown that: 
Lemma 2. For  1n ≡  (mod 12), ( ) ( )2  J n C n= . 
Next we recall the properties of C(n) from [5]. 
Lemma 3. (a) The function C(n) is multiplicative. 
(b) ( )   0C n =  unless  1n ≡  or 5 (mod 12). 
Lemma 4. Let p be a prime 1≡  (mod 12) and 1n ≥ . 

Then: 
a. C(n) is either 0, 2 or -2. 
b. If ( )C p  0= , then 
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0
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c. If ( ) 2C p = ± , then 

 ( ) ( )
( )
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Lemma 5. Let p be a prime  5≡  (mod 12) and n 1≥  
be even. Then: 

 ( )
( )
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5. Proof of Theorem 2 
As in [5], 
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and [[5], Table 1]) 

 
   
   .
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This proves Theorem 2. 

6. Conclusion 

An arithmetical function f(n) is called lacunary if it is 
almost always 0 (see[4]). In [3] it is shown that S(n) is 
lacunary. In [5] it is shown that H(n) is lacunary. So is is 
natural to ask whether G(n) is so. We make the following 
conjecture: 

Conjecture. G(n) is lacunary. 
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