
Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 6, 208-219 
Available online at http://pubs.sciepub.com/tjant/2/6/4 
© Science and Education Publishing 
DOI:10.12691/tjant-2-6-4 

 

Birth of Compound Numbers 

Ranjit Biswas* 

Department of Computer Science, Jamia Hamdard University, Hamdard Nagar, New Delhi, INDIA 
*Corresponding author: ranjitbiswas@yahoo.com 

Abstract  In this paper the author introduces a new kind of numbers called by ‘Compound Numbers’. A region R 
may or may not have imaginary object. A region even may have more than one imaginary objects too. 
Corresponding to an imaginary object (if exists) of a region R, we get compound objects for the region R. Imaginary 
objects and compound objects of a region R are not members of R and so they are called imaginary with respect to 
the region R only (i.e. it is a local characteristics property with respect to the region concerned), as they could be 
core members of another region. Every region has its own set of imaginary numbers (if exist). As a particular 
instance, the compound objects of the set of real numbers are the complex numbers (of existing concept). In this 
paper the author discovers imaginary objects of the region C (the set of complex numbers). The compound objects of 
C are called by ‘compound numbers’. Collection of all compound numbers is denoted by the set E. This work just 
reports the birth of compound numbers, not further details at this stage. It is claimed that “Theory of Numbers” will 
get a new direction by the birth of compound numbers. A new “Theory of Objects’ and the classical “Theory of 
Numbers” as a special case of it were also studied in [16]. In this paper we say that every complete region has its 
own ‘Theory of Numbers’, where the classical ‘theory of numbers’ is just a special instance corresponding to a 
particular complete region RR. Consequently, we also introduce a new field called by “Object Geometry” of a 
complete region, being a generalization of our classical geometry of the existing style, from elementary to the higher 
level. 
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1. Introduction 
It is observed and explained with several examples in 

[16], with rigorous analysis and justifications, that most of 
the simple and useful results, equalities, identities, 
formulas, laws, rules etc. which are frequently practiced at 
secondary school level of mathematics or higher level are 
not valid (i.e. can not be verified) in groups, rings, 
modules, fields, linear spaces, algebra over a field, 
associative algebra over a field, division algebra or in any 
existing standard algebraic system, in general, by virtue of 
their own characteristic properties only. This is a major 
gap and/or incompleteness in the existing literatures while 
regarding ‘Algebra’ as a subject. This invokes us to 
discover the exact minimum algebra which has the 
potential to provide a complete and sound platform in this 
sense. Quite naturally one has to think of a permutation / 
combination of the various existing algebraic structures to 
unearth a possible identity of a platform ‘algebraic system’ 
in which the useful standard results of elementary algebra 
or higher algebra can be verified (can be accepted to be 
valid). Attention needs to be given to explore and 
rigorously study this hidden algebraic system considering 
its unique potential to provide a complete and sound 
platform, a minimal platform, on which the simple and 
useful results, equalities, identities, formulas, laws, rules 
etc. of elementary/higher algebra, which are frequently 

practiced at secondary school level of mathematics or 
higher level etc. can be verified (recognized to be valid). 
In quest of identifying this important unknown platform, a 
new algebraic system called by “Region” is developed in 
independently with a unique identity, and its important 
properties are explored to view and understand how does 
it validate the simple and useful results, equalities, 
identities, formulas, laws, rules etc. of elementary/higher 
algebra, whereas they are not valid (i.e. can not be verified) 
in groups, rings, modules, fields, linear spaces, algebra 
over a field, associative algebra over a field, division 
algebra or in any existing standard algebraic system, in 
general. The properties of the regions are interesting and 
this is the only minimal algebra which justifies free and 
fluent practice of elementary as well as higher algebra. 
This important identification was missing so far in any 
past literature of algebra or mathematics, and surely the 
region algebra is a unique algebra of absolute integrated 
nature. A new algebraic theory called by “Theory of 
Objects” is introduced which generates the notion of 
‘imaginary objects’ in region algebra. The classical 
imaginary numbers (or, complex numbers) are just one 
particular instance of the imaginary objects. It is 
discovered that like the imaginary number i corresponding 
to the set R of real numbers, there exist imaginary number 
e corresponding to the set C of complex numbers. 
Consequently, a new theory of numbers is discovered 
called by ‘Theory of Compound Numbers’. It is sure that 
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the algebraic “Theory of Objects” will play a huge role to 
the Number Theorists in a new direction.  

2. Region Algebra: The Minimal 
Platform Algebra  

Algebra is regarded as one of the most beautiful 
branches of mathematics and it is about finding the 
unknowns. It tastes to be both dry and juicy. It is shown in 
this chapter by a number of examples that most of the 
simple and useful results, identities/equalities, formulas or 
algebraic expressions or equations of elementary algebra 
(commonly practiced at secondary school level of 
mathematics) are not valid (can not be computed/verified) 
in general in the existing standard algebraic systems like: 
group, ring, field, module, linear space, algebra over a 
field, associative algebra over a field, division algebra, etc. 
(by the phrase: “the result is valid in the algebraic system 
A”, we mean here that the result can be successfully 
computed and established in the algebraic system A). 
Consequently, it is unearthed that there was a major gap 
lying hidden so far in the subject “Algebra”. To bridge 
this gap the author introduces a new algebraic system 
called by “Region”, independently in a unique way. The 
huge potential and strength of this unique algebraic system 
is lying in the fact that it is the minimal algebra which 
validates (i.e. can be verified in it) the results, equalities, 
identities, formulas, laws, rules etc. of elementary/higher 
algebra, which are frequently practiced at secondary 
school level of mathematics or higher level are not valid. 
Region provides the minimal platform on which all 
elementary algebraic computations practiced by students, 
teachers, mathematicians, scientists, engineers, etc. are 
done. Such a complete and sound platform for ‘elementary 
algebra’ can not be provided by any existing algebraic 
system like: group, ring, module, field, linear space, 
algebra over a field, associative algebra over a field, 
division algebra, etc. in general. This important fact was 
hidden so far to the algebraists, and has been unearthed 
here. With this philosophy, it can be realized that all the 
existing classical algebraic systems are weaker than the 
algebraic system ‘region’. An initial development of ‘The 
theory of regions’ is done with a lot of characterizations, 
establishing a number of important properties of the 
regions. We present the theory of “Regions” [16] in brief 
here which will be required to explore the birth of 
compound numbers.  

Note 2.1.  
Throughout our discussion in this work, the following 

standard definitions are followed by us for (i) ‘K-Algebra’, 
(ii) ‘Associative Algebra over a field K’, and for (iii) 
‘Division Algebra’: 

(i) An ‘Algebra over a field K’ (or, a K-Algebra) is a 
vector space A over K equipped with a compatible notion 
of multiplication  

(a •  x) * (b •  y) = (a.b) •  (x*y), ∀ a, b∈K and ∀ x, y
∈A.  

(ii) An ‘Associative Algebra over a field K’ is a vector 
space over K which also allows the multiplication of 
vectors in a distributive and associative manner, having 
bilinearity of the multiplication.  

(iii) A ‘Division Algebra’ (D, +, *) is a set D together 
with two binary operations such that it is a unit ring and 
also (D–{0},*) forms a group. Thus a division algebra D 
allows division operation by non-zero elements, but D 
need not be commutative with respect to its multiplication 
operation. A division algebra must contain at least two 
elements. In general a division algebra is not a field. A 
commutative division algebra is a Field. A division 
algebra is not necessarily a K-algebra and also is not 
necessarily an Associative Algebra.  

2.1. Justification behind the Genuine need to 
Define/identify a new Algebraic System 

A system consisting of a non–null set S and one or 
more n-ary operations on the set S is called an algebraic 
system, denoted by the notation (S, O1, O2, …, Or) where 
Oi, i = 1,2, …., r, are operations on S. An algebraist can 
define an infinite number of new algebraic systems. The 
objective of this present work is NOT just to define a new 
algebraic system, but to recognize and identify a major 
gap of the subject ‘Algebra’ lying hidden so far; and then 
to open a new direction to visualize the ‘Theory of 
Numbers’ in a different way. In this section we show that 
the existing algebraic systems viz. groups, rings, modules, 
fields, linear spaces, algebra over a field, associative 
algebra over a field, division algebra or any existing 
standard algebraic system, in general, are not sufficient to 
provide a sound and complete environment/platform or 
algebraic right/validity to the mathematicians for 
performing many simple algebraic computations, for 
establishing many useful and simple identities or 
equalities of two algebraic expressions, and for 
establishing many useful algebraic results/solutions etc. of 
elementary algebra; although many of these 
results/equalities/identities are well known to and being 
practiced by the secondary school students.  

We begin here with a collection of few cases or issues 
(out of infinite number) on the various standard algebraic 
systems: groups, rings, modules, fields, etc. These cases 
(five cases) are mentioned below for the sake of instance 
only, although they are no doubt very simple and obvious 
cases to any algebraist. But special attention of the readers 
is required on the situations presented in Case-2,3,4,5. 
Then we justify the genuine needs for identifying a new 
kind of atomic, well complete, sound and unique algebraic 
system in an independent way with its self-identity. 

Case 1. 
If an expression like x + 2.y⊕ z is a valid expression in 

an algebraic system A where x, y, z ∈  A, then one can 
immediately say that A can not be just a group or a ring or 
a field or a linear space in general. However, it could be 
an ‘Associative Algebra over a field’, or something else.  

Consider the equality (identity): (x + y)2 = x2 + 2. x * y 
+ y2 which is an absurd equality (as it can not be verified) 
in general in a group or in a ring/module or in a field or in 
a linear space or in an associative algebra over a field, but 
can be well verified in some ‘algebra over some field’. 
Here it may be noted that the LHS of this equality can be 
evaluated in a ring or in a field, but not the RHS 
(assuming that the notation t2 stands for the expression t * 
t).  



210 Turkish Journal of Analysis and Number Theory  

 

Now consider few quite interesting cases below (Case-
2,3,4,5):  

Case 2.  
A very simple example from elementary algebra, very 

frequently used by the secondary school students, is the 

equality (identity) of type given by 2 2
3 3

x x
y y

   =  
  

.  

But this identity can ‘not be verified’ in general in a 
group, ring, module, field, linear space, ‘algebra over a 
field (i.e. K-algebra)’, ‘associative algebra over a field’, 
Division Algebra, or in any standard algebraic system.  

It is because of the reason that:  
(i) since division is involved, it can not be a simple ‘K-

algebra’, in general.  
(ii) if it is just a simple division algebra, then see that 

( 2
3

)( x
y ) = (2. 1

3
) • (x * y-1) is correct, but the deduction (2.

1
3

) • (x * y-1) = (2 • x)*( 1
3
• y-1) is not guaranteed. Hence, 

2 2
3 3

x x
y y

   ≠  
  

 in general in a division algebra.  

Case 3.  
Because of the similar reason as in Example 5.1 above, 

it can be observed that if an equality (in fact it is an 
identity) of type given by  

 
( ) ( )

2 ( 1/ ( ))  
2 2 2 2  1/ ( ) 2 / / ,

a x b y

a x b y a b x y

• ⊕ • =

• ⊕ • ⊕ •
 

is known to be a valid identity (i.e. can be computed and 
verified) in an algebraic system A where x, y ∈  A, a and b 
are members (scalars) of some field F, then it can be 
observed that none of the following statements are true in 
general:  

(i) A is just an ‘algebra over a field K’ (K-algebra), not 
more.  

(ii) A is just an ‘associative algebra over a field’, not 
more. 

(iii) A is just a Division Algebra, nothing more.  

Case 4.  
By a careful observation it can be seen that even a 

simple computation of ‘cross-multiplication’ of secondary 

school level elementary algebra like: if 2 5
7 3

x z
y t
=  then 6xt 

= 35yz (and conversely), can ‘not be verified’ in general 
in an ‘algebra over a field (i.e. K-algebra)’, ‘associative 
algebra over a field’, Division Algebra, or in any standard 
algebraic system (assuming that division by zero element 
is not allowed). 

It is because of the reason that:  
(i) Since division is involved, it can not be a simple ‘K-

algebra’ only.  
(ii) Suppose that it is just a simple division algebra by 

definition as mentioned in Note 2.1 (without carrying any 
additional properties). Then we see the following fact: the 

equality 2 5
7 3

x z
y t
=  implies that (2x) (7y)-1 = (5z) (3t)-1; and 

then, the equality (2x) (7y)-1 = (5z) (3t)-1 implies, after few 
computing steps, that (2x) (3t) = (5z) (7y).  

But the equality (2x) (3t) = (5z) (7y) does not imply 
that 6xt = 35yz, by definition as in Note 2.1.  

Thus there is no guarantee that a given division algebra 
will satisfy the ‘cross-multiplication’ property by virtue of 
the definition of division algebra. 

Case 5. 
By definition of division algebra, there is no guarantee 

that a very simple square identity like:  

 ( ) ( )2 2 23x / 7y  9x / 49y=  

can be validated in a division algebra. 
Then, the immediate question that arises to us is: “What 

could be the minimal algebraic system in which the above 
identities or cross multiplication results, etc are valid (i.e. 
can be verified)?”.  

For a possible answer, an algebraist has to think of a 
permutation/combination of the various existing algebraic 
structures to make out a possible identity of A. But, he 
might seek to make a unique identity for this algebraic 
system A defined in an independent and atomic way, and 
then to study the various properties of A, various results 
valid on A, highlighting its unique importance/role in 
Algebra. It is because of the reason that this algebraic 
system A is supposed to be the most appropriate and 
needful minimal platform for practicing the problems of 
elementary algebra of secondary school level, compared to 
any other existing standard algebraic system, in general.  

Consequently we feel that there a genuine need to 
identify that algebraic system, which is hidden so far, 
unrecognized so far, but a very powerful algebraic system 
in the sense that it can provide the actual and minimal 
base-platform for the subject ‘elementary algebra’. 

Note 
We at this moment are studying the above cases strictly 

by the definition of Division Algebra (NOT recollecting 
the existing examples of division algebra, because the 
examples of division algebra at this point may create 
confusion to the breaking philosophy behind the genuine 
requirement to identify the minimal platform algebra for 
the mathematicians). It is because of the unearthed fact 
that many of the existing examples of division algebra 
where the above cases (Case-2,3,4,5) can be verified are 
not just as per definition of division algebra, but a lot 
more. These examples carry with them few in-built 
additional characteristic properties which are not provided 
by the definition of division algebra. The region algebra is 
the minimum requirement for validity of the above cases, 
and many such cases. One could visualize the location of 
“Region” as mentioned below:- 

Group→Ring →Field →Linear Space →Division 
Algebra → Region Algebra. 

2.2. Introducing a new algebraic system 
‘Region’  

It has been observed that there is a genuine need to 
introduce a new algebraic system having unique self-
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identity in order to provide a minimal but sufficient 
platform where ‘elementary mathematics’ can be fluently 
practiced with algebraic right and validity. This job is 
done in [16] by introducing the algebraic system called by 
“Region”, which is a very simple algebraic system, very 
complete and sound. We produce below the same with a 
further rigorous study and analysis, and then present 
important applications of regions in the subsequent 
chapters.  

Definition 2.1 Region 
Consider a non-null set A equipped with three binary 

operations ⊕ , * and •  such that for a given field (F, +,.), 
the following three conditions are satisfied: - 

(i) (A, ⊕ , *) forms a field, 
(ii) (A, ⊕ , • ) forms a linear space over the field (F, 

+,.), and  
(iii) A satisfies the property of: “Compatibility with the 

scalars of the field F” 
i.e. (a • x) * (b • y) = (a.b) •  (x*y) ∀ a, b∈F and ∀ x, y

∈A. 
Then the algebraic system (A, ⊕ ,*, • ) is called a 

Region over the field (F, +,.).  
If there is no confusion, we may simply use the notation 

A to represent the region (A,⊕ , *, • ), for brevity. 

Definition 2.1.1. Inner Field, Outer Field, Base Field 
The field (A, ⊕ ,*) is called the “inner field” of the 

region (A,⊕ ,*, • ); and the field (F, +,.) of the linear space 
(A,⊕ , • ) is called the “outer field” or the “base field” of 
the region (A,⊕ , *, • ).  

Definition 2.1.2. First Multiplication Operation, 
Second Multiplication Operation, Third Multiplication 
Operation 

The sequence of the three operations “⊕ ”, “*”, and “ • ” 
appearing in the notation (A, ⊕ , *, • ) representing the 
region A is important in the sense that the operation “*” of 
the region A which is the multiplication operation of the 
inner field (A, ⊕ , *) is called the “first multiplication” 
operation of the region A; whereas the operation “ • ” of 
the region A which is the multiplication operation of the 
linear space (A, ⊕ , • ) is called the “second 
multiplication” operation of the region A. The 
multiplication operation “.” of the base field F is called the 
“third multiplication” operation or the “base multiplication” 
operation of the region A.  

Definition 2.1.3. First Addition Operation, Second 
Addition Operation, Third Addition Operation 

The operation “⊕ ” of the region (A, ⊕ , *, • ) which is 
the addition operation of the inner field (A, ⊕ , *) as well 
as of the linear space (A, ⊕ , • ) is called the “first 
addition” operation of the region A; whereas the operation 
“+” which is the addition operation of the base field (F, +,.) 
is called the “third addition” operation or the “base 
addition” operation of the region A. (There is no 
terminology like “second addition” operation of a region 
A).  

Thus in a region A, we deal with two addition 
operations and three multiplication operations, in general. 
It is obvious from the definition that a region A must have 

at least two elements. It may also be noted that every 
region is an ‘algebraic system over a field’, but the 
converse is not true in general.  

In the region (A, ⊕ , *, • ), its component algebraic 
system (A, ⊕ , *) is a field. Thus we see that the region A 
is a commutative division algebra. Also the other 
component algebraic system (A, ⊕ , • ) is a linear space 
over the field F. Considering the distributive properties of 
the field (A, ⊕ , *) along with the condition(iii) of the 
definition 2.1, it is observed that the region A is F-algebra. 
Thus a region is a “Commutative Division F-Algebra”, but 
defined independently and uniquely with a self-identity 
here, with its important properties and results.  

What is the importance of ‘Region Algebra”? 
We give a huge attention and importance to the ‘region 

algebra’ because of the so far hidden fact that it is the 
minimal algebra which permits the mathematicians to 
practice mathematics in natural fluency (from elementary 
mathematics to higher level). It is not just a Division 
Algebra in general (as explained with examples in Case-
2,3,4,5 earlier in subsection-2.1).  

Example 2.1.  
Let R be the set of real numbers, ‘+’ be the ordinary 

addition operation in R and ‘.’ be the ordinary 
multiplication operation in R. Consider the field (R, +,.) of 
real numbers, and the linear space (R, +,.) over the field 
(R, +,.). Then the algebraic system (R, +,.,.) forms a 
region over the outer field (R, +,.). This region (R, +,.,.) 
plays a very important role in our daily life computations, 
in particular in school level elementary algebra/arithmetic. 
The content of the syllabus and corresponding instructions 
at school level algebra is based on the platform of this 
region (R, +,.,.), not on the platform of any standard 
algebraic structure like groups, rings, fields, linear spaces, 
algebra over a field, associative algebra over a field, 
division algebra or any existing algebraic system, in 
general. Let us name this region (R, +,.,. ) in short by 
“RR”. 

Definition 2.1.4. “Additive Identity” element of a 
Region 

The additive identity element of the inner field (A, ⊕ , 
*) of a region (A, ⊕ , *, • ) is called the ‘additive identity’ 
element of the region A, and is denoted by the notation 0A.  

Obviously, the ‘additive identity’ element of a region A 
is unique [by virtue of inheritance from the properties of 
the field (A, ⊕ , *)]. The additive identity of a region A is 
also called the ‘zero element’ of the region A. 

It is obvious that the zero-element of the linear space (A, 
⊕ , • ) and 0A, the zero element of the region A, both are 
the same element.  

Definition 2.1.5. “Multiplicative Identity” element of a 
Region 

The multiplicative identity element of the inner field (A, 
⊕ , *) of a region (A, ⊕ , *, • ) is called the 
‘multiplicative identity’ element of the region A and is 
denoted by the notation 1A.  

Obviously, ‘multiplicative identity’ element of a region 
A is unique [by virtue of inheritance from the properties of 



212 Turkish Journal of Analysis and Number Theory  

 

the field (A, ⊕ , *)]. The multiplicative identity of a 
region A is also called the ‘unit element’ of the region A.  

Definition 2.1.6. “Additive Inverse” of an element of a 
Region 

For an element x of a region (A, ⊕ , *, • ) over the 
field (F, +,.), the ‘additive inverse’ of x is defined to be 
that element of the region A which is the additive inverse 
of x in the inner field (A, ⊕ , ∗ ), and is denoted by the 
notation ~ x. 

Obviously, ‘additive inverse’ of an element of a region 
is unique [by virtue of inheritance from the properties of 
the field (A, ⊕ , *)].  

Definition 2.1.7. “Multiplicative Inverse” of an element 
of a Region 

For a non-zero element x of a region (A, ⊕ , *, • ) over 
the field (F, +,.), the ‘multiplicative inverse’ of x is 
defined to be that element of the region A which is the 
multiplicative inverse of x in the inner field (A, ⊕ , ∗ ), 
and is denoted by the notation x -1.  

Obviously, ‘multiplicative inverse’ of an element of a 
region is unique [by virtue of inheritance from the 
properties of the field (A, ⊕ , *)]. It may be observed that 
“multiplicative inverse” x -1 of an element x of a region A 
is w.r.t the first multiplication operation of the region A. 
There is no multiplicative inverse of an element x of the 
region A w.r.t. the second multiplication operation ‘ • ’ 
and w.r.t the third multiplication operation ‘.’. 

Definition 2.1.8. Four types of Division in a Region 
Let (A, ⊕ , *, • ) be a region over the field (F, +,.). 

There are four types of division can be performed in this 
algebraic system which are mentioned below.  

For all these four types of division, we use a common 

notation/style like 
min

numerator
deno ator

, (assuming that there is 

no confusion). 

Type (i) Division of an element of the region A by 
another element of the region A 

∀  x, y ( ≠ 0A) ∈  region A, the division of the element 

x by the non-zero element y is denoted by the notation x
y

, 

and is defined by x
y

 = x ∗  y -1.  

Replacing x by 1A and y by x in the above, we get the 

result 1A
x

 = x -1 (where x ≠ 0 A ). 

Type (ii) Division of an element of the region A by an 
element of the outer field F 

∀ x ∈  A and ∀  a ( ≠ 0F) ∈  F, the division of the 

region element x by the field element a is denoted by x
a

, 

and is defined by x
a

 = a-1 •  x.  

Replacing a by 1F, we get the result 
1F

x  = x. 

Type (iii) Division of an element of the outer field F by 
an element of the region A 

∀ a ∈  F and ∀  x ( ≠ 0A) ∈  A, the division of the field 

element a by the region element x is denoted by a
x

, and is 

defined by a
x

 = a •  x-1.  

Replacing a by 1F, we get the result 1F
x

 = x-1.  

Type (iv) Division of an element of the outer field F by 
another element of the outer field F. 

In the field (F, +,.), it is known (in field theory) that ∀ a, 
b ( ≠ 0F)∈F, the division of the element a by the non-zero 

element b is denoted by the notation a
b

, and is defined by 

a
b

= a. b -1.  

2.2. Associativity Properties of Regions  
The following three associative properties have been 

proved in [16] to hold good in a region (A, ⊕ , *, • ) over 
the field (F, +,.). They are called “No-Scalar Associative 
Property”, “One-Scalar Associative Property” and “Two-
Scalars Associative Property” respectively.  

(i) x ∗  (y ∗  z) = (x ∗  y) ∗  z: (No-Scalar Associative 
Property) 

(ii) a •  (x ∗ y) = (a • x) ∗  y: (One-Scalar Associative 
Property) 

(iii) (a.b) •  x = a •  (b • x): (Two-Scalars Associative 
Property)  
where a, b ∈  F and x, y, z ∈  A. 

Proposition 2.1. Cancellation Laws  
Let (A, ⊕ , *, • ) be a region over the field (F, +,.). 

Since (A, ⊕ , *) is a field, the following cancellation laws 
hold good in a region (A, ⊕ , *, • ) by virtue of 
inheritance (proved in [16]): 

(1) If x⊕ y = x⊕ z, then y = z where x, y, z ∈  A. 
(2) If x⊕ y = z⊕ y, then x = z where x, y, z ∈  A. 
(3) If x ∗ y = x ∗ z where x ≠ 0A, then y = z where x, y, z

∈A. 
(4) If x∗ y = z ∗ y where y ≠ 0 A , then x = z where x, y, 

z∈A. 
However, it can be easily shown that the following two 

cancellation laws too hold good in a region A: - 
(5) If a • x = a • y where a ≠  0F, then x = y where x, y

∈A and a∈  F.  
(6) If a • x = b • x where x ≠  0A, then a = b where x∈A 

and a, b∈F. 
Besides the above six, there are a number of kinds of 

cancellation operations valid in the region (A, ⊕ , *, • ) 
over the field (F, +,.), few of which are quoted below: - 

If x, y ∈  A and a, b ∈  F, then 
(7) If (a.b) • x = (a.c) • y where a ≠ 0F, then b • x = c • y.  
(8) (a • x) / (a • y) = x / y, where a ≠  0F and y ≠  0A. 
(9) ((a.b) • x)/ ((a.c) • y) = (b • x) / (c • y), where a ≠  0F.  
(10) ((a.c) • x)/((b.c) • y = (a • x) / (b • y), where c ≠  0F.  
(11) ((a • x) * y) / ((b • x) * z) = (a • y) / (b • z), where x 

≠  0A.  
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(12) ((a • x)*y) / ((a • z)* t) = (x * y) / (z * t), where a 
≠  0F.  

The following propositions are proved in [16] to be 
valid in a region. 

Proposition 2.2. 
In a region (A, ⊕ , *, • ) over the field (F, +,.), the 

following results are true (keeping in mind that division 
by 0A or 0F is not permissible): - 

If x, y, z, t ∈  A, and a, b, c, d ∈  F, then  

(i) *x z x z
y t y t

∗
=

∗
 

(ii) x y x y
z z z
⊕    = ⊕   

   
 

(iii) ( ) ( )2 2~ * ~x y x y x y= ⊕  

(iv) ,x z x t y z
y t y t

∗ ⊕ ∗
⊕ =

∗
 

(v) 

a x b y a x b y
c z c z c z
a x b y
c y c z

• ⊕ • • •   = ⊕   • • •   
      = • ⊕ •      

      

 

Proposition 2.3. Cross Multiplication Property 
In a region (A,⊕ ,*, • ) over the field (F, +,.), the ‘Cross 

Multiplication Property’ is well valid.  

i.e. If x
y

 = z
t

, then x ∗  t = y ∗  z and conversely, where 

x, y, z, t ∈  A and y ≠ 0A ≠ t. 
This property is not necessarily valid in a division 

algebra as shown in Case-4 of subsection 2.1. 

Proposition 2.4. Componendo & Dividendo Rule 
In a region (A, ⊕ , *, • ) over the field (F, +,.), the 

following ‘Componendo & Dividendo Rule’ is well valid:  

(i) If x z
y t
= , then ~

~
x z x z x z
y t y t y t

⊕
= = =

⊕
, where x, y, z, 

t ∈  A, and denominator ≠  0A.  

(ii) If x z
y t
= , then 

( ) ( ) ~
( ) ( ) ~

x z a x b z a x b z
y t a y b t a y b t

• ⊕ • • •
= = =

• ⊕ • • •
, where x, y, z, t ∈  

A, and denominator ≠  0A.  

(iii) 
0

( ) ( )
n

n n r r n r r

r

n
a x b y a b x y

r
− −

=

  
• ⊕ • = ⋅ ⋅ • ∗  

  
∑  

3. Birth of Compound Numbers 
In this section we introduce the concept of an important 

object called by imaginary object of a region. In fact we 
introduce now only the ‘existence’, not the ‘identity’, of 
an imaginary object of a region. We also introduce the 
concept of compound object and we then explore the birth 
of ‘compound numbers’. 

Definition 3.1. Real Object of a Region. 

For a region A, any member of the set A is called a 
“real object” of the region A. 

3.1. ‘Existence’ of Imaginary Objects of a 
Region. 

Consider a region A, and let E1(x) and E2 (x) be two 
single variable expressions valid in A. (It may be noted 
that an expression is regarded to be valid in an algebraic 
system A if it can be computed with the valid operations 
in A).  

If the equality (not identity) E1(x) = E2(x) is not 
satisfied by any element of the region A, then we say that 
A has at least one “imaginary object” (or im-object or im-
member as synonyms) of ‘imaginary object’) which 
satisfies this equality. The imaginary objects (if exist) of 
the region A are to be called by A-io or Aio (in short).  

Let us imagine that i is an imaginary object of A 
coming out of the equality E1(x) = E2(x). Then we must 
have E1(i) = E2(i) = z (say) where z ∈  A. 

It may be noted here that by definition we can only 
realize about the existence of an imaginary object of a 
region A, but we can not trace its identity immediately. 
Because, an imaginary object of a region A is not a 
member of A, and at the same time it is fact that we know 
nothing beyond the boundary of the set A at this stage. It 
is an open problem to us for further study and research.  

Example 3.1. 
Consider the region RR. If we take E1(x) = x2 +1 and 

E2(x) = 2x - 1, then we understand the existence of at least 
one imaginary object of RR.  

Example 3.2. 
In the simple trivial region (Z2, ⊕ ,.,.) where Z2 = {0, 

1}, ⊕  is the “addition modulus 2” operation and. is the 
‘multiplication modulus 2’ of real numbers, we see that if 
we take E1(x) = 2x+1 and E2(x) = 0, then we observe that 
there exist at least one imaginary object for this region Z2. 
However, if we take E1(x) = x2 +1 and E2(x) = 0 then it 
does not help us to know the existence of any imaginary 
object of Z2. 

Consider the region RR. Take E1(x) = x2 +1 and E2(x) = 
0. Clearly, this shows that the RR region does have at least 
one imaginary object. But, we are not sure here whether 
there exist only finite number or infinite number of 
imaginary objects for RR.  

The ‘imaginary objects’ for the regions which are the 
sets of numbers is to be called by ‘imaginary numbers’. 
To avoid confusion between the existing concept of 
imaginary numbers and our notion of ‘imaginary numbers’ 
introduced here, we will call our notion of ‘imaginary 
numbers’ by the term ‘im-numbers’ henceforth.  

If there exist im-numbers for the set of real numbers R 
then we will call them by the term R-im or rim (in short). 
If there exist im-numbers for the set of complex numbers 
C then we will call them by the term C-im or cim (in 
short). 

3.2. Compound Numbers and Compound 
Objects 

Take f(x) = x2 + 1. There is no x in R which satisfies 
the equation f(x) = 0. It indicates that there is at least one 
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rim in R. It is in fact well known that R has one rim which 
is i. At this moment we will not debate on the issue “How 
many distinct rims R does have?”, unless we do further 
work on it in the context of region mathematics. As on the 
existing literatures, there is one and only one rim which is 
i.  

Next consider the region C. Take f(z) = |z|2 + 1. There is 
no z in C which satisfies the equation f(z) = 0. It indicates 
that there is at least one cim in C. Say e is one cim in C 
generated from the above equation f(z) = 0. It means that e 
is an im-member of C for which |e|2 + 1 = 0. It is to be 
noted that i is an im-member of the region R, not of the 
region C; and similarly e is an imaginary member of the 
region C, not of the region R. Thus for z1 and z2 of C, if e 
is one cim of C then the object d = (z1 + e z2) is a 
compound number. The complex number z1 is called the 
‘complex part’ of the compound number d and the 
complex number z2 is called the ‘imaginary part’ of the 
compound number d.  

In general, suppose that R1, R2, R3, ….., Rn are n 
number of regions. A region may or may not have im-
member. Even if a region Ri has a im-member, we need to 
explore how many more im-members does Ri have. If ei is 
a im-member of the region Ri and if a, b are real objects of 
Ri then (a + b ei) is a compound object of the region Ri. 
For the region C, its compound objects are called the 
compound numbers.  

If x, y are in R then the equation x2 + y2 + 1 = 0 is not 
satisfied by any x, y of R and thus there many solutions of 
this equation in the form of x = x1 + i x2, y = y1 + i y2 
which are complex numbers with respect to the region R. 
These solutions are members of C× C. The equation |z|2 + 
1 = 0 is to be solved for z in C and no such z is available 
in C, leading to the existence of a cim. Consequently, 
searching for (x,y) satisfying the equation x2 + y2 + 1 = 0 
and searching for z satisfying the equation |z|2 + 1 = 0 are 
not same problems. In the first case we search for real 
numbers x and y from the jurisdiction R whereas in the 
second case we search for a complex number z from the 
jurisdiction C.  

History says that after the discovery of the rim i, a new 
number system took shape which is the set C of complex 
numbers. It is to be philosophically viewed that the 
existing notion of ‘complex numbers’ is with respect to its 
base ‘real numbers’. In this sense ‘5i’ is an imaginary 
number to the set R, not to the set C. To the set C the 
number ‘5i’ is a core family-member. It is to be clearly 
understood that the issue of ‘imaginary’ or ‘complex’ is an 
relative issue, but local. 

Thus our history says that the set R and later the 
discovery of i gave birth of the set C. In an analogous way 
we claim that the set C and the discovery of the cim e (and 
other cims, if exist) will lead to the discovery of a new set 
of numbers. Let us call this set by the set of “Compound 
Numbers” denoted by E. Our immediate need is to 
discover the fundamental operations on E (like additions, 
multiplications, etc.) and then to study E as a possible 
algebra, and more….. It is obvious that E forms a group 
with respect to the binary operation ‘+’ defined by: for the 
compound numbers d1 = z11 + e z12 and d2 = z21 + e z22, d1 
+ d2 = (z11+ z21) + e (z12 + z22).  

In the next section we introduce two parts of region 
mathematics. In the first part we introduce that for every 
complete region A, there is a corresponding “Theory of 

Numbers”. We then show that the existing classical 
‘theory of numbers’ is a particular instance of our newly 
introduced notion of ‘Theory of Numbers”. In the second 
part we introduce another new field “Object Geometry” 
corresponding to a complete region A, and also we show 
that the existing classical ‘geometry’ is a particular 
instance of our newly introduced “object geometry”.  

4. On “Theory of Numbers” of a 
Complete Region A 

First of all let us recall and review few definitions from 
[16,17]. Consider any real region A = (A,⊕ ,*, • ) over the 
field (R, +,.). Then A forms a Calculus Space if the 
following conditions are true:  

(i) A is an extended real region.  
(ii) A is a normed complete metric space with respect to 

a norm ║.║ and the corresponding induced metric ρ (x, y) 
= ║x~y║, (i.e. ║x║ = ρ (x, 0A)).  

(iii) The norm ║.║ is 2-to-1 bijective mapping from A 
– {0A} to R+. 

(iii) A is a chain w.r.t. the total order relation ≤.  
If we choose the real region A to be the RR region and 

║x║ = |x| in RR where ρ (x, y) =║x-y║= |x-y| and the RR 
region is a chain w.r.t. the crisp order relation “≤”, then 
the corresponding calculus happens to be the classical 
calculus (developed independently by Newton and 
Leibniz).  

The following fact may be recalled that the metric 
associated with this norm i.e. the metric ρ (x, y) = ║x~y║ 
has the following special properties:  

(i) ‘translation invariance’, i.e. ∀ z∈A we have ρ (x
⊕ z, y⊕ z) = ρ (x, y) = ║x~y║, and 

(ii) ‘homogeniety’, i.e. ∀ r∈F we have ρ  (r • x, r • y) 
= |r|.║x~y║ = |r|. ρ (x, y). 

We defined ‘Absolute Partition’ of the region A = (A,
⊕ ,*, • ) in [17]. Consider a partition PA of a region A 
(forming calculus space) into three mutually disjoint non-
null sets A+, A- and {0A} such that  

(i) A+ = {a: a ∈  A and 0A < a} 
(ii) A- = {a: a ∈  A and a < 0A}.  
Clearly, ∀ a ∈  A+, ~a ∈  A- and ∀ b ∈  A-, ~b ∈  A+. 
(Note: we say that a < b iff a ≤ b and a ≠ b). 
This partition PA, once made, must be regarded as an 

‘absolute partition’ for the region A over which one 
desires to develop a calculus and any branch of region 
mathematics in any direction. It is called to be absolute in 
the sense that it generates the sign of every object of A, 
positive or negative, which will remain absolute for the 
complete literature of the corresponding calculus or 
corresponding region mathematics. The elements of A+

 are 
said to be positive objects and the elements of A-

 are said 
to be negative objects. The object 0A is neither in A+ nor 
in A-, and so we say that 0A is neither a positive object nor 
a negative object. The attribute of being positive or 
negative is called the sign of the object, and 0A is not 
considered to have a sign.  

A real region which forms a calculus space satisfying 
the above properties is called a “complete region”. For 
instance, the region RR is a complete region. For a given 
complete region [16,17], a line can be drawn with positive 
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objects to the right, and negative objects to the left of 0A. 
Thus the ‘positive direction’ of X-axis and the ‘negative 
direction’ of X-axis can be well understood and the line 

which the objects of the region A is considered to lie upon 
is called the Object Line (see Figure 1 and Figure 2).  

 

Figure 1. Object line of the region A with consecutive equi-spaced object points. 

 

Figure 2. Objects line of the region A, a general view 

The term ‘equi-spaced’ in the caption of Figure 1 is 
well understood in the sense of the corresponding metric 
(or norm) of the region A. Since A = (A, ⊕ ,*, • ) is 
complete (normed complete metric space), there are no 
"points missing" from it (inside or at the boundary). Since 
A is a chain, every object has a unique address on this 
linear continuum X. 

In the ‘Theory of Objects’ introduced in [16] we 
defined composite objects, prime objects, real objects, 
imaginary objects etc. and then explained how the 
classical notion of composite numbers, prime numbers, 
real numbers, imaginary numbers etc. of the classical 
‘Theory of Numbers’ are special instances in the ‘Theory 
of Objects’ out of a particular region RR (corresponding 
to the set of real numbers R and the set of Complex 
numbers). In the next section we define the notion of 
object integer and consequently we introduce an important 
new field called by “Theory of Numbers” for a complete 
region. The proposed “Theory of Numbers” is not 
developed here as an extension of the classical ‘Theory of 
Numbers’. Rather it has happened that the classical 
‘Theory of Numbers’ is just a special case of our proposed 
“Theory of Numbers”. The identical title will not create 
any confusion once the subject develops further in the 
next section here. 

4.1. Unit Length & Inverse Unit Length in a 
complete region A 

Consider a complete region A = (A,⊕ ,*, • ). For xA ∈
A, we use the notation xa to denote ║xA║ = xa which is a 
positive real number. If xA is a positive object on the 
object line, then the distance of xA from the point O is 
denoted by xa which is a positive real number (we use the 
convention that ~xA is at a distance of –xa from the point 
O). Corresponding to the unit element 1A of the complete 
region A, the positive real number 1a (i.e. ║1A║) is called 
the ‘unit length’ in A. Clearly 0a = 0, and it may also be 
noted here that in general 1a ≠ 1 (where 0 is the oRR and 1 
is the 1RR). Suppose that 1/1a = əa. The positive real 
number əa is called ‘Inverse Unit Length’ in A. Clearly 1a. 
əa = 1 for A, and for the particular complete region RR we 
have 1rr = ərr = 1 (= 1RR).  

4.2. ‘Ontegers’ in the Complete Region A 
Consider the object xA in the complete region A. 

Consider the real number xa/1a i.e. xa. əa which let us 
denote by the symbol x. Thus x = xa/1a = xa. əa, which 

means xa = x.1a ∀ xA∈A. It may be noted here that in 
general as 1a ≠ 1, in a similar way xa ≠ x. However for a 
particular instance of the complete region RR, we have xrr 
= x (= xRR). 

If m is a real integer, then the object mA is called an 
‘object integer’ or ‘onteger’ in the complete region A. 
Thus the ontegers in A are 0A, ⊕ 1A, ~1A, ⊕ 2A, ~2A, ⊕
3A, ~3A, ….. etc. The ontegers ⊕ 1A, ⊕ 2A, ⊕ 3A, ⊕
4A, …….. etc. are ‘positive ontegers’ and the ontegers ~1A, 
~2A, ~3A, ~4A, …….. etc. are ‘negative ontegers’ in the 
complete region A. It is to be carefully noted that 
corresponding to any onteger ⊕ mA of the complete 
region A, the distance ma from the point oA on the object 
line need not necessarily be a real integer (as defined in 
classical traditional sense), and similarly corresponding to 
any onteger ~mA, the distance -ma need not necessarily be 
a real integer (as defined in classical traditional sense). If 
we imagine a common object line for different complete 
regions RR, A, B, C, D, ….. etc. with the zero element 0, 
0A, 0B, 0C, 0D, ….. respectively, being situated at the 
exactly same point on the object line, then it is obvious 
that the respective unit elements 1, 1A, 1B, 1C, 1D, …. etc. 
will be situated in general at different points on the 
common line because of the fact that the ‘unit length’ is 
region dependent. Thus, in general the points x, xA, xB, xC, 
xD, …. etc. will be situated at different locations on the 
common object line. Distance (if measured in a common 
scale, say with the help of real numbers) between two 
consecutive ontegers for any given complete region A on 
the object line will be same, but will be different for 
different complete regions. On the RR region line i.e. on 
the real number line, distance of the object ⊕ 1RR or ~1RR 
from the object 0RR (i.e. distance of the real number +1 or 
-1 from the number 0) is of unit length called us by ‘one’. 
It may be noted that for every xA∈A, xa is in R. It may 
happen that the real number 1 of R (i.e. the object 1RR of 
RR) is not an onteger (integer) in the “Theory of numbers” 
of the region A and the real number 1a of the region A is 
not an integer in the classical “Theory of numbers” i.e. in 
the “Theory of numbers” of the region RR. The main 
source of difference lies in the difference of size of ‘unit 
length’ of different complete regions. This important 
result unearths the fact that every complete region has its 
own “Theory of Numbers”. Thus “Theory of Numbers” is 
different for different complete regions, whereas the 
classical “Theory of Numbers” being practiced by us 
traditionally so far is just the same of a particular complete 
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region which is RR. The following proposition is 
straightforward and quite important. 

Proposition 4.1. 
Corresponding to a real number x (-x), there is a unique 

object ⊕ xA (~xA) in every complete region A and hence a 
unique corresponding real number xa (-xa).  

Definition 4.1. ‘RA value’ of a real number x in A 
Let A be a complete region. Consider the 1-to-1 

mapping RA: R → R defined by RA(x) = xa ∀ x ∈R. Then 
the real number xa is called the ‘RA value’ of x denoted by 
RA(x) = xa in the complete region A. Clearly, in that case 
RA(-x) = -xa. Also RA(0) = 0a, and RA(1) = 1a. It is obvious 
that RRR: R → R is an identity mapping.  

Definition 4.2. ‘Set of R values’ 
The collection of all complete regions is called the 

region universe Σ. If RR, A, B, C, D, ….. are the complete 
regions in the region universe Σ, then for any given real 
number x the set Σx = {x, xa, xb, xc, xd, ….} is called the 
‘Set of R values’ of x in the region universe Σ. Although 
we call Σx a set, it could be a multiset (bag) too. Collection 
of R values of the real number 1 is the set (multiset) of all 
unit length values forming Σ1, and the Collection of R 
values of the real number 0 is the set (multiset) Σ0. 

Definition 4.3. Natural Numbers of a complete region  
Consider a complete region A. The real numbers ⊕ 1a, 

⊕ 2a, ⊕ 3a, ⊕ 4a, …….. are called the Natural Numbers 
of A. For instance, for the complete region RR, the natural 
numbers are 1rr, 2rr, 3rr, 4rr, …….., i.e. 1, 2, 3, 4, ….. etc. 
which are in this particular case 1RR, 2RR, 3rRR, 4RR, …….., 
etc. 

Once the notion of ‘Theory of Numbers” of a complete 
region A is developed, we are now in a position to initiate 
a corresponding geometry.  

5. ‘Object Geometry’ of a Complete 
Region A 

For developing a new geometry called by “Object 
Geometry”, be it in a two dimensional object coordinate 
system, or in an n-dimensional object coordinate system, 
at least one complete region A = (A,⊕ ,*, • ) is required. 
Consider the object line and the corresponding X-axis for 
A. Consider a point xA on the X-axis. Then for the 
infinitesimal small positive object ∆xA, the point (xA + 
∆xA) will be at a distance ║∆xA║ from the point xA along 
the positive direction of X-axis and the point (xA - ∆xA) 
will be at a distance ║∆xA║ from the point xA along the 
negative direction of X-axis. 

5.1. The Coordinate Plane of Complete 
Region A = (A,⊕ ,*, • ) 

We introduce first of all 2-D object geometry. It is a 
system of geometry where the position of points on the 
plane is described using an ordered pair of objects. A 
plane is a flat surface that goes on forever in both 
directions. If we were to place a point on the plane, object 
coordinate geometry gives us a way to describe exactly 

where it is by using two objects. Points are placed on the 
"object coordinate plane" as shown below in Figure 3. It 
has two scales - one running across the plane called the 
"xA-axis" and another at right angles to it called the “yA-
axis”. The point where the two axes cross is called the 
origin at which both xA and yA are 0A. On the xA-axis, as 
explained earlier that objects to the right of origin are 
positive and those to the left are negative. On the yA-axis, 
objects above the origin are positive and those below are 
negative.  

 

Figure 3. Objects coordinates on object plane of the region A 

A point's location on the plane is given by two objects 
in the form of object coordinates (xA,yA), the first 
coordinate reveals where it is away from the yA-axis at 
parallel to the xA-axis and the second coordinate reveals 
where it is away from the xA-axis at parallel to the yA-axis 
(see Figure 3 above). There are four quadrants and sign 
convention rule is same as that of classical coordinate 
geometry, i.e. same for all the object geometry of all the 
complete regions.  

5.2. Slope of an Object Line on the Object 
Plane 

Slope of an object line passing through the two object 
points P(x2A,y2a) and Q(x1A,y1a) is the real number ma 
given by (as shown in Figure 4):  

 

Figure 4. Slope of an objects line. 

 

( ) ( )
( ) ( )
( ) ( )

tan  /2 1 2 1
.1 .1 /  .1 .12 1 2 1
–  /2 1 2 1

m y y x xa a a a a
y y x xa a a a
y y x x

θ= = − −

= − −

= −

 

This implies that slope of a line does not depend on the 
‘unit length’ of the region. it is an absolute quantity 
irrespective of the region on which the object plane is 
drawn. Thus, slope of a line is region independent. 

Proposition 5.1 Pythagorous Theorem is valid in every 
Object Geometry.  
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Proof: Let PQR be a right angled triangle (the angle 
PQR being the right angle) on the object plane of a 

complete region A (Figure 5(a)). 

 

Figure 5. (a), (b). Right angled triangles in two object planes 

Now, using the homogeneity property of the metric ρ
(x, y) = ║x~y║, we can find a right-angled triangle ABC 
(in fact there are infinite numbers of such triangles) on the 
real coordinate plane i.e. on the object plane of RR region, 
where  

 1a
PQ QR PR
AB BC AC

= = =  (1) 

Since slope of a line is region independent, the right-
angled property of the classical triangle ABC is 
guaranteed (the angle ABC being the right angle, see 
Figure 5 (b)) on the coordinate plane from the right-angled 
property of the triangle PQR. Since Pytharogous theorem 

is valid in the triangle ABC, it is also so in the triangle 
PQR using equation (1). Hence proved.  

5.3. Distance between two Object Points on 
the Object Plane 

Consider the two object points P(x2A,y2a) and Q(x1A,y1a) 
on the object plane (see Figure 6). Distance PQ is the 
positive real number ra where  

 ( ) ( )
1/ 22 2

  2 1 2 1r y y x xa a a a a
 = − + − 
 

 

 

Figure 6. Distance between two object points 

5.4. Equation of a Line 
Equation of an object line whose slope is ma is 

 .y m x ca a a a= +  

Equation of an object line having slope ma and passing 
through the object point Q(x1A,y1a) is (ya – y1a) = ma. (xa – 
x1a). 

Equation of an object line passing through the two 
object points P(x2A,y2a) and Q(x1A,y1a) is (ya – y1a) = ma. 
(xa – x1a), where ma = (y2a – y1a) /(x2a – x1a). 

 

Figure 7. An object line having intercept ca on yA axis 

5.5. Object Circle on the Object Plane 
Equation of a Object Circle with centre at (0A, 0A) and 

radius ra is  
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 ( )2 2 2 2 2 2    ,       .a a ax y r or x y r in the region A+ = + =  

Note that x2 + y2 = 25 is the equation of an object circle 
on the object plane of the region A, and hence this 

equation is not region-independent. The radius of this 
circle is 5a and centre is at (0A, 0A).  

 

Figure 8 (a), (b). Objects circles 

If 1a > 1, then the object circle x2 + y2 = r2
 is a bigger 

circle than the classical circle x2 + y2 = r2; if 1a < 1, then 
the object circle x2 + y2 = r2

 is a smaller circle than the 
classical circle x2 + y2 = r2; and if 1a = 1, then the object 
circle x2 + y2 = r2

 is of same size with the classical circle 
x2 + y2 = r2.  

Equation of a Object Circle with centre at (αA, βA) and 
radius ra is  

 ( ) ( )
( ) ( )

2 2 2  

2 2 2,    

y x ra a a a a

or y x r

β α

β α

− + − =

− + − =
 

It is to be noted that the circle (y – β)2 + (x – α)2 = r2 on 
the object plane of region A and the classical circle (y – 
β)2 + (x – α)2 = r2 in 2-D classical coordinate geometry are 
two different circles having different centres and radii in 
general. 

The classical geometry (2-D geometry, 3-D or higher 
dimensional geometry) being practiced by the world 
mathematicians so far at elementary or higher level is a 
particular case of the ‘Object Geometry’. Other results of 
the classical geometry can be similarly studied and 
explored in object geometry which we will attempt in our 
future work. 

6. Conclusion 
The classical ‘Theory of Numbers” and “Geometry” 

developed so far is mainly based on the set R of real 
numbers, extended with two infinities (and then took its 
shape further with advanced higher mathematics). The 
growth of these two giant subjects at every stage so far 
required fluent applications of various operations and 
results which are valid in the set of real numbers. In many 
of the existing literatures, R is assumed to be just a field or 
a division algebra. But this assumption is not true (rather, 
let us say ‘not sufficient’) because of the fact that using 
the properties of a ‘field’ or a ‘division algebra’ or of any 
existing algebra other than region algebra [16], many of 
the formulas, rules, results or materials of elementary as 
well as higher algebra can not have the validity as shown 
with several examples in [16]. A careful study of the 
region algebra will clarify that many of the results, 

formulas, equalities, identities, rules, etc. of elementary 
algebra (say, the algebra practiced at high school level or 
higher level) are not valid in the fields or in division 
algebras or in any existing algebras in general, but in 
regions only. Fortunately the set R is a trivial example of 
real region called by region RR in [16], and in a hidden 
way R has been providing the world mathematicians all 
the properties of region algebra, not just the properties of 
division algebra or any of the existing algebra being 
proven to be insufficient in the work [16]. Interestingly, 
the field R (or the division algebra R) satisfies few 
additional properties trivially by which it qualifies to 
become a real region; and consequently the classical 
geometry never faced any computational constraints or 
invalidity even assuming R to be a field or division 
algebra or any of the existing algebra just. This is a major 
breakthrough, for a clear understanding of which one 
needs a serious study of the region algebra, even if 
apparently or initially the work [16] may appear to be an 
ordinary issue to the world mathematicians. In this paper 
we make further study of the “Theory of Objects”, 
introduce two new theories called by “Theory of Numbers” 
and “Object Geometry”. These two topics will grow a lot 
with time, the present work being just an initialization. We 
have identified ‘What are the minimum properties which 
need to be satisfied by a set A so that a geometry can be 
developed over the platform A?’. It has been explained 
how the classical “Theory of Numbers” being practiced by 
the world so far happens to be a particular instance of our 
new “Theory of Numbers” of a complete region. For a 
non-example, the set of all triangular fuzzy numbers do 
not form a real region with respect to its commonly used 
operations, and hence can not open any platform to 
develop any calculus as mentioned in [17], can not open 
any Theory of Numbers or Geometry at the present form.  

In this paper our work starts defining imaginary objects 
(if exist) of a region, compound objects (subject to 
existence of imaginary objects) of a region. As a particular 
case we study the imaginary number i of the set R of real 
numbers as an instance of imaginary object of a region, 
here it is called by rim. We then find imaginary object of 
the region C (set of complex numbers) which we call by 
the notation cim of C. One cim we have extracted here 
which we name by e. If x and y are in R, then 
corresponding to the rim i of R the object (x+iy) is a 
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complex number for the set R of real numbers. if e is one 
cim of C then the object (z1 + e z2) is a compound number. 
Analogously, if z1 and z2 are in C then corresponding to 
the cim e of C the object (z1 + e z2) is a compound number 
for the set C of complex numbers. The rim i is imaginary 
for R, not for C; and rim is a core member of C not of R. 
Thus rim is a real object of C. The cim e is imaginary for 
C, not for any other region. The cim e is not a member of 
C, i.e. not a real object of C. In this paper we have seen 
the birth of a new type of numbers called by ‘compound 
numbers’. The set of all compound numbers is denoted by 
E. At this moment we need to identify E precisely, by 
identifying precisely its members, characteristic properties, 
results, etc. which will be our future research work. 
Subsequently in due time, we need to revisit many of the 
long standing existing results (see [1-15,18,19]), viz:  

(i) R, C, H, O are the only normed division algebras.  
(ii) the only associative real division algebras are real 

numbers, complex numbers, and quaternions.  
(iii) The Cayley algebra is the only non-associative 

division algebra.  
(iv) The algebras of real numbers, complex numbers, 

quaternions, and Cayley numbers are the only ones where 
multiplication by unit "vectors" is distance-preserving.  
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