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1. Introduction 
Fibonacci numbers are a popular topic for mathematical 

enrichment and popularization. They are famous for a host 
of interesting and surprising properties and show up in 
text books, magazine articles, and web sites. Various 
sequences of polynomials by the names of Fibonacci and 
Lucas polynomials occur in the literature over a century. 
The Fibonacci polynomials and Lucas polynomials are 
closely related and widely investigated. Fibonacci 
polynomials appear in different frameworks. Fibonacci 
polynomials are special cases of Chebyshev polynomials 
and have been studied on a more advanced level by many 
mathematicians.  

S. L. Basin [15] show that Q matrix generates a set of 
Fibonacci Polynomials satisfying the recurrence relation 

 ( ) ( ) ( )n 1 n n-1 ,f  xf f x , n 2x x+ = + ≥  

with 

 ( ) ( )0 1f  0,f  1.x x= =  (1.1) 

The Lucas Polynomials [1] are defined by the 
recurrence formula 

 ( ) ( ) ( )n 1 n n-1 ,l  xl l x , n 2x x+ = + ≥  

with 

 ( ) ( )0 1l  2,l  x.x x= =  (1.2) 

Generating function of Fibonacci polynomials is 

 ( ) ( ) 12

0
1 .n

n
n

f x t t xt t
∞ −

=
= − −∑  (1.3) 

Generating function of Lucas polynomials is 
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Explicit sum formula for (1.1) is given by  

 
1[ ]2

1 2

0

1
( ) ,

n

n k
n

k

n k
f x x

k

−

− −

=

− − 
=  

 
∑  (1.5) 

where ( )n
m a binomial coefficient and [x] is define as the 

greatest integer less than or equal to x. 
Explicit sum formula for (1.2) is given by  

 
[ /2]

2

0
( ) ,

n
n k

n
k

n knl x x
kn k

−

=

− 
=  −  
∑  (1.6) 

where ( )n
m a binomial coefficient and [x] is defined as the 

greatest integer less than or equal to x. 
Determinants have played a significant part in various 

areas in mathematics. For instance, they are quite useful in 
the analysis and solution of system of linear equations. 
There are different perspectives on the study of 
determinants. One may notice several practical and 
effective instruments for calculating determinants in the 
nice survey articles [7] and [8].  

Much attention has been paid to the evaluation of 
determinants of matrices, especially when their entries are 
given recursively [8].  

There is a long tradition of using matrices and 
determinants to study Fibonacci numbers. Bicknell – 
Johnson and Spears [11] use elementary matrix operations 
and determinants to generate classes of identities for 
generalized Fibonacci numbers. Cahill and Narayan [12] 
show how Fibonacci and Lucas numbers arise as 
determinants of some tridiagonal matrices. A. Benjamin, T. 
Cameron and J. Quinn [2], provides combinatorial 
interpretations for Fibonacci identities using determinants. 
T. Koshy [16] explained two chapters on the use of 
matrices and determinants in Fibonacci numbers. O. 
Sikhwal [13] explained determinants identities of 
Fibonacci sequences and its generalizations. 

The Fibonacci and Lucas polynomials possess many 
fascinating properties which have been studied in [1] to [9] 
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and [11] to [15]. In this paper, some determinant identities 
of Fibonacci polynomials are describe.  

2. Determinan Identities 

We define a family of Fibonacci polynomial as  

( ) ( ) ( ) ( ) ( ){ }, , , , ,n p n q n q r n s n s rB f x f x f x f x f x+ + + + + + +=  

where n and p are non negative integers, q and s are 
positive integers with 0 p<q≤ , q+1<s  r=1. 

Assume ( ) , ( ) ,n p n qf x a f x b+ += = then by (1.1) 

( ) , ( ) ,n q r n q r n q n pf x a bx f x xf f+ + + + + += + = +  

( ) , ( ) ( ) .n s n q r n q n s r n s n q rf x xf f f x xf x f+ + + + + + + + += + = +  
Theorem 1: If n and p are non-negative integers, q is 

positive integer with 0 p<q≤ , r=1, Prove that  
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Proof:  
Let 
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Assume ( ) , ( ) ,n p n qf x a f x b+ += = then by (1.1) 

( )n q rf x a bx+ + = +  
Now 
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Applying 1 2 1R R R+ → ,  

 
2a bx a b a b bx
a bx a b

b a bx a

+ + + +
∆ = +

+
 (2.3) 

Applying 1 2 1C C C− → , 
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Applying 1 3 1R R R+ → , 
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Applying 2 3 2C C C− → , 
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Expand along first row, we get 

 3 3 3( ) 3 ( ).a bx a b ab a bx∆ = + + + − +   

Put ( )n pf x a+ = , ( )n qf x b+ = , ( )n q rf x a bx+ + = + , we 
get 
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 (2.7) 

Corollary 1.1: If we put x = 1 in above result, 
for 0 p<q≤ , r=1, we get  
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It can be proved easily. 
Theorem 2: If n and p are non-negative integers, q is 

positive integer with 0 p<q≤ , r=1, Prove that  
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Proof: Let 
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Assume ( ) , ( ) ,n p n qf x a f x b+ += = then by (1.1) 

( )n q rf x a bx+ + = + and ( ) , ( )n p n ql x c l x d+ += = , then by 

(1.2), ( )n q rl x c dx+ + = + . 
Now  
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Applying 1 2 1R R R− → , 
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Interchanging 1C  and 3C , 
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Expand it, we get  

 ( 1)[ ]x bc ad∆ = + −  (2.13) 

Assume ( ) , ( ) ,n p n qf x a f x b+ += = then by (1.1) 

( )n q rf x a bx+ + = + and then by (1.1) 

( ) , ( )n p n ql x c l x d+ += = ( )n q rl x c dx+ + = + , we get  
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Corollary 2.1: If we put x = 1 in above result, we get 
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It can be proved easily. 
Theorem 3: If n and p are non-negative integers, q and 

s are positive integers with 0 p<q≤ , q+1<s  r=1, Prove 
that 
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Proof: Assume ( ) , ( ) ,n p n qf x a f x b+ += = then by (1.1) 

( )n q rf x a bx+ + = + and ( )n q r n q n pf x xf f+ + + += + , 

( )n s n q r n qf x xf f+ + + += + , ( ) ( )n s r n s n q rf x xf x f+ + + + += + . 
Let 
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Applying 1 2 1C xC C+ → , 
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Here two columns are identical, we get 

 
( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( )

n p n q n q r

n q n q r n s

n q r n s n s r

f x f x f x

f x f x f x

f x f x f x

+ + + +

+ + + +

+ + + + +

∆ = =  (2.17) 

Corollary 3.1: If we put x = 1 in above result, we get 
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It can be proved easily. 
Theorem 4: If n and p are non-negative integers, q is 

positive integer with 0 p<q≤ , r=1, Prove that  

( )

( )

( )

( )

2

2

2

3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( ) ( )

n p n q n p n q r n q n q r

n p n q r n q n q r n p n q

n q n q r n p n q n q r n p

n p n q n q r n p n q n q r

f x f x f x f x f x f x

f x f x f x f x f x f x

f x f x f x f x f x f x

f x f x f x f x f x f x

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+

+

+

= + +

(2.19) 

It can be proved same as Theorem 1.  
Theorem 5: If n and p are non-negative integers, q is 

positive integer with 0 p<q≤ , r=1, Prove that 
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It can be proved same as Theorem 1.  
Theorem 6: If n and p are non-negative integers, q and 

s are positive integers with 0 p<q≤ , q+1<s  r=1, Prove 
that 
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Proof: Assume ( ) , ( ) ,n p n qf x a f x b+ += = then by (1.1) 

( )n q rf x a bx+ + = + and ( )n q r n q n pf x xf f+ + + += + , 

( )n s n q r n qf x xf f+ + + += + ,  
It can be proved same as Theorem 1.  
Corollary 6.1: If we put x = 1 in above result, we get 
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It can be proved easily.  
Theorem 7: If n and p are non-negative integers, q is 

positive integer with 0 p<q≤ , r=1 and ( ),n pf xα +=  

( ), ( )n q n q rf x f xβ γ+ + += = , Prove that 

( )

( )
( )

2 2 2 2 2

2 2 2

2
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2 2 2 2 2

2 3 2
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0 2 2 2 0
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 + 

(2.23) 

Proof: Assume ( ) , ( ) ,n p n qf x a f x b+ += = then by (1.1) 

( )n q rf x a bx+ + = + . 
It can be proved same as Theorem 1.  

3. Conclusion 
This paper describes determinant identities of Fibonacci 

polynomials. Determinants identities included various 
pattern of Fibonacci polynomials. Few results connected 
with Lucas polynomials. More identities can be developed 

with generalized polynomials and other classical 
polynomials. 

References 
[1] A. Lupas, “A Guide of Fibonacci and Lucas Polynomials,” 

Octagon Math. Mag., 7 (1), 2-12, 1999. 
[2] A. Benjamin, N. Cameron and J. Quinn, “Fibonacci Determinants- 

A Combinatorial Approach,” Fibonacci Quarterly, 45 (1), 39-55, 
2007. 

[3] B. Singh, O. Sikhwal and S. Bhatnagar, “Fibonacci-Like 
Sequence,” International Journal of Advanced Mathematical 
Sciences, 1 (3), 145-151, 2013. 

[4] B. Singh, O. Sikhwal and S. Bhatnagar, “Generalized Fibonacci 
Sequence and its Properties,” Open Journal of Mathematical 
Modeling, 1 (6), 194-202, 2013. 

[5] B. Singh, O. Sikhwal and Y. K. Panwar, “Generalized 
Determinantal Identities Involving Lucas Polynomials,” Applied 
Mathematical Sciences, 3 (8), 377-388, 2009. 

[6] Beverage David, “A Polynomial Representation of Fibonacci 
Numbers,” Fibonacci Quarterly, 9, 541-544, 1971. 

[7] Krattenthaler, “Advanced determinant calculus,” Seminaire 
Lotharingien Combin, Article, b42q, 67, 1999. 

[8] C. Krattenthaler, “Advanced determinant calculus: A 
Complement,” Liner Algebra Appl., 411, 68-166, 2005. 

[9] E. Weisstein et al., “Fibonacci number from MathWorld- A 
Wolfram Web Resource,” 
http://mathworld.wolfram.com/FibonacciNumber.html 

[10] J.M. Patel, “Problem H-635,” Fibonacci Quarterly, 44 (1), 91, 
2006. 

[11] M. Bicknell-Johnson and C. Spears, “Classes of Identities for the 
Generalized Fibonacci number Gn=Gn-1+Gn-2 from Matrices with 
Constant valued Determinants,” Fibonacci Quarterly, 34, 121-128, 
1996. 

[12] N. Cahill and D. Narayan, “Fibonacci and Lucas numbers 
Tridigonal Matrix Determinants,” Fibonacci Quarterly, 42, 216-
221, 2004. 

[13] O. Sikhwal, Generalization of Fibonacci Sequence: An Intriguing 
Sequence, Lap Lambert Academic Publishing GmbH & Co. KG, 
Germany, 2012. 

[14] S. Basir and V. Hoggatt, Jr., “A Primer on the Fibonacci Sequence 
Part II,” Fibonacci Quarterly, 1, 61-68, 1963. 

[15] S. L. Basin, “The appearance of Fibonacci Numbers and the Q 
Matrix in Electrical Network Theory,” Mathematics Magazine, 36 
(2), 84-97, 1963. 

[16] T. Koshy, Fibonacci and Lucas Numbers With Applications, John 
Wiley and Sons, New York, 2001. 

[17] V.N. Mishra, H.H. Khan, K. Khatri and L. N. Mishra, 
“Hypergeometric Representation for Baskakov-Durrmeyer-Stancu 
Type Operators,” Bulletin of Mathematical Analysis and 
Applications, 5 (3), 18-26, 2013. 

 


