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1. Introduction 
For the sake of proceeding smoothly, we briefly 

introduce some necessary concepts and notation. 

1.1. The Gamma and q -gamma Functions 
It is well-known that the classical Euler gamma 

function may be defined by  

 1
0

( ) x tx t e dt
∞ − −Γ = ∫  (1.1) 

for 0x > . The logarithmic derivative of ( )xΓ , denoted by 
( )
( )( ) x
xxψ ′Γ

Γ= , is called the psi or digamma function, and 

( ) ( )k xψ  for k ∈  are called the polygamma functions. It 
is common knowledge that special functions ( )xΓ , ( )xψ  

and ( ) ( )k xψ  for k ∈  are fundamental and important 
and have much extensive applications in mathematical 
sciences.  

The q -analogue of Γ  is defined [[6], pp. 493-496] for 
0x >  by  
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The q -gamma function ( )q zΓ  has the following basic 
properties:  
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The q -analogue of the psi or digamma function ψ  is 
defined by  
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for 0 1q< < , where ( )qd tγ  is a discrete measure with 

positive masses ln q−  at the positive points lnk q−  for 
k ∈ , more accurately, 

 
1

( ) ln ( ln ) 0 1q
k

t q t k q qγ δ
∞

=
= − + , < < .∑  (1.6) 

See [[33], p. 311] and its corrected version [34].  

1.2. The Generalized Logarithmic Mean 
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The generalized logarithmic mean ( )pL a b,  of order 

p∈  for positive numbers a  and b  with a b≠  may be 
defined [[13], p. 385] by  
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It is well-known that  

 2 ( ) ( )L a b ab G a b− , = = , ,  (1.8) 

 1 0( ) ( ) ( ) ( )L a b L a b L a b I a b− , = , , , = , ,  (1.9) 

and  

 1( ) ( )
2

a bL a b A a b+
, = = ,  (1.10) 

are called respectively the geometric mean, the 
logarithmic mean, the identric or exponential mean, and 
the arithmetic mean. It is also known [[13], pp. 386-387, 
Theorem 3] that the generalized logarithmic mean 

( )pL a b,  of order p  is increasing in p  for a b≠ . 
Therefore, inequalities  

 ( ) ( ) ( ) ( )G a b L a b I a b A a b, < , < , < ,  (1.11) 

are valid for 0a >  and 0b >  with a b≠ . See also 
[70,71,72,115]. Moreover, the generalized logarithmic 
mean ( )pL a b,  is a special case of ( )E r s x y, ; , , that is, 

( ) (1 1 )pL a b E p a b, = , + ; , .  
In passing, we remark that the complete monotonicity 

of the logarithmic mean was established in [69,84]. 

1.3. Logarithmically Completely Monotonic 
Functions 

A function f  is said to be completely monotonic on an 
interval I  if f  has derivatives of all orders on I  and  

 ( )( 1) ( ) 0n nf x− ≥  (1.12) 

for x I∈  and 0n ≥ .  
Theorem 1.1. [[118], p. 161] A necessary and sufficient 
condition that ( )f x  should be completely monotonic for 
0 x< < ∞  is that  

 
0

( ) ( )xtf x e d tα
∞ −= ,∫  (1.13) 

where ( )tα  is nondecreasing and the integral converges 
for 0 x< < ∞ .  
Theorem 1.2. [[11], p. 83] If ( )f x  is completely monotonic 
on I , ( )g x I∈ , and ( )g x′  is completely monotonic on 
(0 ),∞ , then ( ( ))f g x  is completely monotonic on (0 ),∞ . 

A positive function ( )f x  is said to be logarithmically 
completely monotonic on an interval I R⊆  if it has 

derivatives of all orders on I  and its logarithm ln ( )f x  
satisfies  

 ( )( 1) [ln ( )] 0k kf x− ≥  

for k ∈  on I . 
The notion “logarithmically completely monotonic 

function” was first put forward in [7] without an explicit 
definition. This terminology was explicitly recovered in 
[88] whose revised and expanded version was formally 
published as [83,90]. 

It has been proved once and again in 
[10,23,66,67,83,87,88,89,103] that a logarithmically 
completely monotonic function on an interval I  must also 
be completely monotonic on I . C. Berg points out in [10] 
that these functions are the same as those studied by Horn 
[32] under the name infinitely divisible completely 
monotonic functions. For more information, please refer 
to [10,92,93] and related references therein.  

1.4. Outline of this Paper 
In this expository and survey paper, along one of main 

lines of bounding the ratio of two gamma functions, we 
look back and analyse Gautschi’s double inequality and 
Kershaw’s second double inequality, the complete 
monotonicity of several functions involving ratios of two 
gamma or q -gamma functions by Alzer, Bustoz-Ismail, 
Elezović-Giordano-Pečarić and Ismail-Muldoon, the 
logarithmically complete monotonicity of a function 
involving the ratio of two gamma functions, some new 
bounds for the ratio of two gamma functions and the 
divided differences of polygamma functions, and related 
monotonicity results by Batir, Elezović-Pečarić, Qi and 
others.  

2. Gautschi’s and Kershaw’s Double 
Inequalities 

In this section, we begin with the papers [22,35] to 
introduce a kind of inequalities for bounding the ratio of 
two gamma functions.  

2.1. Gautschi’s Double Inequalities 
The first result of the paper [22] was the double 

inequality  
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for 0x ≥  and 1p > , where  
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 (2.2) 

or 1pc = . By an easy transformation, the inequality (2.1) 
was written in terms of the complementary gamma 
function  
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 1( ) t a
x

a x e t dt
∞ − −Γ , = ∫  (2.3) 

as  

 

1 1

1
1

[( 2) ] 1
2

1

p p
x

p
p

p
p

p x x e x
p

pc x x
c

/ /

/ 
 /
 
 
  

 + −
< Γ , 

 

 
≤ + −  

 

 (2.4) 

for 0x ≥  and 1p > . In particular, if letting p →∞ , the 
double inequality 

 1
1 2 1ln 1 ( ) ln 1
2

xe E x
x x

   + ≤ ≤ +   
   

 (2.5) 

for the exponential integral 1( ) (0 )E x x= Γ ,  for 0x >  was 
derived from (2.4), in which the bounds exhibit the 
logarithmic singularity of 1( )E x  at 0x = . As a direct 

consequence of the inequality (2.4) for 1
sp =  and 0x = , 

the following simple inequality for the gamma function 
was deduced:  

 12 (1 ) 1 0 1s s s− ≤ Γ + ≤ , ≤ ≤ .  (2.6) 

The second result of the paper [22] was a sharper and 
more general inequality  

 ( 1) ( 1) 1( )
( 1)

s n sn se n
n

ψ− + −Γ +
≤ ≤
Γ +

 (2.7) 

for 0 1s≤ ≤  and n∈  than (2.6). It was obtained by 
proving that the function  

 1 ( )( ) ln
1 ( 1)

n sf s
s n

Γ +
=

− Γ +
 (2.8) 

is monotonically decreasing for 0 1s≤ <  and that 

 ( ) ( ) ( )
1 1

lim lim 1 .
s s

f s n s nψ ψ
− −→ →

= − + = − +  

Remark 2.1. For more information on refining the 
inequality (2.1), please refer to [38,96,110] and related 
references therein.  
Remark 2.2. The left-hand side inequality in (2.7) can be 
rearranged as 
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for n∈  and 0 1.s≤ ≤  Since the limit 
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 (2.11) 

can be verified by using Stirling’s formula in [1, p. 257, 
6.1.38]: For 0,x >  there exists 0 1θ< <  such that 

 ( ) 1 21 2 exp ,
12

xx x x
x

θπ +  Γ + − − + 
 

 (2.12) 

it is natural to guess that the function 
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s
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− + Γ +
 
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 (2.13) 

for 0 1s≤ <  is possibly increasing with respect to x on 

( ),s− ∞ . This guess was verified and generalized in [[52], 
Theorem 1], [[53], Theorem 1], [[85], Theorem 1], [[86], 
Theorem 1] and others. See also Section 4.  
Remark 2.3. For information on the study of the right-
hand side inequality in (2.7), please refer to 
[61,62,65,105,106] and a great amount of related 
references therein.  

2.2. Kershaw’s Second Double Inequality and 
Its Proof 

In 1983, over twenty years later after the paper [22], 
among other things, D. Kershaw was motivated by the 
left-hand side inequality (2.7) in [22] and presented in [35] 
the following double inequality for 0 1s< <  and 0x > : 
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 (2.14) 

It is called in the literature Kershaw’s second double 
inequality. 

Kershaw’s proof for (2.14). Define the function fα  by 

 ( ) ( )
( ) ( ) ( )( )1

exp 1
x

f x s x
x sα ψ α

Γ +
= − +
Γ +

 (2.15) 

for 0x >  and 0 1,s< <  where the parameter α  is to be 
determined.  

It is not difficult to show, with the aid of Stirling’s 
formula, that 

 ( )lim 1.
x

f xα
→∞

=  (2.16) 

Now let 
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f x x x
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 (2.17) 
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It is easy to show that  
1. if 1 2 ,sα =  then ( ) 0F x′ <  for 0x > ; 

2. if 1
2

sα +
= , then ( ) 0F x′ >  for 0.x >  

Consequently if 1 2sα =  then F  strictly decreases, and 
since ( ) 1F x →  as x →∞  it follows that ( ) 1F x >  for 
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0.x >  This implies that ( ) ( )1f x f xα α> +  or 0,x >  and 

so ( ) ( ).f x f x nα α> +  Take the limit as n →∞  to give 

the result that ( ) 1,f xα >  which can be rewritten as the 
left-hand side inequality in (2.14). The corresponding 
upper bound can be verified by a similar argument when 

1,
2

sα +
=  the only difference being that in this case fα  

strictly increases to unity. 
Remark 2.4. The idea contained in the above stated proof 
of (2.14) was also utilized by other mathematicians. For 
detailed information, please refer to related contents and 
references in [61,62].  
Remark 2.5. The inequality (2.14) can be rearranged as  
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(2.19) 

By Stirling’s formula (2.12), we can prove that 
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and 
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These clues make us to conjecture that the functions in the 
every end of inequalities (2.18) and (2.19) are perhaps 
monotonic with respect to x on ( )0, .∞  

3. Several Complete Monotonicity Results 
The complete monotonicity of the functions in the 

every end of inequalities (2.18) were first demonstrated in 
[12], and then several related functions were also proved 
in [5,19,41] to be (logarithmically) completely monotonic.  

3.1. Bustoz-Ismail’s Complete Monotonicity 
Results 

In 1986, motivated by the double inequality (2.14) and 
other related inequalities, J. Bustoz and M. E. H. Ismail 
revealed in [12, Theorem 7 and Theorem 8] that 

1. the function [Trial mode]  
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 (3.1) 

for 0 1s≤ ≤  is completely monotonic on ( )0,∞ ; 
When 0 1,s< <  the function (3.1) satisfies 

( ) ( ) ( )1 0n nf x− >  for 0;x >  
2. the function 
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ψ
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 (3.2) 

for 0 1s< <  is strictly decreasing on ( )0, .∞  
Remark 3.1. The proof of the complete monotonicity of 
the function (3.1) in [[12], Theorem 7] relies on the 
inequality 
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for 0, 0,n y> >  and 0 ,a b< <  the series representation  
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in [[21], p. 15], and the above Theorem 1.2 applied to 
( ) .xf x e−=  

Remark 3.2. The inequality (3.3) verified in [[12], 
Lemma 3.1] can be rewritten as 
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for 0y >  and 0 a b< < , which is equivalent to 

 ( ) ( )1, ; , 1, 2; , ,E n y a y b E y a y b+ + < + +  (3.6) 

where ( ), ; ,E r s x y  stands for extended mean values and 
is defined for two positive numbers x and y and two real 
numbers r and s by 
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Actually, the inequality (3.6) is an immediate consequence 
of monotonicity of ( ), ; ,E r s x y , see [39]. For more 
information, please refer to 
[13,17,24,29,51,57,58,72,76,79,80,91,104,107,112,113,114,
119] and related references therein. 
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Remark 3.3. The proof of the decreasing monotonicity of 
the function (3.2) just used the formula (3.4) and and the 
above Theorem 1.2 applied to ( ) .xf x e−=  
Remark 3.4. Indeed, J. Bustoz and M. E. H. Ismail had 
proved in [[12], Theorem 7] that the function (3.1) is 
logarithmically completely monotonic on ( )0,∞  for 
0 1s≤ ≤ . However, because the inequality (1.12) strictly 
holds for a completely monotonic function [Trial mode] 
on ( )0,∞  unless ( )f x  is constant (see [[18], p. 98], 
[[92], p. 82] and [117]), distinguishing between the cases 
0 1s≤ ≤  and 0 1s< <  is not necessary.  

3.2. Alzer’s and Related Complete Monotonicity 
Results 

Stimulated by the complete monotonicity obtained in 
[12], including those mentioned above, H. Alzer obtained 
in [[5], Theorem 1]] that the function 
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for 0α >  and ( )0,1s∈  is completely monotonic on 

( )0,∞  if and only if 1 ,
2

α ≥  so is the reciprocal of (3.7) 

for 0α ≥  and ( )0,1s∈  if and only if 0.α =  
As consequences of the monotonicity of the function 

(3.7), the following inequalities are deduced in [[5], 
Corollary 2 and Corollary 3]:  

1. The inequalities  
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for 0α β> ≥  are valid for all ( )0,1s∈  and 

( )0,x∈ ∞  if and only if 0β =  and 1 .
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α ≥  
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then 
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for .n∈  
Remark 3.5. The inequality (3.9) follows from the 
formula 

 

( )
( )

( ) ( )

2
1

1 2

2
1

11 11
4 2 2

1
1

2

k

k

k
n

k

n n

n k

k

ψ ψ

π

∞

=

+∞

=

− +    ′ ′+ − =         +

 −
 = − −
  

∑

∑
 

and the inequality (3.8) applied to 1 ,
2

s =  1
2

α =  and 

0.β =  
Remark 3.6. The proof of the complete monotonicity of 
the function (3.7) in [5] is based on Theorem 1.2 applied 
to ( ) ,xf x e−=  the formulas 

 
0 0

1 , ln
xt yt

xt y e ee dt dt
x x t

− −∞ ∞− −
= =∫ ∫  (3.10) 

and 

 ( )
0 1

t xt

t
e ex dt

e
ψ γ

− −∞
−

−
= − +

−∫  (3.11) 

for , 0,x y >  and discussing the positivity of the functions 

 
( ) ( )

2 212 1 1 1 1 12
2 212 1 12 1

t

t t
t e tand

t te e

α−

− −

− −
− − + −

− −
 (3.12) 

for ( )0,x∈ ∞  and 1 .
2

α ≥  Therefore, H. Alzer essentially 

gave in [[5], Theorem 1] necessary and sufficient 
conditions for the function (3.7) to be logarithmically 
completely monotonic on ( )0, .∞   
Remark 3.7. In [[41], Theorem 3], a slight extension of 
[[5], Theorem 1] was presented: The function 

 

( )
( )

( )
( )

( ) ( )

1 2

1 2

exp
12

x t

x s
x s x t
x t x s

x t x s
s t

ψ α ψ α

+ −

+ −

Γ + +
Γ + +

′ ′+ + − + + 
× − + 

 

 (3.13) 

for 0 s t< <  and ( )0,x∈ ∞  is logarithmically completely 

monotonic if and only if 1 ,
2

α ≥  so is the reciprocal of 

(3.13) if and only if 0.α =  
The decreasing monotonicity of (3.13) and its 

reciprocal imply that the double inequality 

 

( ) ( )

( )
( )

( )
( )

( ) ( )

1 2

1 2

exp
12

exp
12

x t

x s

x s x t
t s

x t x s
x tx s

x s x t
t s

ψ β ψ β

ψ α ψ α

+ −

+ −

′ ′+ + − + + 
− + 

 

+ Γ +
≤

Γ ++

′ ′+ + − + + 
≤ − + 

 

 (3.14) 

for 0α β> ≥  are valid for 0 s t< <  and ( )0,x∈ ∞  if 

and only if 0β =  and 1 .
2

α ≥  
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It is obvious that the inequality (3.14) is a slight 
extension of the double inequality (3.8) obtained in [[5], 
Corollary 2].  
Remark 3.8. Specially we notice that [[33], Theorem 3.4] 
has been corrected in [[34], Theorem 3.4] as follows: Let 
0 1,q< <  0 1,s< <  and  

( ) ( ) ( ) ( )
( ) ( )

1 1 exp ,
ln 12

x
x x

q
qF q x

g x q q x
qα

ψ α−
′ +

= − − Γ −
 
 
 
 

 

where 

 ( ) ( )
2 0

1

ln 1
.

n x

n

txF x dt
tn

∞

=

−
= = −∑ ∫  

Then the function ( )ln g xα
′    is completely monotonic 

on ( )0,∞  for 1
2

α ≥  and the function ( )ln g xα
′−     is 

completely monotonic on ( )0,∞  for 0.α ≤  
As a consequence of [[34], Theorem 3.4], the following 

result was deduced in [[34], Corollary 3.5]: Let 
0 1,q< <  0 1,s< <  and  

 

( ) ( )
( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 21

1 21

1

1

1 1

1 1

lnexp .
1

12

s x s
q

x
q

x s x

q q

g x s
f x

g x

q q x s

q x

F q F q

q
x x s

α
α

α

ψ α ψ α

− +

+

+ +

+
=

+

− − Γ +
=

− Γ +

 −
 
 
 

′ ′+ + − + + 
+  

(3.15) 

Then the function ( )ln f xα
′    is completely monotonic on 

( )0,∞  for 1 ,
2

α ≥  the function ( )ln f xα
′−     is complete 

monotonic on ( )0,∞  for 0,α ≤  and neither is completely 

monotonic on ( )0,∞  for 11 .
2

α< <  

Taking the limit 1q −→  in (3.15) yields [[34], 
Corollary 3.6], a recovery, in a slightly extended form, of 
[[5], Theorem 1] mentioned above.  

The preprint [34] is a corrected version of the 
conference paper [33].  

It is clear that [[41], Theorem 3] can be derived by 
taking the limit  

 ( )
( )1

lim
q

g x s
g x t
α

α−→

+
+

 (3.16) 

for 0 .s t< <   

3.3. Ismail-Muldoon’s Complete Monotonicity 
Results 

Inspired by inequalities (2.7) and (2.14), Ismail and 
Muldoon proved in [[33], Theorem 3.2] the following 
conclusions: For 0 a b< <  and 0 1,q< <  let 

 ( )
( )
( ) ( ) ( )ln exp .q

q
q

x a
h x b a x c

x b
ψ

 Γ +  = − +  Γ +  
(3.17) 

If ,
2

a bc +
≥  then ( )h x′−  is completely monotonic on 

( ),a− ∞ ; if ,c a≤  then ( )h x′  is completely monotonic on 

( ),c− ∞ ; Neither ( )h x′  or ( )h x′−  is completely 

monotonic for .
2

a ba c +
< <  Consequently, the following 

inequality was deduced in [[33], Theorem 3.3]: If 
0 1,q< <  the inequality 

 
( )
( ) ( )

1 1exp 1
2

q
q

q

x ss x
x s

ψ
Γ +  +  < − +  Γ +   

 (3.18) 

for 0 1s< <  holds for .x s> −  
Influenced by (3.18), H. Alzer posed in the final of the 

paper [[4], p. 13] the following open problem: For real 
numbers 0 1q< ≠  and ( )0,1 ,s∈  determine the best 

possible values ( ),a q s  and ( ),b q s  such that the 
inequalities 

 
( ) ( )( )
( )
( ) ( ) ( )( )

exp 1 ,

1
exp 1 ,

q

q
q

q

s x a q s

x
s x b q s

x s

ψ

ψ

 − + 
Γ +

 < < − + Γ +

 

hold for all 0.x >   
Remark 3.9. Since the paper [33] was published in a 
conference proceedings, it is not easy to acquire it, so the 
completely monotonic properties of the function ( )h x , 
obtained in [[33], Theorem 3.2], were neglected in most 
circumstances.  

3.4. Elezović-Giordano-Pečarić’s Inequality 
and Monotonicity Results 

Inspired by the double inequality (2.14), the following 
problem was posed in [[19], p. 247]: What are the best 
constants α  and β  such that the double inequality 

 ( ) ( ) ( )1 t
s

x u du x
t s

ψ α ψ ψ β+ ≤ ≤ +
− ∫  (3.19) 

holds for { }min , , ,x s t α β> − ?  
An answer to the above problem was procured in [[19], 

Theorem 4]: The double inequality 

 
( )

( )

1 1

1
2

t
s

t
s

x u du
t s

s tx u du x
t s

ψ ψ ψ

ψ ψ

−  +  −  
+ < + < + −  

∫

∫
 (3.20) 

is valid for every 0x ≥  and positive numbers s  and .t  
Moreover, the function 
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 ( )
( )

1 ln
2

x ts tx
t s x s

ψ
Γ ++ + −  − Γ + 

 (3.21) 

for , 0s t >  and { }min ,r s t=  was proved in [[19], 

Theorem 5] to be completely monotonic on ( ), .r− ∞  
Remark 3.10. It is clear that [[19], Theorem 5] stated 
above extends or generalizes the complete monotonicity of 
the function (3.1).  
Remark 3.11. By the way, the complete monotonicity in 
[[19], Theorem 5] was iterated in [[94], Proposition 4] 
and [[95], Proposition 4] as follows: The function 

 ( )
( )

( )1

exp
2

s t
x t s tx
x s

ψ
−

 Γ +  +  +    Γ +      
 (3.22) 

is logarithmically completely monotonic with respect to x  
on ( ),α− ∞ , where s  and t  are real numbers and 

{ }min , .s tα =   
Remark 3.12. Along the same line as proving the 
inequality (3.20) in [19], the inequality (3.20) was 
generalized in [[16], Theorem 2] as 

 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1 1

11

1

1
2

tn n n n
s

n n n

n n

x u du
t s

x t x s

t s
s tx

ψ ψ ψ

ψ ψ

ψ

−

− −

  − +  −  
 − + − +  <

−
+ < − + 

 

∫

(3.23) 

for 0,x >  0,n ≥  and , 0,s t >  where ( )( ) 1nψ
−

 denotes 

the inverse function of ( ).nψ  
Remark 2.13. Since the inverse functions of the psi and 
polygamma functions are involved, it is much difficult to 
calculate the lower bounds in (3.20) and (3.23).  
Remark 2.14. In [36], by the method used in [35], it was 
proved that the double inequality 

 
( ) ( ) ( )ln ln

2

x t x s
x st

t s
s tx

ψ

ψ

Γ + − Γ +
+ <

−
+ < + 

 

 (3.24) 

holds for , 0.s t >  It s clear that the upper bound in (3.24) 
is a recovery of (3.20) and an immediate consequence of 
the complete monotonicity of the function (3.21).  

4. Two Logarithmically Complete 
Monotonicity Results 

Suggested by the double inequality (2.14), it is natural 
to put forward the following problem: What are the best 
constants ( )1 ,s tδ  and ( )2 ,s tδ  such that 

 
( )( ) ( )

( )

( )

( )( )

1

1

2

exp ,

exp ,

t s
x t

x s t
x s

x s t

ψ δ

ψ δ

−
 Γ +

 + ≤    Γ +  
 ≤ + 

 (4.1) 

is valid for ( ) ( ){ }1 2min , , , , ,x s t s t s tδ δ> − ? where s  and 

t  are real numbers.  
It is clear that the inequality (4.1) can also be rewritten 

as 
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( )
( )

( )
( )

( )
( )

1

1

1

2

exp 1

exp

t s

t s

x t
x

x s

x t
x

x s

ψ δ

ψ δ

−

−

 Γ +
+ ≤    Γ +  

 Γ +
≤ +    Γ +  

 (4.2) 

which suggests some monotonic properties of the function  

 ( )
( )

( )
( )( )

1

exp , ,
t s

x t
x s t

x s
ψ δ

−
 Γ +

 − +   Γ +  
 (4.3) 

since the limit of the function (4.3) as x →∞  is 1 by 
using (2.12).  

This problem was considered in [52,53,85,86] along 
two different approaches and the following results of 
different forms were established.  
Theorem 4.1. [[52], Theorem 1] and [[53], Theorem 1] 
Let , ,a b c  be real numbers and { }min , , .a b cρ =  Define  

 ( )
( )
( )

( )
( )

( ) ( )

1

, ;
exp ,

exp ,

a b

a b c

x b
x c a b

F x x a

x c x a a b c

ψ

ψ ψ

− Γ + + ≠    = Γ +  


+ − + = ≠   

 

for ( ), .x ρ∈ − ∞  Furthermore, let ( )tθ  be an implicit 
function defined by equation 

 ( ) ( )tte t e tθ θ− = −  (4.4) 

on ( ), .−∞ ∞  Then ( )tθ  is decreasing and ( ) 0t tθ <  for 

( ) ,t tθ ≠  and  

1. ( ), ;a b cF x  is logarithmically completely 

monotonic on ( ),ρ− ∞  if 

 
( ) { } ( ){ }

( ){ } { }
, ; , ,

, \ ;

a b c c a c b c a c b c a

c a c b c a a b c

θ

θ

∈ ≥ ≥ ∪ ≥ − ≥ −

∪ ≤ − ≥ − = =
 

2. ( ) 1
, ;a b cF x

−
    is logarithmically completely 

monotonic on ( ),ρ− ∞  if 

 
( ) { } ( ){ }

( ){ } { }
, ; , ,

,0 \ .

a b c c a c b c a c b c a

c a c b c a a b c

θ

θ

∈ ≤ ≤ ∪ ≥ − ≤ −

∪ ≤ ≤ − ≤ − = =
 

Theorem 4.2. [[85], Theorem 1] and [[86], Theorem 1] 
For real numbers s  and t  with s t≠  and ( ),s tθ  a 
constant depending on s  and t , define  

 ( )
( )( )

( )
( )

( )1

,
1 .

exp ,

t s

s t
x t

x
x sx s t

ν
ψ θ

−
 Γ +

=  
Γ + +    

 (4.5) 

1. The function ( ),s t xν  is logarithmically completely 

monotonic on the interval ( )( ), ,s tθ− ∞  if and only if 

( ) { }, min ,s t s tθ ≤ ;  
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2. The function ( ) 1
,s t xν

−
    is logarithmically 

completely monotonic on the interval 

{ }( )min , ,s t− ∞  if and only if ( ), .
2

s ts tθ +
≥   

Remark 4.1. In [52,53], it was deduced by standard 
argument that 
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∞
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−
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    − − − − −       =  

− − −   
  

×
−

∫

∫
 

for i∈  and a b≠ . Therefore, the sufficient conditions 
in [[52], Theorem 1] and [[53], Theorem 1] are stated in 
terms of the implicit function [Trial mode] defined by 
(4.4).  
Remark 4.2. In [85,86], the logarithmic derivative of 

( ),s t xν  was rearranged as 

 ( )
( ) ( ) ( ),

, ln ,
, 0

ln 1 ,
1

x s t u
u s t p us t

s t u
ex e du

e

θ
θ

ν
− +    ∞ + 

−
 

= − 
−  

∫  

where 

 ( )
1

,
1 .

ut uv
s t s

p u e dv
t s

− =  − ∫  (4.6) 

Since the function ( ),s tp u  is increasing on [ )0,∞  with  

 ( ) ( ) 2
,

0
lim s t

s t
u

p u e− +

→
=  

and 

 ( ) { }min ,
,lim ,s t

s t
u

p u e−
→∞

=  

the necessary and sufficient conditions in [[85], Theorem 
1] and [[86], Theorem 1] may be derived immediately by 
considering Theorem 1.1.  

However, the necessary conditions in [[85], Theorem 1] 
and [[86], Theorem 1] were proved by establishing the 
following inequalities involving the polygamma functions 
and their inverse functions in [[85], Theorem 1] and [[86], 
Theorem 1]:  

1. If 0m m> ≥  are two integers, then 

 

( )( ) ( ) ( )

( )( ) ( ) ( )

1

1

1

1 ,

tm m
s

tn n
s

v dv
t s

v dv
t s

ψ ψ

ψ ψ

−

−

 
 − 

 ≤  − 

∫

∫
 (4.7) 

where ( )( ) 1kψ
−

 stands for the inverse function of 

( )kψ  for 0k ≥ ;  

2. The inequality 

 ( ) ( )( ) ( ) ( )1,
ti i
s

L s t u du
t s

ψ ψ≤
− ∫  (4.8) 

is valid for i  being positive odd number or zero and 
reversed for i  being positive even number;  

3. The function 

 ( )( ) ( ) ( )
1 1 t

s
x v dv x

t s
ψ ψ

−  + − − ∫   (4.9) 

for 0≥  is increasing and concave in 

{ }min ,x s t> −  and has a sharp upper bound .
2

s t+  

Note that if taking [Trial mode], [Trial mode], [Trial 
mode] and [Trial mode] in (4.7), (4.8) and (4.9), then 
[[20], Lemma 1] and [[20], Theorem 6] may be derived 
straightforwardly.  

5. Recent Bounds and Monotonicity Results 

In this section, we collect some recent bounds for the 
ratio of two gamma functions and gather several 
monotonicity results of functions involving the ratio of 
two gamma functions, divided differences of polygamma 
functions and mean values. Finally, we pose a conjecture.  

5.1. Elezović-Pečarić’s Lower Bound 
The inequality (4.8) for 0i = , that is, [[20], Lemma 1], 

may be rewritten as 

 ( ) ( ) ( )( )ln ln
,

t s
L s t

t s
ψ

Γ − Γ
≥

−
 (5.1) 

or, equivalently, 

 ( )
( )

( )
( )( )

1
,

t s
L s tt

e
s

ψ
−

 Γ
≥ 

Γ  
 (5.2) 

for positive numbers s  and t . 
Remark 5.1. From the left-hand side inequality in (1.11), 
it is easy to see that the inequality (5.2) refines the 

traditionally lower bound ( )( ),G s teψ .  
Remark 5.2. In [[9], Theorem 2.4], the following 
incorrect double inequality was obtained: 

 ( ) ( )( ) ( )
( )

( ) ( )( )1, 1 1 , ,x y L x y x y A x yx
e e

y
ψ ψ− + + − −Γ

≤ ≤
Γ

 (5.3) 

where x and y are positive real numbers. Accurately 
speaking, the left-hand side inequality in (5.3) should be 
(5.2). See the first proof of [[55], Theorem 1] or Section 
5.5 below.  

5.2. Allasia-Giordano-Pečarić’s Inequalities 
In Section 4 of [3], as straightforward consequences of 

Hadamard type inequalities obtained in [2], the following 

double inequalities for bounding ( )
( )

ln
y
x

Γ
Γ

 were listed: For 

y  x  0> > , n∈  and y xh
n
−

= , we have 
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where m  is an odd and positive integer, 
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and iB  for   0i ≥  are Bernoulli numbers defined by 
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If replacing m  by an even and positive integer, then the 
last four double inequalities are reversed. 

5.3. Batir's Double Inequality for Polygamma 
Functions 

It is clear that the double inequality (2.14) can be 
rearranged as 

( ) ( ) ( )ln 1 ln 1
1 2

x x s sx s x
s

ψ ψ
Γ + − Γ + + + < < + −  

(5.5) 

for 0 s 1< <  and x 1> . The middle term in (5.5) can be 
regarded as a divided difference of the function ( )ln tΓ  
on ( , 1)x s x+ + . Stimulated by this, N. Batir extended and 
generalized in [[8], Theorem 2.7] the double inequality 
(5.5) as 
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where ,x y  are positive numbers and n∈ . 

5.4. Chen's Double Inequality in Terms of 
Polygamma Functions 

In [[15], Theorem 2], by virtue of the composite 
Simpson rule 
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in [31] and the formula 
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in [42], the following double inequalities and series 
representations were trivially shown: For n∈  and 
positive numbers x  and y  with x y≠ , 
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5.5. Recent Monotonicity Results by Qi and 
His Coauthors 

Motivated by the left-hand side inequality in (5.3), 
although it is not correct, several refinements and 
generalizations about inequalities (5.2) and (5.6) were 
established by Qi and his coauthors in recent years. 

5.5.1. 
In [[55], Theorem 1] and [[56], Theorem 1], by virtue 

of the method used in [[9], Theorem 2.4] and the 
inequality (4.8) for i  0= , the inequality (5.2) and the 
right-hand side inequality in (5.3) were recovered. 

5.5.2. 
In [[55], Theorem 2] and [[56], Theorem 2], the 

decreasing monotonicity of the function (3.2) and the 
right-hand side inequality in (3.20) were extended and 
generalized to the logarithmically complete monotonicity, 
and the inequality (5.2) was generalized to a decreasing 
monotonicity. 
Theorem 5.1 ([[55], Theorem 2] and [[56], Theorem 2]). 

For ,s t∈  with s t≠ , the function 
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is decreasing and 
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is logarithmically completely monotonic on 
( { , }, )min s t− ∞ , where 

 ( ) ( ) ( ) ( )L s, t; x L x s, x t ,A s, t; x A x s, x t= + + = + +  

5.5.3. 
In [97,98], the upper bounds in (2.14), (3.20), (5.3), (5.6) 

and related inequalities in [52,53,85,86] were refined and 
extended as follows. 
Theorem 5.2 ([97,98]). The inequalities 
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and 
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for   0a >  and   0b >  hold true. 

Remark 5.3. The basic tools to prove (5.9) and (5.10) are 
an inequality in [14] and and a complete monotonicity in 
[101] respectively. They may be recited as follows: 

1. If g is strictly monotonic, f is strictly increasing, and 
1f g−

  is convex (or concave, respectively) on an 
interval I, then 

 ( ) ( )1 11 1t t

s s
g g u du f f u du

t s t s
− −   ≤   − −   ∫ ∫ (5.11) 

holds (or reverses, respectively) for ,s t I∈ . See also 
[[13], p. 274, Lemma 2] and [[20], p. 190, Theorem A]. 

2. The function 

 ( ) ( ) ( ) ( )1 ,i ix x x iψ α ψ+ − ∈  (5.12) 

is completely monotonic on (0, )∞  if and only if 0 a i≤ ≤ . 
See also [99,100]. 
Remark 5.4. By the so-called G-A convex approach, the 
inequality (5.9) was recovered in [120]: For    0b a> > , 
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b
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a
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See also MR2413632, the review by MathSciNet of the 
paper [120]. Moreover, by the so-called geometrically 
convex method, the following double inequality was 
shown in [[121], Theorem 1.2]: For positive numbers x  
and y , 
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5.5.4. 
In [99,100,101], the function 

 ( ) ( ) ( ) ( )1i ix x xα ψ ψ +−  (5.13) 

was proved to be completely monotonic on (0, )∞  if and 
only if i 1α ≥ + . Utilizing the inequality (5.11) and the 
completely monotonic properties of the functions (5.12) 
and (5.13) yields the following double inequality. 
Theorem 5.3 ([[78], Theorem 1] and [[102], Theorem 1]). 
For real numbers   0s >  and   0t >  with s t≠  and an 
integer 0i ≥ , the inequality 

 ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( )

1
1 ,

1 ,

i
ti i i

p s
i i

q

L s t u du
t s

L s t

ψ ψ

ψ

−
− ≤

−
≤ −

∫  (5.14) 

holds if   1p i≤ − −   and q i≥ − . 
Remark 5.5. The double inequality (5.14) recovers, 
extends and refines inequalities (5.2), (5.6), (5.9) and 
(5.10). 
Remark 5.6. A natural question is whether the above 
sufficient conditions   1p i≤ − −  and q i≥ −  are also 
necessary for the inequality (5.14) to be valid. 
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5.5.5. 
As generalizations of the inequalities (5.2), (5.6), the 

decreasing monotonicity of the function (5.7), and the left-
hand side inequality in (5.14), the following monotonic 
properties were presented. 
Theorem 5.4 ([[78], Theorem 3] and [[102], Theorem 3]). 
If 0i ≥  is an integer, ,s t∈  with s t≠ , 
and    { , }x min s t> − , then the function 

 ( ) ( ) ( )( ) ( ) ( ) ( )
1

1 , ;
i

ti i i
p s

L s t x x u du
t s

ψ ψ
−

− − +
− ∫ (5.15) 

is increasing with respect to x  for either ( )2p i≤ − +  or 

( ) 1p i= − +  and decreasing with respect to x  for   1p ≥ , 
where ( , ;  )  (   ,   )p pL s t x L x s x t= + + . 
Remark 5.7. It is not difficult to see that the ideal 
monotonic results of the function (5.15) should be stated 
as follows. 
Conjecture 5.1. Let 0i ≥  be an integer, ,s t∈  with 
s t≠ , and    { , }x min s t> − . Then the function (5.15) is 
increasing with respect to x  if and only if ( )  1p i≤ − +  
and decreasing with respect to x  if and only if p i≥ − . 
Remark 5.8. Corresponding to Conjecture 5.1, the 
complete monotonicity of the function (5.15) and its 
negative may also be discussed. 
Remark 5.9. This article is a slightly updated version of 
[63] and a companion paper of [61,105,106] and their 
preprints [62,64,65]. 
Remark 5.10. Finally, we would like to recommend the 
articles [25,26,27,28,30,37,40,43-
50,54,59,60,68,73,74,75,77,81,82,108,109,111,116] and 
closely related references therein to the readers for 
finding new developments and applications of the gamma 
function, polygamma functions, completely monotonic 
functions, logarithmically completely monotonic functions, 
concerned inequalities, asymptotic approximations, and 
so on. 
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