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Abstract  In the paper, the author shows that the partial sums 2
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larger and smaller than the generalized Euler’s harmonic numbers ( ) ( )1H x xψ γ= + +  with sharp bounds, where γ 
is the Euler's constant, 'iB s  are the Bernoulli numbers and ψ is the digamma function. 
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1. Introduction 
Euler, in his "Institutiones calculi differentialis" [10], 

introduced the concept of inexplicable functions. These 
functions were appeared originally as functions in the 
positive integers of one symbol or more. He presented the 
following examples of the inexplicable functions: 
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where there is no necessity for x to be an integer. The first 
function ( )F x  generalizes the factorial function and the 

second one ( )H x  generalizes the harmonic numbers 
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which are partial sums of the harmonic series. The 
function ( )H x  can be defined by the definite integral 
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We will call the function ( )H x , Euler's generalized 

Harmonic numbers. The recurrence relation of ( )H x  is 
given by 

 ( ) ( ) 11H x H x
x

= − +  (3) 

and its reflection relation is 
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The multiplication formula is given by 
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The function ( )H x  is related to the Euler's constant γ 
by the relation 

 ( )
1

0

H x dxγ = ∫  

and its relation with the digamma function ( )xψ  (the 
logarithmic derivative of the gamma function) is  

 ( ) ( )1 .x H xψ γ+ = − +  (4) 

There are many other generalizations of the harmonic 
numbers all of them depend only on the positive integers 
see [3,7,8,11,12,13,17,30,31]. Also, there are many 
estimations of the harmonic numbers nH  see 
[4,5,6,9,18,22,25,26,27,28,32,33]. 

A function f is said to be completely monotonic on an 
interval J if 
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 ( ) ( ) ( )1 0   0,1, 2, .n nf x x J and n− ≥ ∀ ∈ = …  (5) 

If the inequality (5) is strict x J∀ ∈  and all 
0,1, 2, ,n = …  then f is said to be strictly completely 

monotonic on the interval J. 
In [1], Alzer proved that the functions 
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For 0,1,2, ,m = …  are completely monotonic on (0,∞). 
This means that the functions ( )'mF x−  and ( )'mG x−  are 
also are completely monotonic on (0,∞) see [15]. These 
complete monotonicity have been repeated in [16] and 
[23]. These results can also be found in the survey [29]. 
From the complete monotonicity of ( )'mF x−  and 

( )'mG x− , we get the following double inequality 
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In this paper, we will present a new proof of the double 
inequality (6), using Artin's technique [2] and we will use 
a method due to Mortici [24] to prove that the bounds in 
(6) are the best possible. Also, we will provide new proof 
of the complete monotonicity of the two Functions 

( )mF x  and ( )mG x .  

2. Main Results 
Theorem 1. 
For x>0, 0,1, 2, ,m = …  
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with sharp bounds. 
Proof 
Consider the function 
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Then using the recurrence relation (3), we get 
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If we define the following function 

 ( ) ( ) ( )1 ,g x r x r x= − +  
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We can express the function ( )g x  by the integral 
representation 
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By considering the known discontinuous function 
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In [2], Artin introduced the functions 
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Where ( )1K v−  is the Fourier series [20,21] of the 

function ( )K v . He showed that the series ( )nK v  is 
absolutely and uniformly convergent for all v with 
n=2,3,… and the series is uniformly convergent in every 
closed interval has no integer for n=1. Also,  

 ( ) ( )1n n
d K v K v
dv + =  (13) 

for all v when n=2,3,… and for nonintegral v when n=1. 
Now by repeated the integrations by parts of (10), we 

obtain 
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If n is even, the ( ) ( )0n nK K v−  has the same sign as 

( )0nK  for all v and thus the integral (15) has this sign. 
Also, 
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Then the signs of ( )2 0nK  alternate between minus and 

plus. Then the function ( )r x  lies between any two 
successive partial sums 
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In other words, for every n, there exists a number nθ  
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and hence  
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Now, we will prove the sharpness of the bounds in (19). 
By the definition of the asymptotic expansion [14], the 
expansion of a function ( )F x  of the form 
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If we have other constants 2 4 6, , ,c c c …  have the 
property that for all n N∈  
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etc. These inequalities give us that 
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the relations (20) and (21), gives us that 
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(7) is the best one. To complete our results, we need to 
prove that the constant 1/2 in the the function 
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and the function ( )v x  is increasing function with 
lim ( ) 1/ 2
x

v x
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= . So, the best choice of A is 1/2. Also, the 
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function ( )v x  is increasing with limit tends to zero as 
x→∞, then 
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with sharp bound. Now, consider the function 
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The function ( )T x  will be increasing if 
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and the function ( )t x  is increasing function with 
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Also, the function ( )T x  is increasing with limit tends to 
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with sharp bounds. 
As a special case we get the following result [19] 
Corollary 2.1. 
For any natural number n N∈ , 
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with sharp bounds. 
Now, we will present a new proof for the complete 

monotonicity of the functions ( )mF x  and ( )mG x . 
Lemma 2.2 
For m=0,1,2,…, the functions 
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are completely monotonic on (0,∞). 
Proof 
Using the relations (15), (17) and (16) at n=4m+2, we 

get 
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But for m=0,1,2,3,…, the ( ) ( )4 2 4 20m mK K v+ +−  has 

the same sign as ( )4 2 0mK +  for all v and thus the integral 
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then 
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Similarly, we can prove the complete monotonicity for 
( )G x  by replacing n by 4m+4. 

Remark 1. 
Series (17) is divergent so we can not take the limit as n 

tends to ∞ but the relation (18) provided us by 
approximations of the function ( )H x  or any finite order. 
For example, if n=5 we obtain the following 
approximation: 
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Remark 2. 
The formula (10) implies the the function ( )r x  is 

completely monotonic on (0,∞), that is 

 ( ) ( ) ( )1 0, ; (0, ).r kr x k N x− ≥ ∀ ∈ ∈ ∞  
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