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Abstract  Let ( )x∆  denote the error term in the Dirichlet divisor problem, and ( )E T  the error term in the 

asymptotic formula for the mean square of 1 .
2

itζ  + 
 

 If ( ) ( ) ( )* 2 * 2E t E t tπ π= − ∆  with 

( ) ( ) ( ) ( )1* 2 2 4 ,
2

x x x x∆ = −∆ + ∆ − ∆  then we discuss bounds for third, fourth and fifth power moment of ( )* .E t  

We also prove that ( )*E t  always changes sign in 2 3,T T T ε+ +   for ( )0 ,T T ε≥   and obtain (conditionally) the 

existence of its large positive, or small negative values. 

Keywords: Riemann zeta-function, moments of the function E*(t), large values 

Cite This Article: Aleksandar Ivić, “On the Moments of the Function ( )*E t .” Turkish Journal of Analysis 
and Number Theory, vol. 2, no. 3 (2014): 102-109. doi: 10.12691/tjant-2-3-9. 

1. Introduction 
This paper is the continuation of the author’s works 

[6,7,8], where the analogy between the Riemann zeta-
function ( )sζ  and the divisor problem was investigated. 
As usual, let the error term in the classical Dirichlet 
divisor problem be 

 ( ) ( ) ( )log 2 1 ,
n x

x d n x x γ
≤

∆ = − + −∑  (1.1) 

and 

 ( )
2

0
1 log 2 1 ,
2 2

T TE T it dt Tζ γ
π

    = + − + −    
    

∫ (1.2) 

where ( )d n  is the number of divisors of ( ),n sζ  is the 

Riemann zeta-function, and ( )1 0.577215γ ′= −Γ =   is 
Euler’s constant. In view of F.V. Atkinson’s classical 
explicit formula for E(T) (see [1], [[4], Chapter 15] and 
[[5], Chapter 2]) it was known long ago that there are 
analogies between ( )x∆  and E(T). However, instead of 
the error-term function ( )x∆  it is more exact to work with 
the modified function ( )* x∆  (see M. Jutila [11], [12] and 
T. Meurman [13]), where 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
4

1* : 2 2 4
2

1 1 log 2 1 ,
2

n

n x

x x x x

d n x x γ
≤

∆ = −∆ + ∆ − ∆

= − − + −∑
 (1.3) 

which is a better analogue of E(T) than ( )x∆ . M. Jutila 
(op. cit.) investigated both the local and global behaviour 
of the difference 

 ( ) ( )* : 2 * ,
2
tE t E t π
π

 = − ∆  
 

 (1.4) 

and this work was continued by the author in [6] and [7]. 
In [7] he proved the asymptotic formula 

 ( )( ) ( ) ( )2 4 3 7 6
30

* log ,
T

E t dt T p T O T ε
ε

+= +∫  (1.5) 

where p3(y) is a polynomial of degree three in y with 
positive leading coefficient, and all the coefficients may 
be explicitly evaluated. Here and later, as usual, ε  
denotes arbitrarily small positive constants, not 
necessarily the same ones at each occurrence. Moreover 

( ) ( ( ))F x O G xε=  (same as ( ) ( )F x G xε ) means that 
| ( ) | ( )F x CG x≤  for some ( ) 0C C ε= >  and 0 ( )x x ε≥ . 
Besides (1.5), the author had proved in [[6], Part IV] that 

 ( ) 3 3 2
0

*
T

E t dt T ε
ε

+∫   (1.6) 

and in [[6], Part II] that 

 ( ) 5 2
0

* .
T

E t dt T ε
ε

+∫   (1.7) 

It turns out that the results (1.5)-(1.7) are independent 
of each other, that is, neither two of them imply the third 
one. Note that we have odd moments in (1.6) and (1.7), 
and it seems plausible that the respective moments 
without absolute value signs are smaller, since a lot of 
cancellation will probably happen. For example, one 
expects that the bound 
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 ( )( )3 3 2
0

*
T

E t dt T η ε
ε

− +∫   (1.8) 

holds for some constant η  such that 0   1/ 6η< < , but 
this seems difficult to prove. 

The first aim of this note is to provide unified, 
simplified and rigorous proofs of (1.6), (1.7) and a result 
that, by the Cauchy–Schwarz inequality for integrals, 
follows from (1.6) and (1.7), namely 

 ( ) 4 7 4
0

* .
T

E t dt T ε
ε

+∫   (1.9) 

Namely in previous work I used a lemma from M. Jutila 
[[11], Part II]. This was 

LEMMA 1. For A∈  a constant we have 

 
( ) ( )( )

3 3 2 1 21cos 8 2
6

cos 8 ,

nT n T A

u n T u A du

π π

α π

−

∞

−∞

 + + 
 

= + +∫
 

where 1/6( )u Tα   for 0,u ≠  

 ( ) ( )3 21 6 1 4expu T bT uα −  

for  0u < , and 

 ( )
( )
( ) ( )

1 4 3 2
1 8 1 4 1 8 7 4

1 4 3 2

exp

exp

d ibT u
u T u O T u

d ibT u
α − − −

 
 = + 
+ − 
 

 

for 1/6  u T −>  and some constants ( )  0b >  and d. 
This lemma, useful in its own right, seems insufficient 

in itself to deal with the case when the exponential 
integrals that come into play have a saddle point. It can be 
avoided altogether, and the complete proofs of (1.6)–(1.9) 
will be given in Sections 4 and 5, while the necessary 
lemmas are given in Section 2. Actually we shall first 
prove (1.9), and then use it to derive (1.6) and (1.7). 

The second aim of this paper is to provide some new 
results on the distribution of values of *( )E t . We have 

THEOREM 1. If 2/3H T ε+= , then the function *( )E t  
changes sign in every interval [T, T + H] for 0 ( )T T ε≥ . 

It should be remarked that in [9] the author proved the 
mean value bound 

( )( ) ( )2 1 3 3 2 3* log .
T H
T

E t dt HT T T H Tε+ + ≤ ≤∫ 
(1.10) 

From (1.10) one deduces that, under the hypotheses of 
Theorem 1, the interval [T, T + H] contains a point 0t  
such that 

 ( ) ( )1 6 3 2
0 00* log 0 .E t At t A> >  (1.11) 

The inequality (1.11) shows the existence of large 
values of | *( ) |E t  in [T, T + H]. Note that *( )E t  is 
discontinuous at the integers, but E(t) is continuous and 

( )d n nεε
ε. Hence by the defining relation (1.4) of 

*( )E t  and Theorem 1 it follows that every interval [T, T 

+H] contains a point t1 such that ( )1 1* .E t tεε  It would 

be interesting to see what is the smallest H such that the 
function *( )E t  changes sign in every interval [T, T + H] 
for 0 ( )T T ε> . It would be also interesting to obtain (1.11) 
without absolute values, namely to find large positive values 
of *( )E t  and small negative values of *( )E t  in [T, T + 
H]. This, at present, does not seem possible 
unconditionally. However, we have 

THEOREM 2. Suppose (1.8) holds. Then for any 
 0ε >  there exist constants 0T ( ),A 0ε >  such that, for 

0T T ( )ε≥ , every interval 1[T,  T T ]η ε− ++  contains points 
T1, T2 for which 

 
( )
( )

1 6 3 2
1 11

1 6 3 2
2 22

* log ,

* log .

E T AT T

E T AT T

>

< −
 (1.12) 

The plan of the paper is as follows. In Section 2 the 
necessary lemmas will be given. Technical preparation is 
carried out in Section 3, while Section 4 contains the 
proofs of (1.9). The proofs (1.6) and (1.7) will be given in 
Section 5. Section 6 contains the proof of Theorem 1, and 
Section 7 that of Theorem 2. 

2. The Necessary Lemmas 
In this section we shall present the lemmas needed in 

the proofs of our results. We begin with the technical 
LEMMA 2. If /T G T logTε ≤ ≤  and  0C >  is a 

suitable constant, then we have 

 

( ) ( ) ( )

( ) ( ) ( )

2

2

1* * log

,
1* * log

.

u G

u G

E T E T G T u e du
G

CGT

E T E T G T u e du
G

CGT

ε

ε

π

π

∞ −
−∞

∞ −
−∞

≤ + +

+

≥ − −

−

∫

∫
(2.1) 

Proof. From the defining relations (1.2) – (1.4) one 
easily obtains 

 ( ) ( ) ( )( ) ( )* * 1 0 .E T E T u O u T u Tε
ε≤ + + + ≤ ≤  

By integration this gives, for , : log ,T G T L L Tε ≤ ≤ =  

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 2 2

0
2 2/ 2

0

2 2

2/ 2

*

* log ,

*

* log .

GL
u GL G

GL
u G

u GL G

u G

E T e du

E T G T u e du O G T

E T e du

E T G T u e du O G T

ε
ε

ε
ε

−− −

−

∞ −− −

−∞
∞

−

−∞

≤ + + +

≤ + + +

∫

∫

∫

∫

 

Since 

 ( ) ( )2 22 2/ ,u GL G v G Ge du e dv Gπ
∞ ∞− −− − −

−∞ −∞

= =∫ ∫  
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we have the first inequality in (2.1), and the second one is 
derived analogously. 

For E(T) we shall use F.V. Atkinson’s classical explicit 
formula (see e.g., his paper [1], or the author’s 
monographs [[4], Chapter 15] or [[5], Chapter 2]). This 
result is stated here as 

LEMMA 3. Let 0    A A< < ′  be any two fixed 
constants such that    AT N A T< < ′ , and let 

2 1/2( ) / (2 ) / 2 ( / 4 / (2 ))N N T T N N NTπ π′ = ′ = + − + . 
Then 

 ( ) ( ) ( ) ( )2
1 2 log ,E T T T O T= + +∑ ∑  (2.2) 

where 

( ) ( )

( ) ( ) ( ) ( )( )

1 41 2
1

3 4

2 2

1 , cos , ,n

n N

T T

d n n e T n f T n

π

−

≤

=

× −

∑
∑

(2.3) 

( )

( )

2

1
1 2

log
22 log cos ,

2 1
4

n N

T

TT
T nd n n

n
T

π
π

π

−
−

′≤

  
      = −     
− + 
 

∑

∑
 (2.4) 

with 

( ) 2 2

3 3 2 1 2

5 2 3 2 7 2 5 2
5 7

1, 2 arcsinh 2
2 4

1 12 2 2
4 6

,

nf T n T nT n
T

nT n T

a n T a n T

π π π π

π π π −

− −

 
= + + −  

 

= − + +

+ + +

(2.5) 

 

( )

( )( ) ( )

( ) ( )

1
1 4 1 2

,

1 2 2 arcsinh
2

1 1 ,

e T n

nn T T n
T

O n T n T

ππ π
−

−    = +       
= + ≤ ≤

(2.6) 

and 2ar sinh log 1 .x x x = + + 
 

 

The next lemma is the Voronoï-type formula for 
*( )x∆ , which is the analogue of the classical truncated 

Voronoï formula for ( )x∆ , only the formula for *( )x∆  

has the factor ( 1)n−  in the sum, while that for ( )x∆  does 
not (see e.g., [[4], Chapter 15]). 

LEMMA 4. We have, for 1 N x  , 

 

( )

( ) ( )
1 3
4 4

1 1
2 2

*

1 11 cos 4
42

.

n

n N

x

x d n n nx

O x N
ε

ε

π π
π

−

≤

+ −

∆

 = − − 
 

 
 +
 
 

∑ (2.7) 

We shall also need an arithmetic lemma on the number 
of small values of four square roots of integers. The was 

proved, in the general case of k-th roots, by Robert–Sargos 
[14]. 

LEMMA 5. Let  2k ≥  be a fixed integer and  0δ >  
be given. Then  , the number of integers n1, n2, n3, n4 
such that 1 2 3 4  ,  ,  ,  2N n n n n N< ≤  and 

 1 1 1 1 1
1 2 3 4

k k k k kn n n n Nδ+ − − <  

satisfies, for any given ε > 0, 

 ( )4 2 .N N Nε
ε δ +  (2.8) 

3. The Technical Preparation for the 
Proofs 

It is clear that we may prove the bounds in (1.6)–(1.9) 
for the integrals over [T, 2T], and then replace T by 2 jT −  
and sum the resulting bounds for j = 1, ... . As is 
customary in this field, we shall bound the occurrence of 
large values of E(t) by considering the set of well-spaced 

points { } 1
R

r rt =  for which 

 ( ) ( ) ( )
1

1

2 ,
* 0 .

1, , 1
R

r
r r

T t t T
E t V

t t G r R+

≤ ≤ ≤ ≤ 
≥ >   − ≥ = − 





(3.1) 

If *( ) E tr V≤ −  the analysis is similar, and therefore 
will not be carried out in detail. Namely when *( ) 0rE t >  
we shall use the first inequality in (2.1), and in the case 
when when *( ) 0rE t <  the second one. We use Lemma 3 
and Lemma 4 (with N = T) to derive the explicit 
expression for *( ) (  1,  ..., )rE t GL u r R+ + =  in the 
integral (L = log T) on the right-hand side of (2.1). To 
truncate the sums that occur in these explicit expressions 
we use Taylor’s formula and 

 ( )
22

exp e 0 .
4

Au Bv Ae dv B
B B
π∞ −

−∞

 
= >  

 
∫ R  

This procedure is similar to the one used in [4] in the 
proof of Lemma 7.2. In this manner it is seen that the 
terms with 2  n TG L−>  (cf. (3.5)) make a negligible 
contribution (that is, one which is AT −

  for any given 
 0A > ). The integral can be also truncated at GL±  with a 

negligible error. We take then in each of the upper bounds 
provided by (2.1) 

 
2

VG
CT ε=  (3.2) 

with a suitable  0C > . Therefore we obtain 

 
( ) ( )

( ) ( )

21

21 1, , .

GL u G
rGL

t GLr
tr

V T V t GL u e du

T V t dt r R

ε

ε

−−
−
+−

+ + +

+ =

∑∫
∑∫

 

  

(3.3) 

We can suppose that V satisfies the bounds 

 1 6 1 3.T V Tε+ ≤ ≤  (3.4) 
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Namely if 1/6V T ε+≤ , then all our results follow 
trivially from the mean square formula (1.5), while the 
upper bound in (3.4) follows from the trivial bound 

1/3*( )E T T  (see e.g., [4] and [5]). Furthermore by 
picking a suitable subsequence { }rt′  of { }rt  and calling it 
again { }rt , with a slight abuse of notation, we may 
assume that all the intervals [ ,   2 ]r rt t GL+ , for the ’srt  
satisfying (3.3), are non-overlapping. In (3.3) we have set 

( )

( ) ( )
( )( )

1 3
4 4

1cos 81 41
2 cos ,

n

n M

t

nt
T d n n

f t n

π π

π

−

≤

  −   = −  
 − 

∑

∑
(3.5) 

with 1 2M T Vε+ −= , where we have simplified the 
function e(T, n) (see (2.6)) by Taylor’s formula. Here and 
later +. . . will mean that in the relevant formula there are 
more expressions of a similar nature (structure) present, 
but they are of a lower order of magnitude than the 
expressions that are explicitly stated. 

4. The Bound for the Fourth Moment 
There are two natural ways to bound the quantity R 

appearing in (3.3): by the mean square or the mean fourth 
power of the function ( )tΣ  in (3.5). In this section we 
want to prove the bound (1.9), which is equivalent (by 
(2.1)) to the bound 

 7 4 5,R T Vεε
+ −

  (4.1) 

provided that (3.1), (3.2) and (3.4) hold. In Section 5 we 
shall use this result to derive (1.6) and (1.7). From (3.3) 
and (3.5), on squaring and using the Cauchy-Schwarz 
inequality for integrals, we have 

 
( )( )
( ) ( )( )

3 23

3 2 23
1 2 ,

T
T

T
T

R T V t dt

T V S t S t dt

ε
ε

ε
ε

−

− +

∑∫

∫





 (4.2) 

say, where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1 3
4 41

1 3
4 42

: 1 exp 8 4 ,

: 1 exp , .

n

n M

n

n M

S t t d n n i nt i

S t t d n n if t n

π π
−

≤

−

≤

= − −

= −

∑

∑
(4.3) 

The mean square of both S1(t) and S2(t) is estimated 
similarly (see e.g., [[4], Chapter 15]). The former is 
technically a little simpler. As usual, we split 

( ) (  1, 2)jS t j =  into O(logT) subsums ( , )jS t K  where 
the range of summation for n is 

 1 22 , 1 .K n K K K M T Vε+ −′< ≤ ≤ =   

We obtain 

 

( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

3
2

1

3
1 2

3 4
,

3 1
2 2

1 3
2

3 4

3 2 1 2
3 4

3 2 1 2 1

,

exp 8

exp 8

1

T

T
T

K m n K T

T

K m n K T

K m n K

K m n K

S t K dt

d m d n m
T i t dt

nmn

O T K

d m d n m
T i t dt

nmn

d m d n
T K T

mn n m

T K TK
n m

ε
ε

ε
ε

ε ε
ε

ε

π

π

′< ≤

−

′< ≠ ≤

−

′< < ≤

− −

′< < ≤

  
    −  

 
 =
 
 

  
 +    −  

+
−

+
−

∫

∑ ∫

∑ ∫

∑

∑









3 2 1 2 3 2 1 2 ,T K TK T Kε ε ε
ε

− −+ 

 

since   K T< . Here we estimated trivially the “diagonal” 
terms m = n (using ( )d n nεε ) and used the first 
derivative test (i.e., Lemma 2.1 of [4]) for the terms 
m n≠ . The same bound holds for the mean square of 

2| ( , ) |S t K . If RK is the number of ’srt  in (3.3) pertaining 
to ( , ) (  1, 2)jS t K j = , then we have shown that 

 ( )3 2 3 1 2 1 21 .KR T V K K M T Vε ε
ε

+ − − + −=  
(4.4) 

There is a possibility for another type of large values 
estimate involving the technique developed by the author 
in [3] and [[4], Chapter 13] to estimate the occurrence of 
large values of ( )x∆ . The present problem is similar, with 

( ,  )f t n  standing in place of 8 ntπ  in S2, which is not 
problematic in the present situation. We can use (13.65) of 
[4] with  2,k K N= ≡  and 0R  the number of points rt  
counted by KR  which lie in interval of length 

0 0( )T V T T≤ . Then we obtain 

 ( ) ( )1 2 2 1 22 1 1
0 0 0 .R V T V R T T Kκ ε λ κε κ

ε
− + − −+ − +  

Hence with 

 ( ) ( ) ( ) ( )1 2 1 2 22
0T cV T Kκ κ ε κ λ κκ − − + −=  

and suitable   0c > , we obtain 

 

( )

( ) ( ) ( ) ( ) ( )

0 0
1 3

1 3 2 3 2 2 1 2

1

,

KR R T T

T V

T V K

ε
ε

κ κ ε κ κ λ κ κ

+ −

+ + − + − −

+

+



 (4.5) 

where ( ,  )κ λ  is an one-dimensional exponent pair. For 
definitions and properties of exponent pairs see Graham-
Kolesnik [2] and [[4], Chapter 2]. The condition 0T V  
becomes 

 ( ) ( ) ( ) ( )1 4 2 2 1 4 2 .V T Kκ κ λ κ κ− − − − −
  (4.6) 

If we use the standard exponent pair 
( ,  )  (1/ 2,1/ 2)κ λ = , then from (4.5) and (4.6) we obtain 
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 ( )1 3 5 2 7 1 2 1 6 1 6 ,KR T V T V K V T Kε ε
ε

+ − + − − −+ ≥  

valid also for the whole range 1 21 K M T Vε+ −=  . 
The condition on V may be dropped, since we certainly 
assume 1/6V T≥  to hold. Also note that 

1 3 5/2 7 1/2T V T V Kε ε+ − + − −≤  since 1/3  V T< , hence we 
obtain 

 5 2 7 1 2.KR T V Kε
ε

+ − −
  (4.7) 

Multiplying (4.4) and (4.7) and then taking square roots 
we infer that 

 2 5 1 2.KR T V Kε
ε

+ − −
  (4.8) 

If K ≥ T1/2−ε we see that (4.8) gives the desired bound 

 7 4 5.KR T Vεε
+ −

  (4.9) 
Suppose now that K ≥ T1/2−ε fails, namely that 

 1 21 .K T ε−<  (4.10) 
Analogously to (4.2) we shall obtain, by raising (3.3) to 

the fourth power, 

( ) ( ) ( )( )3 4 4 45
3 4 5 ,

T
T

R T V S t S t S t dtε
ε

− + +∫ (4.11) 

where we have set 

( )
( ) ( )

( )
( )( )

( )
( ) ( )

( ) ( ) ( )
( )( )

3
4

1 4
3

1 3 1

3
4

1 4
4

1 3 1 21

3
41 4

5
1 3 1 21

1
: ,exp 8 4

exp ,

1
:

18exp
44

1:
exp , .

n

n T

n

T n T

n

T n T

d n n
S t t i nt i

if t n

d n n
S t t

i nt i
i

d n nS t t
if t n

ε

ε ε

ε ε

π π

π π
π

−

−≤

−

− −< <

−

− −< <

−
=  − × 

−  

−
=    × −   −   

−=
×

∑

∑

∑

(4.12) 

In other words, we consider separately the cases 
1 3 1n T ε−≤  and 1 3 1 21T n Tε ε− −< < . It is in the former 

case that we can take advantage of the “closeness” of the 
functions ( )E t  and *( / (2 ))t π∆ . In the other case we 
treat the sums coming from ( )E t  and *( / (2 ))t π∆  
separately, or even “trivially”. In 3( )S t  we use (2.5) to 
replace exp(if (t, n)) by 

 ( )3 2 1 2 11 exp 8
4

cn t i nt iπ π−  + − 
 

 

plus terms of a lower order of magnitude (in view of 
(4.10)). Hence we obtain 

( )

( ) ( ) ( ) ( )( )

3
4

3

1 3 1
3 4

, , ,

log max

T

T

K T

K m n k K

S t dt

T
T

d m d n d k d mnk J

ε−≤

′< ≤
+

∫

∑




  

(4.13) 

with 

 
( )

( ) ( )( )4
4

; , , , :

exp 8 .
T

T

J J T m n k

t i t m n k dtϕ π

=

= + − −∫





 

Here ( )( )  0tϕ ≥  is a smooth function supported in [T/4, 
4T] that equals unity in [T, 3T], which implies that 

( ) ( )r r
rt Tϕ −



 for r = 0, 1, 2, .... We set 

 
( ) ( )
( )
, , , : 8

, , , 2

m n k m n k

K m n k K K

π∆ = ∆ = + − −

′< ≤ ≤

 



 (4.14) 

and note that integration by parts gives 

 ( ) ( ) ( ) ( )4
4

2 exp 0 .
2

T
T

tiJ t t i t dt
t

ϕ
ϕ

 
′= + ∆ ∆ ≠ 

∆  
∫  

This is the same type of exponential integral as the 
original one, only its integrandis decreased by a factor 
which is 1/ ( )T∆ . Thus, after sufficiently 
manyintegrations by parts, it is seen that the contribution 
of J is negligible if 

 1 2.T ε −∆ >  

If 1/2| | T ε −∆ ≤ , then by Lemma 5 (with 
1/2 1/2 2,  k T Kεδ − −= = ) and trivial estimation we obtain 
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+ − −
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− +
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+

+

∫



 

(4.15) 

The contribution to (4.1) is then 5/3 5T Vεε
+ −

 , which 
is more than sufficient. 

The integrals in (4.11) with S4 and S5 are estimated 
analogously, only the latter is more difficult and thus will 
be considered in detail. In S5(t) we replace exp(if (t, n)) by 

( )3 2 1 2
3exp 8 4i nt i ic n tπ π −− +  plus terms of a lower 

order of magnitude. We obtain 
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3 4
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3 4
51 3 1 21

3 4

5
2

3 2 1 2
3

log max ; ,

1

1; : 8
4exp

.

T
T

T
TT K T
n

K n K K

S t dt

T T S t K dt
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π π
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+

−

 = − 
 
 + 

×

∫

∫

∑

   

Thus with Δ given by (4.14) and 

 ( ) ( )3, , , :E E m n k c m m n n k k= = + − −    

we see that the integral of 4
5| ( ; ) |S t K  is equal to 
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exp .
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−

∆ +

∑
∫







 (4.16) 

If 1/2| | T ε −∆ ≤ , we apply again Lemma 5 as in the case 
of S3(t). We obtain that in this case 
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 (4.17) 

since 1 3 1 21T K Tε ε− −< . Again, this makes a 
contribution of 7/4 5T Vε+ −  to R in (4.1). 

If 1/2| | T ε −∆ ≥ , suppose that 0∆ >  (the case 0∆ <  is 
analogous). We may also suppose that  0E > , for if 

0E ≤ , then all the derivatives of 1/2( ) :  tF t t E −= ∆ +  
are of the same sign. Thus by repeated integration by parts 
the integral in (4.16) makes again a negligible contribution 
in view of 1/2| | T ε −∆ ≥ . 

If we have 1 /C E T∆ >  with a sufficiently large 

1 0C > , then ( ) /F t T′ ∆  in[T, 3T]. Hence by the first 

derivative test and Lemma 5 (with 1/2 2,   k Kδ −= = ∆ ) 

we have, supposing that 1/22 jT ε −∆ , 
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 (4.18) 

since 1 3 1 21T K Tε ε− −<  and there are logT<<  
possible values of j. Here we used the notation 

( ) ( )f x g x  which means that ( ) ( ) ( )f x g x f x<< << . 

If 1/2T ε −∆ ≥  and 2 /C E T∆ <  with a sufficiently 

small 2 0C > , then 3/2( )F t ET −′ >> . Hence 

 ( ) 1 3/2 1 1/2 1'F t T E T− − −∆   

and by the preceding argument we have again 

 7/4 5R T Vεκ ε
+ −

  

Finally if 1/2Tε −∆ ≥  and E / T∆ , then there may 
exist a saddle point 0t E /= ∆  (root of 0F (t )  0′ = ) in [T, 
3T] if T E∆  . Hence by the saddle-point method (see 
[[4], Chapter 2] or by the use the second derivative test, 
making first the change of variable t u=  we obtain 
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 (4.19) 

plus the contribution of the error terms which is of a lower 
order of magnitude. Here *Σ  denotes summation with the 
conditions 

 1/2

, , , ' 2 , 0,

0, ,

K m n k K K
EE T
T

ε −
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> ∆ ≥ ∆




 (4.20)  

However, the estimation of the sum in (4.19) with the 
summation condition (4.20) is complicated, and we shall 
use another approach which avoids the use of higher 
dimensional exponential sums. Suppose now that 

 1/2
0T ε − ≤ ∆ ≤ ∆  

where 0∆ , which will be determined later, does not 
depend on ( ,  ,  ,  )m n k  . Further suppose that 

 ( )( )( )1 1/2
0 0 02 2 1 log .j j j J T ε− − −∆ < ∆ ≤ ∆ ≤ ≤ ∆  

Since ( ) 5/2 3/2 3/2
0

1''
2

F t E T− −= ∆ ∆ , it follows from 

(4.19) by trivial estimation and Lemma 5 that 
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 (4.21) 

if 0  1/ K∆ = , since 1/2 1/3 1
02 , .J T K Tε ε− − −∆ >>  

There remains the case when 1/ K∆ ≥ , but we shall show 
that this is impossible, which will complete the proof of 
(4.1) 

To this end note that by the elementary identity 

 3 3 3 3( ) 3( )( )( )x y z x y z x y x z y z+ + = + + − + + +  

With , ,x m y n z k= = = −  we obtain 
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( ) ( )( )( )

3 3
3/

3

3

E c m n k

m n m k n k

O K m n m k n k

= + − −

− + − −

= ∆ − + − −



 

In the critical case when /E T∆  holds this gives 

 
( )( )K m k k n

T

− −
∆  (4.22) 

Thus if 1/ K∆ ≥ , (4.22) gives 

 ( )( )
( )

1/2

1/2 3 /23/2 1

m k k n T K

TK T ε

−

−−

− − ∆

 

 

since 1/3 1K T ε−>>  holds in S4 and S5. But trivially 

 ( )( ) ,m k k n K− −   

which yields 1/2 (3 1)/2K T ε−>> , and this is a contradiction 
by (4.10), if 1 / 2ε ε= , say. 
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5. The Fifth and the Third Moment 
Having at our disposal (4.1) we shall use it to obtain 

(1.7) and then (1.6). The bound (1.7) follows from the 
large values estimate 

 2 6R T Vεε
+ −

  (5.1) 

under the spacing conditions (3.1), (3.2) and (3.4). For 
1/4V T ε+≤  we have, from the fourth moment bound (4.1), 

 7/4 5 7/4 6 2 2 6R T V T V V T Vε ε ε
ε ε

+ − + − + −= ⋅  (5.2) 

In the case when 1/4   V T ε+>  we have (see the 
discussion after (4.3)) 

 1 2 1/2 K T V Tε ε
ε ε

+ − −
   (5.3) 

In this case we follow the discussion that was made in 
(4.11)–(4.18). The contribution of S3(t) will be, like in 
(4.13), 5/3 5 2 6.T V T Vε ε

ε ε
+ − + −<<   The contribution of 

S4(t) and S5(t) will be (by the first bound in (4.17) and 
(4.18)), 

3/2 1/2 5 2 1 6 2 6R T K V T K V T Vε ε ε
ε ε

+ − + − − + −+  (5.4) 

since 1 2K T Vεε
+ −<<  by (5.3) and 1/3 1  K T ε−> . We 

remark that (5.4) also incorporates the bound O(K2) 
corresponding to the cases m = n and k =   in Section 4. 
Hence we have proved (5.1). 

Likewise the bound (1.6) follows from 

 3/2 4R T Vεε
+ −

  (5.5) 

We have, by (5.1), 

 2 6 3/2 3 4R T V T Vε εε + − + −
   

for V ≥ T1/4−ε. If V < T1/4−ε, then by (4.4) 

 
3/2 3 1/2

K
3/2 4 1/2 3/2 4

R T V K

·V K T VT V

ε
ε
ε ε

ε

+ − −

+ − − + −=





 

for 1/2V K≤ . If 1/2  K T ε−> , then we have 
1/4 /2 1/2V T Kε−≤ ≤ , hence (5.5) holds for KR . 

It remains to deal with the case 

 1/6 1/4 1/2T V T ,  K T .ε ε− −≤ ≤ ≤  (5.6) 

Namely for 1/6V T≤  the bound (5.5) easily follows 
from (1.5). As in the case of the proof of (5.1) we note that 
the contribution of 3( )S t  is 

 5/3 5 3/2 4T V T Vε εε + − + −≤  

in view of 1/6T V≤ . But in the remaining case of 4S (t)  
and 5S (t)  we have the bound in (5.4). Thus if 

2 1 5T K Vε+ − −  dominates in size then, since 1/3 1K  T ε−> ,  

 2 1 5 5/3 5 3/2 4
KR T K V T V T V .ε ε ε

ε ε ε
+ − − + − + −

    

If 3/2 1/2 5T K Vε+ −  dominates in (5.4), then by (4.4) and 
(5.) 
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T K V
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ε
ε

ε
ε

+ − −
+ −

+ −
= =

⋅

  
 
  

  

and the proof of (5.5) is finished. Thus the proof of the 
bounds (1.6)–(1.9) is complete. 

6. Proof of Theorem 1 
Suppose, contrary to the assertion of Theorem 1, that 

the function * E (t)  does not change sign in some interval 

[T, T+H] for some 0T T ( )ε>  and 2/3H T ε+= . 

The cases *E (t) 0>  and *E (t) 0<  are analogous, so 
only the former will be considered. On one hand we have 
the lower bound (1.10). On the other hand, since 

*E (t) 0>  in [T, T+H], 

 

T H T H2
T T

(E ( )) d sup E ( )d

3 sup E ( )( ( ) ( ) ).
4

T t T H

T t T H

t t t t

t R T H R T π

+ +∗ ∗

≤ ≤ +

≤ ≤ +

≤

= ∗ + − +

∫ ∫
 (6.1) 

The function R(T) is defined (for some results on R(T) 
see Part III of [6,9] and [10]) by the relation  

 ( )T
0

3E ( )d
4

t t T R Tπ∗ = +∫  

In [10] it was proved that, if ( )R T Tε α ε+ , then 
* /2(T)E Tα ε

ε
+<<  holds. It was conjectured that 

 1 / 2α =  is permissible, but unconditionally it was 
proved that 6 593 / 912  0.6502129 2 / 3α = <  holds. 
Hence (6.1) yields 

 1/3 3 3log sup E ( )( H  T ).
4T t T H

HT T t α επ∗ +

≤ ≤ +
+  

It follows, since  2 / 3α <  and * /2( )E T Tα εε +<< , 

 1/3 3 3 /2HT log T T T,α ε+
   

which contradicts our choice 2/3H T ε+= . Therefore 
Theorem 1 is proved. 

7. Proof of Theorem 2 
We shall use a technique similar to the one employed 

by K.-M. Tsang in his work on the –Ω± results in the 
sphere problem (see [[15], Lemma 1]). For any function f 
define 

 1 1  (| f | f ),  (| f | f ),
2 2

f f+ −= + = −  

so that f+  is the positive, and f− is the negative part of f. 
Then f f 0+ − ≡ , and therefore the binomial theorem yields 

 k  ( 1) f (k ).k k kf f+ −= + − ∈  (7.1) 

From (1.8) and (7.1) it follows that 
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* 3 * 3
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(t) dt (t) dt

T (1 H T).

T H T H
T T

E E

η ε
ε

+ +
+ +

− +

−
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∫ ∫


 (7.2) 

On the other hand, from the mean square formula (1.5) 
we obtain, for 5/6 ,   T H T Tε+ ≤ ≤ → ∞  (this is why we 
had the restriction 0   1/ 6η< <  in the formulation of 
Theorem 1), 

 

1/3 3 * 2

* 2 * 2

1/3 * 3 1/3 * 3

log ~ (t) dt

(t) dt (t) dt
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E E
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+ +
+ −

+ +
+ −

= +
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∫

∫ ∫

∫ ∫

 

by Hölder’s inequality for integrals. By raising both sides 
to the power 3/2 one obtains 

 
* 3 * 3

1/2 9/2 5/6

(t) dt (t) dt

log ( H T).

T H T H
T T

E E

HT T T ε

+ +
+ −

+

+

≤ ≤

∫ ∫


 (7.3) 

In deriving (7.3), instead of using (1.5), we could have 
used the lower bound in (1.10). 

Take now 1 2H T η ε− += , so that for any constant 
 0C >  and 1( ,  )T T C ε≥  we have 

 1/2 9/2 3/2HT log T  CT .η ε− +>  

Then (7.2) and (7.3) imply that 

 1/2 9/2 * 3 * 3HT log T (t) dt sup (t) ,
T H
T T t T H

E H E
+

± ±
≤ ≤ +

≤∫  

and the assertion of Theorem 2 follows. It would be 
interesting to ascertain what is the lower bound for the 
integral in (1.8). 
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