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1. Introduction 
It is well known from calculus that 
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for 0 1.x≤ ≤  For 1 p< < ∞  and 0 1,x≤ ≤  the arc sine 
may be generalized as 
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where Γ  denotes the classical gamma function. Hence, 

we have 
( )

2 .
sinp p p

ππ
π
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The inverse of arcsin p x  on 0,
2
pπ 

 
 

 is called the 

generalized sine function, denoted by sin p x , and may be 

extended to ( ), .−∞ ∞  See [7] and closely related 
references therein. 

For 0, ,
2
px

π 
∈  
 

 the generalized cosine function 

cos p x  is defined by 
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It is easy to see that 
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The generalized tangent function tan p x  is defined as 
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From (1.8), it follows that 
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The generalized secant function sec p x  is defined as 

 1sec , 0, .
cos 2

p
p

p
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x
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It follows from (1.8) and (1.9) that 
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The generalized cosecant function csc p x  may be 
defined as 
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It is clear that 
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The generalized inverse hyperbolic sine function 
arcsin ph x is defined by 
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The inverse of arcsin ph x  is called the generalized 

hyperbolic sine function and denoted by sin ph x . 

The generalized hyperbolic cosine function cos ph x  is 
defined as 
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It is easy to show that 
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The generalized hyperbolic tangent function and the 
generalized hyperbolic secant function are defined as 
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Their derivatives are 
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The above formulas (1.5) to (1.9) and (1.15) to (1.19) 
can be found in [8]. For 0,r >  the set 

( ){ }2 2 2 2
2 , :S x y x y r= ∈ − =  is the equilateral 

hyperbola in the plane 2
  with the 2  metric. The 

connection between the hyperbolic coordinates ( ),r φ  and 

the rectangular coordinates ( ),x y  is given by 
coshx r φ=  and sinh .y r φ=  We may easily obtain that, 

when , 0,x y >  2 2 2x y r− =  and φ  are related by 

arctanh .y
x

φ  =  
 

 When 2,p ≠  the analogue of the 

equilateral hyperbola is the p-equilateral hyperbola 

 ( ){ }, :p p p p
pS x y x y r= ∈ − =  (1.22) 

and the identities cosh px r φ=  and sinh py r φ=  hold. 
From this, it follows that 
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This gives a geometrical interpretation to sinh p x  and 

cosh .p x  Furthermore, we may also define the generalized 
trigonometric functions by means of Gauss hypergeometric 
function. Interested readers may refer to [1]. 

As well as we known, the \hyperbolic" function were 
introduced in 1760 independent by Vincenzo Riccati and 
John Heinrid Lambert, the notations sh and ch are still 
used in some other languages such as European, French, 
and Russian. The hyperbolic function occurs in the 
solutions of some linear differential equations, such as 
defining catenary, Laplaces equations in Cartesian 
coordinates, and occurs in many important areas in 
physics, such as special relativity. In complex analysis, the 
hyperbolic function arises the imaginary parts of sine and 
cosine. For complex variables, the hyperbolic functions 
are rational functions of exponential functions and are 
meromorphic. Therefore, many advantages properties 
relating to the hyperbolic function have already been 
applied extensively. For more information on this topic, 
please read the classical book [5]. 

During the last decades, many authors have studied the 
generalized trigonometric functions introduced in [9]. See, 
for example, [1,2,3,4,7] and plenty of references therein. 
In [8], some classical inequalities for generalized 
trigonometric and hyperbolic functions, such as 
Mitrinović-Adamović inequality, Huygens' inequality, and 
Wilker's inequality were generalized. In [6], some basic 
properties of the generalized ( ),p q - trigonometric 
functions were given. Recently, the functions ,arcsin p q x  

and ,arcsinh p q x  were expressed in terms of Gaussian 
hypergeometric functions and many properties and 
inequalities for generalized trigonometric and hyperbolic 
functions were established in [3]. In [1], some Turán type 
inequalities for generalized trigonometric and hyperbolic 
functions were presented. Very recently, a conjecture 
posed in [3] was verified in [7]. 
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In this paper, we will establish some inequalities of the 
generalized trigonometric and hyperbolic functions, 
partially solve a conjecture in [8], and finally pose an open 
problem. 

2. Lemmas 
For proving our main results, we need the following 

lemmas. 
Lemma 2.1 ([[12], Lemma 2.9]). Let f  and g  be 

continuous on [ ],a b  and differentiable on ( ),a b  such that 
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Lemma 2.2 ([[10], Bernoulli inequality]). For 1t > −  
and 1α > , we have 

 ( )1 1 .t tα α+ > +  (2.1) 

Lemma 2.3 ([8, Theorem 3.4]). For [ )2,p∈ ∞  and 
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Lemma 2.4 ([[8], Theorem 3.16]). If 1p > , then 
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Lemma 2.5 ([[8], Theorem 3.22]). For ( ]1,2 ,p∈  the 
double inequality 
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Lemma 2.7 ([8, Theorems 3.6 and 3.7]). For all 
( )1, ,p∈ ∞  we have 
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possible. 

Lemma 2.8. For 1p >  and 0, ,
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Proof. It is apparent that the function ( )f x  is positive. 

An easy computation yields ( ) ( )
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This means that ( )g x  is strictly increasing and 
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that ( )f x  is strictly increasing. 
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Proof. An easy computation yields 
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3. Main Results 
Now we are in a position to present our main results. 
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Further using (2.3) results in the inequality (3.1). 
Remark 3.1. The inequality (3.1) is an analogy of 

Wilker's inequality involving the sine and tangent 
functions. See [[12], Section 8.1]. 
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Proof. Letting 1
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Combining this with (2.2) and (2.3) yields (3.2). 
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Theorem 3.4. For ( ]1,2p∈  and 0,x >  we have 
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Proof. This follows from using (2.6) and 
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Remark 3.2. Inequalities presented in Theorems 3.3 
and 3.4 are analogies of Huygens' inequality for the sine 
and tangent functions. See [11]. 

Theorem 3.5. For ( ]1,2 ,p∈  we have 
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The inequality (3.6) may be deduced similarly. 
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This can be derived from utilizing (2.8) as follows 
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Theorem 3.7. For ( )1,p∈ ∞  and 0,x >  we have 
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Proof. This follows from using the inequality (2.9). 
Remark 3.3. Inequalities (3.7) and (3.8) imply 

inequalities (3.1) and (3.20) in [8, Corollary 3.19]. 
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Hence, ( ) ( )0 0,f x f′′ ′′> =  ( )f x′  is strictly increasing, 

( ) ( )0 0,f x f′ ′> =  and ( ) ( )0 0.f x f> =  The inequality 
(3.9) follows. 
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Notice that Theorem 3.10 partially solves Conjecture 
3.12 in [8]. 

Theorem 3.11. For 1p >  and ( )0,1 ,x∈  we have 
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Making use of the monotonicity of sin p x  and cos p x  
acquires 

 cos sin cos sin cos .p p p p pt t t> >  

The inequality (3.14) is thus proved. 

4. An Open Problem 
Finally, we pose an open problem. 
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