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1. Introduction 
In calculus and engineering mathematics, there are 

many methods to solve the integral problems including 
change of variables method, integration by parts method, 
partial fractions method, trigonometric substitution 
method, and so on. In this paper, we study the following 
six types of double integrals which are not easy to obtain 
their answers using the methods mentioned above.  
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where , ,s Rφ  are real numbers, 0R > , and n  is a 
positive integer,  
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We can obtain the solutions of these double integrals 
using area mean value theorem; these are the major results 
of this paper (i.e., Theorems 1-3). Adams et al. [1], 
Nyblom [2], and Oster [3] provided some techniques to 
solve the integral problems. Yu [4-29], Yu and B. -H. 
Chen [30], and T. -J. Chen and Yu [31,32,33] used complex 
power series method, integration term by term theorem, 
differentiation with respect to a parameter, Parseval’s 
theorem, and generalized Cauchy integral formula to solve 
some types of integrals. In this paper, three examples are 
used to demonstrate the proposed calculations, and the 
manual calculations are verified using Maple. 

2. Main Results 
Some formulas and theorems used in this paper are 

introduced below. 

2.1. Euler’s Formula 

xixeix sincos += , where 1i = − , and x is any 
real number. 

2.2. DeMoivre’s Formula 

(cos sin ) cos sinmx i x mx i mx+ = + , where m  is any 
integer, and x  is any real number. 

The following Formula 2.3 and Formula 2.4 can be 
found in [[34], p62] 

2.3.  
sin( ) sin cosh cos sinha ib a b i a b+ = + , where ,a b are 

real numbers. 

2.4.  
cos( ) cos cosh sin sinha ib a b i a b+ = − , where ,a b are 

real numbers. 

2.5. Binomial Theorem: 
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numbers, n  is a positive integer, 
( ) ( 1) ( 1)kn n n n k= − ⋅⋅⋅ − +  for positive integers k , and 

0( ) 1n = . 
An important theorem used in this study is introduced 

below, which can be found in [[35], p147]. 

2.6. Area Mean Value Theorem 
Suppose that ,z λ  are complex numbers, and 0R > . If 
( )f z is analytic in a domain which contains the closed 

disc { }z C z Rλ∈ − ≤ , then: 
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Firstly, we determine the solutions of the double 
integrals (1) and (2). 

Theorem 1 Suppose that , ,s Rφ  are real numbers, 0R > , 
and n  is a positive integer. Then the double integrals  
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Proof Using area mean value theorem for analytic 
function ( ) exp( )nf z z= yields: 

 2 2
0 0

exp[( ) ] exp( ).
R i n nz re rdrd R z
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Let iz se φ= , then by Euler’s formula, DeMoivre’s 
formula and binomial theorem, we obtain:  
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Thus, 

 
2 [( ) ]
0 0

0
2

( )
exp

!

exp( cos sin ).

nR n k k i n k kk

k
n n

n
r s r e drd

k

R s n is n

π φ θ θ

π φ φ

− − +

=

 
 
  

= +

∑∫ ∫  (17) 

Using the equality of real parts of both sides of Eq. (17) 
yields Eq. (13) holds. Also by the equality of imaginary 
parts of both sides of Eq. (17), we obtain Eq. (14). 

Next, the solutions of the double integrals (3) and (4) 
can be obtained below. 
Theorem 2 If the assumptions are the same as Theorem 1, 
then the double integrals  
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Proof By area mean value theorem for analytic function 
( ) sin( )ng z z= , we have: 
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It follows that: 
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By Formula 2.3 and the equality of real parts of both 
sides of Eq. (22), we obtain Eq. (18). Also using Formula 
2.3 and the equality of imaginary parts of both sides of Eq. 
(22) yields Eq. (19) holds. 

Finally, we solve the double integrals (5) and (6). 
Theorem 3 If the assumptions are the same as Theorem 

1, then the double integrals  
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Proof Using area mean value theorem for analytic 
function ( ) cos( )nh z z= and Formula 2.4, we can easily 
obtain the desired results. 

3. Examples 
In the following, for the six types of double integrals in 

this study, we provide some examples and use Theorems 
1-3 to determine their solutions. On the other hand, Maple 
is used to calculate the approximations of some double 
integrals and their solutions for verifying our answers. 

Example 1 In Eq. (13), let 2, , 1
3

s nπφ= = = , and 2R = , 

we obtain: 
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where  

 , , 2, ,1 exp(1 cos ) cos( 3 sin ).
3

A r r r rπθ θ θ  = + ⋅ + 
 

(26) 

Next, we use Maple to verify the correctness of Eq. (25). 
>evalf(Doubleint(r*exp(1+r*cos(theta))*cos(sqrt(3)+r*sin
(theta)),r=0..2,theta=0..2*Pi),18); 

 5.48444066856117700−  
>evalf(4*Pi*exp(1)*cos(sqrt(3)),18); 
 5.48444066856117688−  

Also using Eq. (14) yields: 

 2 2
0 0

, , 2, ,1 4 sin( 3),
3

B r drd e
π πθ θ π  = ⋅ 

 ∫ ∫  (27) 

where  

 , , 2, ,1 exp(1 cos ) sin( 3 sin ).
3

B r r r rπθ θ θ  = + ⋅ + 
 

(28) 

>evalf(Doubleint(r*exp(1+r*cos(theta))*sin(sqrt(3)+r*sin
(theta)),r=0..2,theta=0..2*Pi),18); 

 33.7157808756591908  
>evalf(4*Pi*exp(1)*sin(sqrt(3)),18); 

 33.7157808756591909  

Example 2 In Eq. (18), if 1, , 2
2

s nπφ= = = , and 3R = , 

then: 
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We also use Maple to verify the correctness of Eq. (29). 
>evalf(Doubleint(r*sin(-1-2r*sin(theta)+r^2*cos(2*theta)) 
*cosh(2*r*cos(theta)+r^2*sin(2*theta)),r=0..3,theta=0..2*
Pi)); 

 23.79203158−  
>evalf(-9*Pi*sin(1)); 

 23.79203158−  
Also by Eq. (19), we have: 
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>evalf(Doubleint(r*cos(-1-2r*sin(theta)+r^2*cos(2*theta)) 
*sinh(2*r*cos(theta)+r^2*sin(2*theta)),r=0..3,theta=0..2*
Pi),14); 

 101.987124 10−− ⋅  
Example 3 In Eq. (23), let 2, , 1s nφ π= = = , and 1R = , 
then: 

 2 1
0 0

( , , 2, ,1) cos(2),E r drd
π

θ π θ π=∫ ∫  (33) 

where  

 ( , , 2, ,1) cos( 2 cos ) cosh( sin ).E r r r rθ π θ θ= − + ⋅  (34) 

>evalf(Doubleint(r*cos(-2+r*cos(theta))*cosh(r*sin(theta 
)),r=0..1,theta=0..2*Pi)); 

 1.307363845−  
>evalf(Pi*cos(2)); 

 1.307363845−  
On the other hand, using Eq. (24) yields: 

 2 1
0 0

( , , 2, ,1) 0,F r drd
π

θ π θ =∫ ∫  (35) 

where  

 ( , , 2, ,1) sin( 2 cos ) sinh( sin ).F r r r rθ π θ θ= − + ⋅  (36) 

>evalf(Doubleint(r*sin(-2+r*cos(theta))*sinh(r*sin(theta 
)),r=0..1,theta=0..2*Pi)); 

 164.9526896950035 10 .−⋅  

4. Conclusion 
In this paper, we use area mean value theorem to solve 

some types of double integrals. In fact, the applications of 
this theorem are extensive, and can be used to easily solve 
many difficult problems; we endeavor to conduct further 
studies on related applications. In addition, Maple also 

plays a vital assistive role in problem-solving. In the 
future, we will extend the research topic to other calculus 
and engineering mathematics problems and use Maple to 
verify our answers. 
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