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1. Introduction 
In this article, we consider a Cauchy problem of heat 

equation, that is, determining the unknown temperature 
and heat flux at an inaccessible boundary from scattered 
temperature measurements on an accessible boundary or 
in some interior locations. This method is similar to the 
boundary control approach proposed by Leevan Ling and 
Tomoya Takeuchi in [1] where the authors considered a 
Cauchy problem for the Laplace equation. We use the 
standard integral equation method coupled with the 
method of fundamental solutions to solve the Cauchy 
problem for heat equation. 

This kind of inverse heat conduction problem arises in 
some industrial and engineering applications, such as 
crystal growing [2] and material structure [3]. The Cauchy 
problem of heat equation is a highly ill-posed problem, 
because the solution does not depend continuously on the 
boundary date, ie, any small change on the input data can 
result in a dramatic change to the solution. So it is difficult 
to obtain an accurate and stable approximate solution. 
Usually one regularization strategy is necessary. In order 
to solve such problem, one can employ the boundary 
element method (BEM) [4], finite difference 
method(FDM) [5], finite element method(FEM) [6], and 
so on. Among these methods, the FDM and the FEM 
depend critically on the quality of mesh. However, 
generating a good quality mesh for complicated 
geometries could be time-consuming. Using the BEM can 
reduce the computational time and storage requirement 
but the problem of numerical in stability still persists. 

Recently, several meshless and integration-free 
methods have been proposed. One of the most commonly 
used technique is the method of fundamental solutions. 
Hon and Wei have already successfully applied this 

method to solve One-dimensional and multidimensional 
inverse heat conduction problems in [7,8]. In this paper, 
the difference from one method in [7,8] is that we use the 
method of fundamental solutions to solve a sequence of 
direct problems instead of solving the inverse problem 
directly. 

2. The Formulation of Problem and a 
Numerical Method 

The formulation of considered problem is 
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Where maxt  is a given positive constant, 0 ( )u x , ( )f t  
and ( )g t  are given functions. Our aim is to compute the 
temperature and heat flux on the end 0.x =  

Let ( , )w x t  be the solution of following forward 
problem 
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and define an operator : ( ) (1, )A t v tφ →  where ( , )v x t  is 
the solution of the following forward problem 
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If we take : (0, ),u tφ =  then we know it satisfies the 
following operator equation 
 ( ) (1, )A f t w tφ = −  (4) 

In the following, we propose a numerical method based 
on the method of fundamental solutions to solve (4). 

Find an approximate solution 
2 1( ) {1, , , }r

r rt V span t t tφ −∈ =   by a collocation method 
such that  

 * * *( ) ( ) (1, ), 1, 2,r i i iA t f t w t i nφ = − =   (5) 

Where 1

1

r
j

r j
j

tφ β −

=
= ∑ , and *{ }it  is a set of collocation 

points on max[0, ]t  and will be given in the following. 
Note that the operate A  is linear, therefore we have 

1

1
,

r
j

r j
j

A Atφ β −

=
= ∑  Where jAt  is determined by solving 

a direct problem (3) with .jtφ =  
In the following we use the method of fundamental 

solutions to solve the forward problems (2) and (3). The 
fundamental solution of heat equation is 
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Where ( )H t  is the Heaviside function. Assume that 

maxT t>  is a constant, then the following function 
( , ) ( , )G x t F x t T= +  is a general solution of heat equation 

in the domain max[0, 1] [0, ].t×  
Choose the collocation points  
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max{( , ) | 1, 2, } [1] [0, ]l m j l m jx t j n t+ + + + = ⊂ × . 
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approximate solution of (3) with 1,itφ −=  then 
1 (1, ), 1, 2, .i

iAt v t i n− = =   By using the initial and 
boundary conditions of (3), we know the unknown 
coefficients satisfy , 1, 2, ,i iA b i nλ = =   here 
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Therefore 1 2[ , , ]n A Bλ λ λ λ += =  Where + denotes 

the pseudo inverse and 1 2[ , , ].nB b b b=   
By similar procedure, we can obtain an MFS solution 

for (2) as 
1
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By (5) with * ,i l m it t + +=  we know 
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These leads to ,M f Mλβ α= −  in which 
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 for 

1, 2, .j l m n= + +  
Denote λMD =  and αγ Mf −= , then we need to 

solve the following linear system of equations  

 γβ =D  (7) 
In practical application, we can only get the 

measurement data
δf , 

δg  of f and g  which are 
usually contaminated by inherent measurement errors. 

Suppose that 
,],0[)()( maxtttftf ∈∀≤− δδ

 

.],0[)()( maxtttgtg ∈∀≤− δδ

 

For the noisy data 
δf and 

δg , the vector γ  becomes 

a noisy vector
δγ , we have to solve a ill-conditioned 

linear system  

 
δγβ =D  (8) 
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Here, we adapt the Tikhonov regularized technique [9] 
to solve equations (8). The Tikhonov regularized solution 
to (8) is defined as the minimize δ

αβ of the following 

Tikhonov functional 
2 22( ) ,J D δβ β γ α β= − +  

Where ⋅ denote the usual Euclidean norm and 0α > is a 
regularized parameter. 

The determination of a suitable regularization 
parameter is crucial to the accuracy of the regularized 
solution. In [10], the authors conclude that the GCV and 
L-curve choice rulers for Tikhonov regularization strategy 
are most effective. So in our computation we use the GCV 
method to determine a suitable value of α . This method 
is to choose the regularization parameter *α  that 
minimizes the following GCV function 

2

2( ) ,
( ( ))I

n

D
G

trace I DD

δ δ
αβ γ

α
−

=
−

 where ID is a matrix that 

produces the regularized solution when multiplied with δγ , 

i.e. .IDδ δ
αβ γ=  

In our paper, we used the Matlab code developed by 
Hansen [11] based on SVD for solving the discrete ill-
conditioned system (8). Denote the regularized solution to 

(8) by
*α

δβ . The approximating solution to problem (4) is 
then given as  
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1
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r
i

r i
i

t tα
δφ β −

=
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and the solution of (1) can be obtained by solving a 
direct problem using the MFS 
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3. Numerical Examples 
In this section, we test several examples to show the 

effective of our proposed method. For simplicity, we 

assume that 1max =t  and the noisy data 
)(irandfff iii δδ +=  and 
)(irandggg iii δδ += , where δ  indicates a relative 

noise level and )(irand  is a random number between [-
1,1]. 

For evaluating numerical solutions, we compute a 
relative root mean squares error by the following formula 

1
* 2 2 2

1 1
( ) ( ( (0, ) ( )) / (0, ) )

N N

i r i i
i i

rel u u t t u tφ
= =

= −∑ ∑ , Where it  

is the test point and N is the total number of test points on 
max[0, ]t . 

In the following numerical simulations, the number of 
collocation points is 11l m n= = =  and the number of test 
points 55N =  on [0,1]. The comparisons between the 
exact solutions and the approximation are given in figs 
1 8−  and from these figures we can see that the numerical 
solution of the proposed method is effective for the 
Cauchy problem of heat equation. Our numerical solutions 

(0, )u t
x
∂
∂

 are obtained by solving the direct problem of 

(11). 
In our article, there have been many parameters, such as 

,T r  and source points sn l m n= + + . In order to study the 
influence of these parameters on the numerical results. We 
are given the ( )rel u  and ( )xrel u with respect to various 
parameters in example 2 with 1%δ = . 

Example 1. Let the exact solution for problem (1) be 
( , ) (sin cos )tu x t e x x−= +  
All the given boundary data ( ), ( )f t g t  and initial 

condition 0 ( )u x  can be obtained from the exact solution 
u . 

 

Figure 1. Example 1: The boundary temperature (0, )u t  and heat 
(0, )xu t

 
with

 
its numerical approximations and various noisy levels 

and 4, 5.T r= =  

Table 1. Example 1: The relative root mean squares error 
( (0, ))rel u t  and ( (0, ))xrel u t  for various values of .δ  

δ  ( )rel u  ( )xrel u  

0  0.0012  0.0047  
1%  0.0014  0.0025  
3%  0.0051 0.0098  
5%  0.0090  0.0176  
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Example 2. Suppose that the exact solution u is not 
available. The heat flux on the end 1x =  can be obtained 
by solving the following forward problem 
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Figure 2. The relative root mean squares errors of solutions (0, )u t  and (0, )xu t  with respect to T  for example 2 with noisy data 
0.01δ = . 
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Figure 3. The relative root mean squares errors of solutions (0, )u t  and (0, )xu t  with respect to r  for example 2 with noisy data 

0.01δ = . 
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Figure 4. The relative root mean squares errors of solutions (0, )u t  and (0, )xu t  with respect to sn  for example 2 with noisy data 
0.01δ =  

Table 2. Example 2: The relative root mean squares error 
( (0, ))rel u t  and ( (0, ))xrel u t  for various values of .δ  

δ  ( )rel u  ( )xrel u  

0  0.0175  0.0505  
1%  0.0179  0.0521 
3%  0.0206  0.0592  
5%  0.0237  0.0700  

 

Figure 5. Example 2: The boundary temperature (0, )u t  and heat 
(0, )xu t  with its numerical approximations and various noisy levels 

and 3.5, 5.T r= =  

Example 3. Suppose that the exact solution u is not 
available. The temperature on the surface 1x = can be 
calculated by solving the following forward problem 

0 1, 0 1,
( ,0) 1 0 1,
(1, ) 0 0 1,

1 [0, 0.5]
(0, ) 0 1

1 (0.5, 1]

t xxu u x t
u x x x
u t t

t
u t t

t

= < < < <
 = − ≤ ≤ = ≤ ≤
 − ∈ = ≤ ≤ ∈ 

 

Table 3. Example 3: The relative root mean squares error 
( (0, ))rel u t  and ( (0, ))xrel u t  for various values of .δ  
δ  ( )rel u  ( )xrel u  

0  0.3613  0.1556  
1%  0.3609  0.1560  
3%  0.3607  0.1572  
5%  0.3613  0.1592  
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Figure 6. Example 3: The boundary temperature (0, )u t  and heat 
(0, )xu t  with its numerical approximations and various noisy levels 

and 3.2 6.T r= =  

4. Conclusion 
In this note, a Cauchy problem of heat equation is 

investigated by using a boundary integral equation method 
coupled with the method of fundamental solution, use of 

discrete Tikhonov regularization with generalized cross 
validation criterion for choosing a suitable regularization 
parameter stabilizes the resultant ill-conditioned system. 
Numerical examples with both known and unknown exact 
solutions are presented. The computed results show that 
our proposed method is reasonable, feasible and stable to 
this highly ill-posed inverse heat conduction problem. 
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